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Abstract

In this paper, we will study on some topologies induced by order convergence in a Riesz space. We will investigate
the relationships of them.
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1 Introduction

In general, by [4] we know that the order convergence is not topological in infinite dimensional Riesz spaces,
researches are towards special cases or other definitions of convergence. For example, DeMarr proved in [5], that
a locally convex space can be seen as an ordered vector space such that the τ -convergence of nets is equivalent to
order convergence if and only if it is normable. Also, he proved in [6] that we can embed each locally convex space
into an appropriate ordered vector space E such that its topological convergence and uo-convergence coincide. The
authors of [10], characterized ordered normed spaces in which the order convergence of nets coincides with norm
convergence. Also, they characterized ordered normed spaces in which the order convergence and norm convergence
coincide. Chuchaev in [3] investigated ordered locally convex spaces, where the topological convergence agrees with
order convergence of topologically eventually bounded nets.

In this paper, we study topology induced by monotone nets and investigate some of its properties. We also compare
it with order topology defined on a Riesz space.

2 Preliminaries

Recall that a real vector space E (with elements x,y,...) is called an ordered vector space if E is partially ordered
in such a manner that the vector space structure and order structure are compatible, that is to say, x ≤ y implies
x + z ≤ y + z for every z ∈ E and x ≥ y implies αx ≥ αy for every α ≥ 0 in R. A Riesz space E is an order
vector space in which sup{x, y} ( it is customary to write sometimes x ∨ y instead of sup{x, y} and x ∧ y instead of
inf{x, y} ) exists for every x, y ∈ E. In a Riesz space E, two elements x and y are said to be disjoint (in symbols
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x ⊥ y) whenever |x| ∧ |y| = 0. If A is a nonempty subset of Riesz space E, then its disjoint complement Ad is
defined by Ad := {x ∈ E : x ⊥ y for all y ∈ A}. Let E be a Riesz space, for each x, y ∈ E with x ≤ y, the set
[x, y] = {z ∈ E : x ≤ z ≤ y} is called an order interval. A subset of E is said to be order bounded if it is included
in some order interval. A Riesz space is said to be Dedekind complete (resp. σ-Dedekind complete) if every order
bounded above subset (resp. countable subset) has a supremum. A subset A of a Riesz space E is said to be solid
if it follows from |y| ≤ |x| with x ∈ A and y ∈ E that y ∈ A. An order ideal of E is a solid subspace. A band of
E is an order closed order ideal. A Banach lattice E is a Banach space (E, ∥.∥) such that E is a Riesz space and its
norm satisfies the following property: for each x, y ∈ E such that |x| ≤ |y|, we have ∥x∥ ≤ ∥y∥. A Banach lattice E
has order continuous norm if ∥xα∥ → 0 for every decreasing net (xα)α with infα xα = 0. Recall that a net (xα)α∈A
in a Riesz space E is order convergent to x ∈ E, denoted by xα

o−→ x whenever there exists another net (yβ)β∈B in
E such that yβ ↓ 0 and that for every β ∈ B, there exists α0 ∈ A such that |xα − x| ≤ yβ for all α ≥ α0. If there
exists a net (yα)α∈A (with the same index set) in a Riesz space E such that yα ↓ 0 and |xα − x| ≤ yα for each α ∈ A,

then xα
o−→ x. Conversely, if E is a Dedekind complete Riesz space and (xα)α∈A is order bounded, then xα

o−→ x in E
implies that there exists a net (yα)α∈A (with the same index set) such that yα ↓ 0 and |xα − x| ≤ yα for each α ∈ A.

For sequences in a Riesz space E, xn
o−→ x if and only if there exists a sequence (yn) such that yn ↓ 0 and |xn−x| ≤ yn

for each n ∈ N (cf. [1, P.17 and P.18]). Recall that a Riesz subspace G of a Riesz space E is said to be order dense in
E whenever for each 0 < x ∈ E there exists some y ∈ G with 0 < y ≤ x. A net (xα) in a Riesz space E is unbounded

order convergent (or, uo-convergent for short) to x ∈ E if |xα−x| ∧u
o−→ 0 for all u ∈ E+. We denote this convergence

by xα
uo−→ x and write that xα uo-convergent to x. This is an analogue of pointwise convergence in function spaces.

