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Abstract

In this paper, we review some research works on exploring image processing in digital spaces using fixed point theorems.
The basic concepts of digital images are mentioned. Moreover, we prove some theorems on digital metric spaces by
replacing the conditions in the previously established theorem with a suitable condition.
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1 Introduction

Fixed point theory is a blend of several areas of mathematics such as functional analysis, mathematical analysis
and topology. Fixed point theory plays an important role in mathematics and other disciplines like engineering, game
theory,image processing, computer graphics, digital images. Digital topology is the study of the topological properties
of image arrays.In general, if a function f under certain conditions has atleast a point X such that f(x) = x, then such
a point is termed as a fixed point. This theory was originated from Brower [4, 1, 2] fixed point theorem (1910) in Rn

space. Later Banach [3] stated his fixed point theorem (1922) that in a complete metric space, a contraction must
map a point to itself and that point is unique. Kannan [16, 17], then relaxed the continuity of the map considered
in Banach Contraction Principle in his paper in 1968. Zamfirescu [23] and Rhoades [8], consequently developed more
general contractions for a complete metric space. These contractions have been generalised to the other spaces also
by various authors [13, 14, 22, 21]. The digital version of the topological concept was given by Boxer [5, 6, 7]. Digital
topology was first studied by Rosenfield [19]. Kong [18], then introduced the digital fundamental group of a discrete
object. Boxer [8] has given the digital versions of several notions from topology and [7] studied a variety of digital
continuous functions. Ege and Karaca [20] defined a digital metric space and proved the famous Banach Contraction
Principle for digital images. Ege and Karaca [10, 11] gave relative and reduced Lefschetz fixed point theorem for
digital images.

2 Preliminaries

The following definitions will be used in the sequel.
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Definition 2.1. Let Z be the set of all integers and let n be a positive integer. Define the set Zn as follows:

Zn = {(x1, x2, . . . , xn)/xi ∈ Z, 1 ≤ i ≤ n}

Zn is also called the set of all lattice points in the n dimensional Euclidean space.

Definition 2.2. Consider any two distinct points p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) in Zn. Let m be a
positive integer such that 1 ≤ m ≤ n. We say that the two points p and q are km−adjacent in Zn if there are at most
m indices i such that |pi - qi| = 1 and for all other indices j such that |pj - qj | ≠ 1, we have pj = qj .

Definition 2.3. A digital image is an ordered pair (X, k), where X is a finite subset of Zn for some positive integer
n and k is an adjacency relation for the members of X.

The following are the basic notions in digital images.

Definition 2.4. A k-neighbour of a point p ∈ (X, k) is a point of X that is k-adjacent to p,where k ∈ {2, 4, 6, 8, 18, 26}
and X ⊂ Zn, n = 1, 2, 3.

Definition 2.5. A digital interval is defined by [a, b]Z = {z ∈ Z/a ≤ z ≤ b}, where a, b ∈ Z and a < b.

Definition 2.6. A digital image (X,k) is k-connected if and only if different points x, y ∈ X, there is a set
{x0, x1, x2, ..., xr} points of digital image (X,k) such that x = x0 and y = xr and xi and xi+1 are k-neighbours,
where i = 0, 1, 2, ..., r − 1

Definition 2.7. Let (X, k0) ⊂ Zm and (Y, k1) ⊂ Zn be digital images and T : X � Y be a function. If for every
k0-connected subset A of X, T(A) is k1-connected subset of Y, then T is said to be (k0,k1)-continuous.

Definition 2.8. If in the above definition 1.8, T is (k0, k1)-continuous, bijective and T
−1 is (k1, k0)-continuous, then

T is called (k0, k1)-isomorphism. We denote it by X ∼=(k0,k1) Y.

Definition 2.9. A point x ∈ (X, d, k) is called a fixed point of the mapping T : X → X if Tx = x.
Let (X,k) be a digital image. we say that (X,k) has the fixed point property [22] if every (k, k)-continuous map
T : (X, k) → (X.k) has a fixed point.

