Int. J. Nonlinear Anal. Appl. 13 (2022) 2, 983–988 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2022.25676.3091

Some results in metric modular spaces

Somaye Grailoo Tanha^{a,*}, Abasalt Bodaghi^b, Abolfazl Niazi Motlagh^c

^aEsfarayen University of Technology, Esfarayen, North Khorasan, Iran

^bDepartment of Mathematics, West Tehran Branch, Islamic Azad University, Tehran, Iran

^cDepartment of Mathematics, Faculty of Basic Science, University of Bojnord, P. O. Box 1339, Bojnord, Iran

(Communicated by Ali Jabbari)

Abstract

A metric modular on a set X is a function $w : (0, \infty) \times X \times X \longrightarrow [0, \infty]$ written as $(\lambda, x, y) \mapsto w_{\lambda}(x, y)$ satisfying, for all $x, y, z \in X$, the following three properties: x = y if and only if $w_{\lambda}(x, y) = 0$ for all $\lambda > 0$; $w_{\lambda}(x, y) = w_{\lambda}(y, x)$ for all $\lambda > 0$; $w_{\lambda+\mu}(x, y) \leq w_{\lambda}(x, z) + w_{\mu}(y, z)$ for all $\lambda, \mu > 0$. In this paper we define a Hausdorff topology on metric modular spaces and prove some known results of metric spaces including Baire's theorem and Uniform limit theorem for metric modular spaces.

Keywords: Modular, metric modular, Baire's theorem, uniform limit theorem 2020 MSC: 46A80, 54E35, 54E52

1 Introduction

In 1950, Nakano [15] initiated the study of modulars on linear spaces and the related theory of modular linear spaces as generalizations of metric spaces. Next, Luxemburg [8], Mazur, Musielak and Orlicz [10, 11, 12] thoroughly developed it extensively. Since then, the theory of modulars and modular spaces have been widely applied in the study of interpolation theory [7, 9] and various Orlicz spaces [16]. A modular yields less properties than a norm does, but it makes a more sense in many special situations. Recall that the notion of partial modular metric space with some fixed point results are given in [4]. In the formulation given by Kowzsłowski [5, 6] a modular on a vector space X is defined as follow.

Definition 1.1. Let X be a linear space over a field \mathbb{K} (= \mathbb{R} or \mathbb{C}). A generalized function $\rho : X \longrightarrow [0, \infty]$ is called a *modular* if it satisfies the following three conditions for elements $\lambda, \mu \in \mathbb{K}, x, y \in X$

- (i) $\rho(x) = 0$ if and only if x = 0;
- (*ii*) $\rho(\lambda x) = \rho(x)$ for all scalar λ with $|\lambda| = 1$;
- (*iii*) $\rho(\lambda x + \mu y) \le \rho(x) + \rho(y)$ for all scalar $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$.

If the condition (iii) is replaced by $\rho(\lambda x + \mu y) \leq \lambda^t \rho(x) + \mu^t \rho(y)$ when $\lambda^t + \mu^t = 1$ and $\lambda, \mu \geq 0$ with an $t \in (0, 1]$, then ρ is called an *t*-convex modular. 1-convex modulars are called *convex modulars*. For a modular ρ , there corresponds a linear subspace X_{ρ} of X, given by $X_{\rho} := \{x \in X : \rho(\lambda x) \to 0 \text{ as } \lambda x \to 0\}$. In this case X_{ρ} is called a *modular space*.

^{*}Corresponding author

Email addresses: grailotanha@gmail.com (Somaye Grailoo Tanha), abasalt.bodaghi@gmail.com (Abasalt Bodaghi), a.niazi@ub.ac.ir and niazimotlagh@gmail.com (Abolfazl Niazi Motlagh)

Received: December 2021 Accepted: March 2022

For example if $X = \mathbb{R}$ and $\beta \in (0, 1]$, then the function $\rho: X \longrightarrow [0, \infty]$ defined by $\rho(x) = |x|^{\beta}$ is a modular.

Example 1.2. [17] Let $\psi : [0, \infty) \longrightarrow \mathbb{R}$ be a function defined by $\psi(0) = 0$ and $\psi(t) > 0$ for all t > 0, and $\lim_{t\to\infty} \psi(t) = \infty$. If moreover ψ is convex, continuous and nondecreasing, then ψ is called an *Orlicz function*. For a measure space (X, \sum, μ) , suppose that $L^0(\mu)$ is the set of all measurable functions on X. For each $f \in L^0(\mu)$, define $\rho_{\psi}(f) = \int_X \psi(|f|) d\mu$. Then, ρ_{ψ} is a modular and the corresponding modular space is called an *Orlicz space* and denoted by

$$L_{\psi} = \{ f \in L^{0}(\mu) | \rho_{\psi}(\lambda f) \to 0 \text{ as } \lambda \to 0 \}.$$

One can check that L_{ψ} is ρ_{ψ} -complete.