Let RA be the Riesz space of all real-valued functions on a non-empty set A, equipped with the pointwise order. It is
easily seen that a net (xα) in RA uo-converges to x ∈ RA if and only if it converges pointwise to x. For instance in c0
and ℓp(1 ≤ p ≤ ∞), uo-convergence of nets is the same as coordinate-wise convergence. In Banach lattice E we write

xα
un−−→ x and say that (xα) is un-convergent to x if |xα − x| ∧ u

∥.∥−−→ 0 for every u ∈ E+. A vector x > 0 in a Riesz
space E is called an atom if Ex = {y ∈ E : ∃λ > 0, |y| ≤ λx}, the ideal generated by x, is one-dimensional if and only
if u, v ∈ [0, x] with u∧v = 0 implies u = 0 or v = 0. A Riesz space E is said to be atomic if the linear span of all atoms
is order dense in E if and only if it is the band generated by its atoms. For example, c, c0, ℓp(1 ≤ p ≤ ∞) are atomic
Banach lattices and C[0, 1], L1[0, 1] are atomless Banach lattices. Let E, F be Riesz spaces. An operator T : E → F is
said to be order bounded if it maps each order bounded subset of E into order bounded subset of F . The collection of
all order bounded operators from a Riesz space E into a Riesz space F will be denoted by Lb(E,F ). The collection of
all order bounded linear functionals on a Riesz space E will be denoted by E∼, that is E∼ = Lb(E,R) . A functional
on a Riesz space is order continuous (resp. σ-order continuous) if it maps order null nets (resp. sequences) to order
null nets (resp. sequences). The collection of all order continuous (resp. σ-order continuous) linear functionals on
a Riesz space E will be denoted by E∼

n (resp. E∼
c ). For unexplained terminology and facts on Banach lattices and

positive operators, we refer the reader to the excellent book of [2].

3 Order Topology

Definition 3.1. Let E be a Riesz space. A subset A of E is said to be quasi-order closed whenever for every (xα) ⊆ A
with xα ↑ x or xα ↓ x implies x ∈ A.

We observe that a solid subset A ⊆ E is quasi-order closed if and only if A is order closed. If G is a quasi-order
closed Riesz subspace of E, it is obvious that G is order dense in E. Clearly, if B is a band in Riesz space E, then it
is quasi-order closed in E.

Remark 3.2. Let A be a quasi-order closed subset of E. If x ∈ A, then there is a net (xα) ⊆ A with xα ↑ x or xα ↓ x,
so without loss of generality we assume that xα ↑ x. Consider |λ| ≤ 1. If λ ≥ 0, then λxα ↑ λx and if λ < 0, then
λxα ↓ λx. Since A is quasi-order closed, we have λx ∈ A. Hence A is a circled set.

Remark 3.3. Let G be a subspace of Riesz space E and A ⊆ G ⊆ E. If G is order dense in E, then A is quasi-order
closed in G if and only if it is quasi-order closed in E.

Definition 3.4. θ ⊆ E is called order open if and only if E \ θ is quasi-order closed. Now, consider the following
topologies:
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1. First topology is called quasi-order topology which we define as follows.

τo = {θ ⊆ E : E \ θ is quasi-order closed}

Clearly, τo is a topology for E.

2. Assume that τe be a topology for E with the following basis

{(a, b) : a, b ∈ E and a < b}.

We call this topology as order topology.

In the following proposition, we show that τo and τe are both linear topologies.

Theorem 3.5. Let E be a Dedekind complete Riesz space. Then

1. τo and τe both are linear topologies.

2. τe is a locally convex topology.

Proof .

1. Obviously, τe is a vector topology. We only show that τo is vector topology. First, we prove that the operation
x → tx for each t ∈ R is continuous. Let θ ⊂ E be an order open subset of E, then we must show that tθ is an
order open subset of E for each t ∈ R. Since θ is order open, it follows that θc = F is quasi-order closed. Put
(tθ)c = G and (xα) ⊆ G with xα ↑ x. Then we have xα /∈ tθ iff t−1xα /∈ θ iff t−1xα ∈ F for each α and since
t−1xα ↑ t−1x, follows that t−1x ∈ F , implies that x ∈ tF . Then we have t−1x ∈ F iff t−1x /∈ θ iff x /∈ θ iff
x ∈ G, which follows that G is quasi order closed, and so tθ is an order open subset of E.
Now we show that the operation (x, y) → x+ y is continuous. Set θ1 and θ2 order open subsets of E, we show
that θ1 + θ2 is an order open subset of E. Let a ∈ θ1. First we prove that a+ θ2 is an order open subset of E.
Put θc2 = F and (a + θ2)

c = G. We show that G is quasi-order closed. Let (xα) ⊆ G and xα ↑ x in G. Then
we have xα ∈ G iff xα /∈ (a + θ2) iff (xα − a) /∈ θ2. Since (xα − a) ↑ (x − a), follows that (x − a) ∈ F , and so
(x− a) /∈ θ2 iff x /∈ (a+ θ2) iff x ∈ G. Thus G is quasi-order closed, and so a+ θ2 is an order open subset of E.
Now by θ1 + θ2 =

⋃
a∈θ1

(a+ θ2), the proof follows.