Definition 2.10. Let (X, k) ⊂ Zn be a digital image. Define a function d : X ×X → [0,∞) by

d(p, q) =

[
n∑
1

(pi − qi)
2

] 1
2

Then we have the following properties satisfied by d for all x, y, z ∈ X

1. d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y

2. d(x, y) = d(y, x)

3. d(x, y) ≤ d(x, z) + d(z, y)

The digital image (X, k) together with the function d is called a digital metric space with k- adjacency. It is denoted
by (X, d, k)

Definition 2.11. A sequence{xn}∞1 of points of a digital metric space (X, d, k) is a Cauchy sequence if for all ϵ > 0,
there exists N ∈ Z+ such that for all m,n > N , we have d(xm, xn) < ϵ

Definition 2.12. A digital metric space (X, d, k) is said to be a complete metric space if every Cauchy sequence
{xn}∞1 of points of (X, d, k) converge to a point L of (X, d, k).

Definition 2.13. Let (X, d, k) be a digital metric space. A function T : (X, d, k) → (X, d, k) is called right continuous
if lim

x→a+
Tx = Ta where a ∈ X.
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Definition 2.14. Let (X, d, k) be any digital metric space and T : (X, d, k) → (X, d, k) be a digital self map.If there
exists λ ∈ (0, 1) such that for all x, y ∈ X, d(Tx, Ty) ≤ λd(x, y), then T is called a digital contraction map. Also the
constant λ is a contractive factor.

Definition 2.15. Let (X, d, k) be a digital metric space. A self map T : (X, d, k) → (X, d, k) is called a strict digital
contraction if for all x, y ∈ X, x ̸= y, d(Tx, Ty) < d(x, y).

Definition 2.16. Let (X, d, k) be a digital metric space. A self map T : (X, d, k) → (X, d, k) is called a weekly
uniformly strict digital contraction if given ϵ > 0, there exists δ > 0 such that ϵ ≤ d(x, y) < ϵ+δ implies d(Tx, Ty) < ϵ
for all x, y ∈ X.

Many of the basic theorems in metric fixed point theory are extended to a digital metric space. We mention some
of the important ones.
Brouwer’s fixed point theorem in one dimension for digital images is as follows

Theorem 2.17. Every (2, 2)-continuous function T : ([0, 1]Z , d, 2) → ([0, 1]Z , d, 2) has a fixed point, where d(x, y) =|
x− y | for all x, y ∈ [0, 1]Z .

Brouwer’s fixed point theorem in two dimensions for digital images is as follows

Theorem 2.18. Let X = {(0, 0), (1, 0), (0, 1), (1, 1)} ⊂ Z2 be a digital image with 4-adjacency. Then every (4,

4)-continuous function T : (X, d, 4) → (X, d, 4) has a fixed point, where d(x, y) =

√
(x1 − y1)

2
+ (x2 − y2)

2
for all

x = (x1, x2), y = (y1, y2) ∈ X.

Ege and Karaca [11] formulated and proved the Banach contraction mapping principle for digital images in 2015
as follows:

Theorem 2.19. Let (X, d, k) be a complete digital metric space. Let T : (X, d, k) → (X, d, k) be a digital contraction
map. Then T has unique fixed point, that is there exists a unique point z ∈ X such that Tz = z.

Ege and Karaca [11] further generalized the above theorem as stated below. We observe that if the function ψ(t)
is taken as ψ(t) = λ(t), where λ ∈ [0, 1), we get the Banach contraction mapping principle as stated in theorem 2.19.

Theorem 2.20. Let (X, d, k) be a complete digital metric space and let T : (X, d, k) → (X, d, k) be a digital self map.
Assume that there exists a right continuous real function ψ : [0, v] → [0, v], where v is sufficiently large real number
such that ψ(a) < a if a > 0 and let T satisfies d (Tx1, Tx2) ≤ ψ(d(x1, x2)) for all x1, x2 ∈ (X, d, k). Then T has a
unique fixed point z ∈ (X, d, k) and the sequence{Tnx}∞n=1 converge to z for every x ∈ X.

Recently, Jyoti and Rani [15] presented an application of fixed point theory of digital metric space in image
processing. They have proved that expansive mappings on complete digital metric space have a fixed point.

Theorem 2.21. Let T : (X, d, k) → (X, d, k) be a mapping on a complete digital metric space X. Let T be onto and
satisfy d(Tx, Ty) ≥ λd(x, y) for all x, y ∈ X and λ > 1. Then T has a fixed point in X.

Remark: The mapping T in the above theorem can be replaced by a bijective mapping [15].

The condition on the mapping T in the above theorem 2.21 is replaced by another suitable condition and the
following results are obtained.

Theorem 2.22. Let (X, d, , k) be a complete digital self map which is continuous and onto on X. Let T satisfy the
condition d (Tx, Ty) ≥ λµ
where λ > 1, and

µ = µ(x, y) ∈
{
d(x, y),

d(x, Tx) + d(y, Ty)

2
,
d(x, Ty) + d(y, Tx)

2

}
then T has a fixed point.

Remark [15]: It has been proved that µ in the above theorem may be replaced by

µ = µ(x, y) ∈
{
d(x, y),

d(x, Tx) + d(y, Ty)

2
, d(x, Ty), d(y, Tx)

}
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3 Main Results

In the following theorem the continuity condition on ψ in the theorem 2.20 is replaced by another suitable condition.

Theorem 3.1. Let (X, d, k) be a complete digital metric space and suppose that T : (X, d, k) → (X, d, k) satisfies
d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X, where ψ : [0,∞) → [0,∞) is monotone non-decreasing and satisfy lim

n→∞
ψn(t) =

0 for all t > 0. Then T has a unique fixed point in (X, d, k).

Proof . Let x0 be an arbitrary but fixed element in (X, d, k). Define a sequence of iterates {xn}∞n=1 in X by

x1 = Tx0, x2 = Tx1, x3 = Tx2, ..., xn = Txn−1....

Note that,

0 ≤ d(xn + 1, xn) = d(Txn, Txn−1)

≤ ψ(d(xn, xn−1))

= ψ(d(Txn−1, Txn−2))

≤ ψ(ψ(d(xn−1, xn−2)))

= ψ2(d(xn−1, xn−2))

Continuing in this way we get
0 ≤ d(xn+1, xn) ≤ ψn(d(x1, x0))

Thus
0 ≤ lim

n→∞
sup d(xn+1, xn) ≤ lim

n→∞
supψn(d(x1, x0)) = 0

Hence
lim
n→∞

d(xn+1, xn) = 0

We now show that the sequence {xn}∞1 is a Cauchy sequence. Also note that for any ϵ > 0, ψ(ϵ) < ϵ. And since

lim
n→∞

d(xn+1, xn) = 0,

so for ϵ > 0, we can choose n such that d(xn+1, xn) ≤ ϵ− ψ(ϵ). Now define the set S = {x ∈ X/d(x, xn) < ϵ}. Then
for any y ∈ S, we have

d(Ty, xn) ≤ d(Ty, Txn) + d(Txn, xn) (3.1)

≤ ψ(d(y, xn)) + d(xn+1, xn) (3.2)

≤ ψ(ϵ) + ϵ− ψ(ϵ) (3.3)

= ϵ (3.4)

Thus Ty ∈ S. Hence T (S) ⊂ S. Therefore d(xm, xn) ≤ ϵ for all m ≥ n. Hence the sequence {xn}∞1 is a Cauchy
sequence in X. Since (X, d, k) is digital complete metric space, there is a limit z of {xn}∞1 in (X, d, k). Now we observe
that the function T is (k, k)-continuous. If a ∈ X and ϵ > 0, then let δ = ϵ. Thus if d(a, b) < δ, we have

d(Ta, Tb) ≤ ψ(d(a, b))

< d(a, b)

< ϵ

Thus T is (k, k)-continuous function. From the (k, k)-continuity of T we get

z = lim
n→∞

xn = lim
n→∞

Txn−1 = T
[
lim

n→∞
xn−1

]
= Tz
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Therefore, T has a fixed point z.
Uniqueness- Assume that u, v ∈ X are fixed points of T . Then we have

d(u, v) = d(Tu, Tv) ≤ ψ((d(u, v))) < d(u, v)

This imply d(u, v) = 0 and hence u = v.

□

Theorem 3.2. Let (X, d, k) be a complete digital metric space and T : (X, d, k) → (X, d, k) be a weakly uniformly
strict digital contraction mapping. Then T has a unique fixed point z. Moreover, for any x ∈ X, lim

n→∞
Tnx = z.