2. Let (a, b) belong to basis of τe, and let 0 ≤ λ ≤ 1 and x, y ∈ (a, b). It is clear that a < λx + (1 − λ)y < b.
Therefore, λx+ (1− λ)y ∈ (a, b). Hence τe is a locally convex topology.

□

Lemma 3.6. Let E be a Dedekind complete Riesz space and τo be the order topology for E. Then for each c ∈ E
and neighborhood Uc of c, there are a, b ∈ E such that c ∈ (a, b) ⊂ Uc.

Proof . Let c ∈ E and let Uc be an neighborhood of c in order topology. First we show that there is a ∈ E such that
(a, c) ⊂ Uc. By contradiction, let (a, c) ∩ U c

c ̸= ∅. Then for each a < c there is ca ∈ (a, c) ∩ U c
c . It follows that

sup{ca : ca ∈ (a, c) ∩ U c
c } = c.

For each a < b < c, we can set ca < cb. Hence for each a < c, there exists cα(a) ∈ (a, c) ∩ U c
c with cα(a) ↑ c. Therefore,

c ∈ U c
c , which is not possible. Thus, there is a < x such that (a, c) ⊂ Uc. In the similar way there is a c < b such that

(c, b) ⊂ Uc and proof follows. □

The preceding lemma shows that τo ⊆ τe, but as following example, in general two topologies not coincide.

Example 3.7. Consider E = ℓ∞ and e1 = (1, 0, 0, 0...). Then (−e1, e1) is a member of τe, but it is not belong to τo.
Consider xn ∈ ℓ∞ which first n terms are zero and others are 1. Obviously, xn ↓ 0, but xn /∈ (−e1, e1) for each n.
This example shows that the sequence (xn) is order convergent to zero, but is not topological convergence to zero. On
the other hand, since (−e1, e1) /∈ τo, two topologies not coincide.

Theorem 3.8. Let E be a Dedekind complete Riesz space with topology τe and (xα) ⊂ E. If xα
τe−→ x for some

x ∈ E, then (xα) is order convergence to x.



1322 Niktab, Haghnejad Azar, Alavizadeh, Sadeghi Gavgani

Proof . Assume that a, b ∈ E with x ∈ (a, b) ⊆ E. Since xα
τe−→ x, there exists α(a,b) such that xα ∈ (a, b) for each

α ≥ α(a,b). Put yα(a,b)
= |b− a|. On the other hands, (α(a,b)) is a directed set with the following order relation

α(a,b) ≤ α(c,d) iff (c, d) ⊆ (a, b).

It follows that
|xα − x| ≤ (xα ∨ x)− (xα ∧ x) ≤ b− a = yα(a,b)

↓ 0.

Thus xα
o−→ x. □

Remark 3.9. By Example 3.7, the converse of Theorem 3.8 in general not holds.

Corollary 3.10. If E is a Dedekind complete Riesz space, then the following assertions are true.

1. If E is normed Riesz space with order continuous norm, then xα
τe−→ 0, implies xα

∥.∥−−→ 0.

2. τe-limits are unique.

3. τe is a Hausdorff topology.

Proof .

1. Let E be a Dedekind complete normed Riesz space, (xα) ⊆ E and xα
τe−→ 0. By Theorem 3.8, xα

o−→ 0. So, by

assumption xα
∥.∥−−→ 0.

2. Let E be a Dedekind complete Riesz space, (xα) ⊆ E that xα
τe−→ x and xα

τe−→ y. By Theorem 3.8, xα
o−→ x and

xα
o−→ y. Since order convergence is unique, so x = y.

3. Since τe-limits are unique in Dedekind complete Riesz space E, therefore for each x ∈ E, {x} is τe-closed. Hence
τe is a vector topology on E, and (E, τe) is a topological vector space. By Theorem 1.12 of [9], τe is a Hausdorff
topology in Dedekind complete Riesz space E.

□

Remark 3.11. Let E be a Dedekind complete Riesz space. τe is a vector Hausdorff topology on E which is locally
convex.

Proposition 3.12. Let E be a Riesz space and τo be the order topology for E. If I is an ideal and quasi-order closed
subset of E, then the following assertions are true.

1. Id = {0}.
2. If E is a Dedekind complete Riesz space, then I is a band in E.

Proof .