Proof . We first observe that the weakly uniformly strict digital contraction imply the strict digital contraction. So
let x, y ∈ X be such that x ̸= y. Then d(x, y) > 0. Let ϵ = d(x, y) > 0.
Then by the condition of weakly uniformly strict digital contraction, there exists a δ > 0 such that ϵ ≤ d(x, y) < ϵ+ δ
implies d(Tx, Ty) < ϵ that is d(Tx, Ty) < d(x, y).
We now prove that T is (k, k)-continuous. Let a ∈ X and let ϵ > 0. Let δ = ϵ. Then if d(a, b) < δ, we have
d(Ta, Tb) < d(a, b) < δ = ϵ. Thus given ϵ > 0, there exists a δ > 0 such that d(a, b) < δ implies d(Ta, Tb) < ϵ. Hence
the mapping T is (k, k)-continuous.
Next we show that if a fixed point of T exists then it is unique. Let a, b ∈ X be fixed points of T . That is Ta = a and
Tb = b. Then we see by condition of strict digital contraction that, if a ̸= b, then d(Ta, Tb) = d(a, b) < d(a, b). Thus
d(a, b) = 0 and hence a = b.
Next we proceed to show that the sequence {xn}∞1 = {Tnx}∞n=1 is a Cauchy sequence for every x ∈ X. Consider the
sequence {un}∞n=1 = d(xn, xn+1)

∞
n=1. Since T satisfy the condition of strict digital contraction, we have xn

d(xn, xn+1) = d(Tnx, Tn+1x)

= d(T (Tn−1x), T (Tnx))

< d(Tn−1x, Tnx)

= d(xn−1, xn)

Therefore d(xn, xn+1) < d(xn−1, xn)

Thus the sequence {un}n=1x∞ = {d(xn, xn+1)}∞n=1 is decreasing sequence. It is also bounded below (by 0). Hence it
is a convergent sequence. Let lim

n→∞
un = L. If L > 0 then letting ϵ = L > 0, by the condition of weakly uniformly strict

digital contraction, there exists a δ > 0, such that L ≤ d(xn, xn+1) < L + δ implies d(xn+1, xn+2 < L. Then for all
m > n+1, n+2, we have d(xm, xm+1) < L (since the sequence {un}∞n=1 is decreasing sequence). But then lim

n→∞
un < L

This is a contradiction. Therefore lim
n→∞

d(xn, xn+1) = L = 0. Now we prove that the sequence {xn}∞1 = {Tnx}∞n=1 is

a Cauchy sequence for all x ∈ X. This we show by contradiction method. So let us assume that {xn}∞1 = {Tnx}∞n=1

is not a Cauchy sequence for some x ∈ X. Then there exists 2ϵ > 0 such that

lim
n→∞

sup d(xn+1, xn) > 2ϵ

By hypothesis, there exists δ > 0 such that ϵ ≤ d(x, y) < ϵ+ δ implies d(Tx, Ty) < ϵ. This condition is true even
if we replace δ by ∆ = min(δ, ϵ). Since

lim
n→∞

d(xn, xn+1) = 0

,

we can find M such that d(xM , xM+1) <
∆
3 Choose m,n > M so that d(xm, xn) > 2ϵ. For m ≤ j ≤ n, we have

|d(xm, xj)− d(xm, xj+1)| ≤ d(xj , xj+1) <
∆
3

This implies that there existsm ≤ j ≤ n with ϵ+2∆
3 < d(xm, xj) < ϵ+∆ However, for allm and j, d(x+m,x+j) ≤

d(xm, xm+1) + d(xm+1, xj+1) + d(xj+1, xj) Therefore,

d(xm, xj) ≤ d(xm, xm+1) + ϵ+ d(xj , xj+1) <
∆

3
+ ϵ+

∆

3
= ϵ+

2∆

3
.
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This is a contradiction to the fact that

ϵ+
2∆

3
< d(xm, xj) < ϵ+∆

. Hence {xn}∞1 = {Tnx}∞n=1 must be Cauchy sequence for all x ∈ X. Since (X, d, k) is a complete digital metric
space, there exists a point zx such that lim

n→∞
xn = lim

n→∞
Tnx = zx for all x ∈ X. Since T is (k, k)-continuous, we have

Tzx = T
(
lim
n→∞

Tnx
)
= lim

n→∞
Tn+1x = zx. Thus zx is a fixed point of T . As we have already observed that the fixed

point is unique, we conclude that all the zx are same. Hence the theorem is proved.

□

4 Conclusion

In the first part, we give the required background about the digital images and digital topology. After that, we
study the property of the completeness of digital metric spaces. In the next part, we state and prove the Banach fixed
point theorem for digital images. Finally, some important theorems on digital metric space is proved.
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