1. Since I is a quasi-order closed subspace of E, it is order dense in E. By Theorem 1.36 of [2], Id = {0}.
2. Let (xα) ⊆ I and xα

o−→ x, we show that x ∈ I. We know that, sup{xα ∧ x} = x. Set yβ = (
∨

α⩽β xα) ∧ x, then
yβ ↑ x. Since (yβ) ⊆ I and I is quasi-order closed, hence x ∈ I and the result follows.

□
It was observed in [7] that un-convergence is topological. Also, uaw-topology, τuaw, and wun-topology, τwun, are
introduced in [11] and [8], respectively. If E is atomic with order continuous norm, it has been shown that τun and
τwun are two locally convex topologies.

Remark 3.13. Let E be a Dedekind complete Riesz space, then

1. if E is Banach lattice with order continuous norm, τun is weaker than τe. Let (xα) ⊆ E and xα
τe−→ 0. By

Theorem 3.8, xα
o−→ 0 and therefore xα

uo−→ 0. Since E has order continuous norm, hence xα
un−−→ 0. It means

that τun ⊆ τe. (en) ⊆ ℓ1 is un-null, while is not o-null. By Theorem 3.8, it is not τe-null. Therefore, τe ̸= τun.
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2. in E, τe and τo both are locally convex. Therefore, τw is weaker than τe and τo. Let E be a Banach lattice that
E and the norm dual E∗ have order continuous norms and (xα) be a norm bounded net in E that is not w-null.
By Theorem 6.4 of [7], it is not un-null. Obviously, (xα) is not ∥.∥-null. Since E has order continuous norm,
then it is not o-null. By Theorem 3.8, it is not τe-null. It means that E and E∗ have order continuous norms
and (xα) ⊆ E is norm bounded and τe-null, then is w-null.

3. if (xα) ⊆ E and τe-null or τo-null. By 2, (xα) is w-null. Therefore, it is uaw-null and wun-null. Hence τuaw and
τwun are weaker than τe and τo. Note that (en) ⊆ ℓ1 is wun-null and uaw-null, while it is not τe-null. Therefore
τe ̸= τwun and τe ̸= τuaw. Similar to Part 2, if E and E∗ have order continuous norms, (xα) ⊆ E is norm
bounded and τe-null, then it is wun-null and uaw-null.

Proposition 3.14. Let E be a Dedekind complete normed Riesz space, (xα) ⊆ E and xα
τe−→ x, then ∥x∥ ≤

lim infα ∥xα∥.

Proof . Let (xα) ⊆ E where xα
τe−→ x. By Remark 3.13, xα

w−→ x. By Exercise 4 of page 167 of [2], ∥x∥ ≤ lim infα ∥xα∥.
□

Remark 3.15. Note that if E is a Dedekind complete Banach lattice with order continuous norm, (xα) ⊆ E and

xα
τe−→ x, then by Theorem 3.8, xα

o−→ x and therefore xα
un−−→ x. Hence, |xα| ∧ |x| ∥.∥−−→ |x|. It follows that

∥x∥ ≤ lim infα ∥xα∥.

Let E be a Dedekind complete Riesz space. A ⊆ E is said to be τe-bounded if to every τe-neighborhood V of 0 in
E corresponds a number s > 0 such that A ⊆ tV for every t ≥ s. An operator T : E → F between two Dedekind
complete Riesz spaces is said to be τe-τe-continuous, if xα

τe−→ 0 in E implies T (xα)
τe−→ 0 in F for each net (xα) ⊆ E.

It is clear that if T : E → F is τe-τe-continuous and A is a τe-bounded subset of E, then T (A) is τe-bounded in F .

Proposition 3.16. Let E and F be two Dedekind complete normed Riesz spaces and T : E → F be τe-τe-continuous,
then |T | exists and is τe-τe-continuous.

Proof . By assumption, (E, τe) is locally convex-solid Riesz space. Let A ⊆ E be order bounded set. By Theorem
3.47 of [2], A is τe-bounded. Since T is τe-τe-continuous, therefore T (A) is τe-bounded. By Theorem 3.8, T (A) is order
bounded. It means that T is an order bounded operator. By Theorem 1.18 of [2], |T | exists. Let (xα) ⊆ E be τe-null.
It is obvious that (xα) is τe-bounded. By Theorem 3.8, it is order bounded. Therefore, |T |(A) is order bounded. Now
by Theorem 3.47 of [2], |T |(A) is τe-bounded. Hence |T | is τe-τe-continuous. □

Corollary 3.17. If E and F are two Dedekind complete normed Riesz spaces, then T is τe-τe-continuous if and only
if T is order bounded.
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