In 2006, Vyacheslav Chistyakov [2], [3] introduced the concept of a metric modular on a set, inspired partly by the classical linear modulars on function spaces employed by Nakano [13, 14], [15].

Here, we recall the definition of a metric modular on a nonempty set.

Definition 1.3. Let X be a nonempty set. A metric modular on X is a function

$$w: (0,\infty) \times X \times X \longrightarrow [0,\infty],$$

written as $(\lambda, x, y) \mapsto w_{\lambda}(x, y)$, that satisfies the following three axioms:

- (1) $w_{\lambda}(x,y) = 0$ for all $\lambda > 0$ and $x, y \in X$ if and only if x = y.
- (2) $w_{\lambda}(x,y) = w_{\lambda}(y,x)$ for all $\lambda > 0$ and $x, y \in X$.
- (3) $w_{\lambda+\mu}(x,y) \leq w_{\lambda}(x,z) + w_{\mu}(y,z)$ for all $\lambda, \mu > 0$ and $x, y, z \in X$.

A metric modular space is an ordered pair (X, w), where X is a set and w is a metric modular on X. Throughout the paper, we suppose that metric modular w has only finite values and $\lambda \mapsto w_{\lambda}(x, y)$ is continuous.

Example 1.4. [3] Let X be a set. Then,

$$w_{\lambda}^{0}(x,y) = \begin{cases} \infty & x \neq y, \\ 0 & x = y, \end{cases}$$

define a metric modular on X.

Example 1.5. [3] Let (X, d) be a metric space with metric d and at least two points. The following indexed objects w are simple examples of metric modulars on a set X.

(1) $w_{\lambda}^{1}(x,y) = d(x,y);$ (2) $w_{\lambda}^{2}(x,y) = \frac{d(x,y)}{\phi(\lambda)},$ where $\phi: (0,\infty) \longrightarrow (0,\infty)$ is a nondecreasing continuous function;

$$(3) \ w_{\lambda}^{3}(x,y) = \begin{cases} \infty & d(x,y) \ge \lambda, \\ 0 & d(x,y) < \lambda; \end{cases}$$

$$(4) \ w_{\lambda}^{4}(x,y) = \begin{cases} 0 & d(x,y) \le \lambda, \\ \infty & d(x,y) > \lambda; \end{cases}$$

In the sequel, We will write w_{λ}^{j} simply w^{j} when no confusion can arise. The following theorem states the relation between modulars and metric modules in real linear spaces.

Theorem 1.6. [3] Let X be a real linear space.

(a) Given a functional $\rho: X \longrightarrow [0, \infty]$, we set

$$w_{\lambda}(x,y) = \rho\left(\frac{x-y}{\lambda}\right), \quad \lambda > 0, x, y \in X.$$

Then, ρ is a modular on X in the sense of *Definition 1.1* if and only if w is a metric modular on X.

(b) Suppose that the function $w: (0,\infty) \times X \times X \longrightarrow [0,\infty]$ satisfy the following two conditions:

(I)
$$w_{\lambda}(\mu x, 0) = w_{\frac{\lambda}{\mu}}(x, 0)$$
 for all $\lambda, \mu > 0$ and $x \in X$;

(II)
$$w_{\lambda}(x+z, y+z) = w_{\lambda}(x, y)$$
 for all $\lambda, \mu > 0$ and $x, y, z \in X$

Given $x \in X$, we set $\rho(x) = w_1(x, 0)$. Then, w is a metric modular on X if and only if ρ is a modular on X.

Motivated by the above literature, in this paper we define a Hausdorff topology on metric modular spaces and present some well-known results of metric spaces such as Baire's theorem and uniform limit theorem for metric modular spaces.

2 Topology induced by a metric modular

We start this section with a lemma from [1] as follow.

Lemma 2.1. Let w be a metric modular on the set X. Then, for each $x, y \in X$, the function $\lambda \mapsto w_{\lambda}(x, y)$ is non-increasing.

Definition 2.2. Let (X, w) be a metric modular space and $\lambda > 0$. Define a *w*-open ball $B_{\lambda}(x, \epsilon)$ with center $x \in X$ and radius $\epsilon > 0$ as

$$B_{\lambda}(x,\epsilon) = \{ y \in X; w_{\lambda}(x,y) < \epsilon \}$$

We say that $A \subseteq X$ is a *w*-open set in X if and only if for every element $x \in X$ there exist $\lambda > 0$ and $\epsilon > 0$ such that $B_{\lambda}(x, \epsilon) \subseteq A$.

Theorem 2.3. Eavry *w*-open ball is a *w*-open set.

Proof. Consider a *w*-open ball $B_{\lambda}(x, \epsilon)$. Then

$$y \in B_{\lambda}(x,\epsilon) \Rightarrow w_{\lambda}(x,y) < \epsilon.$$

Assume that there is $\lambda_0 < \lambda$ such that $w_{\lambda}(x, y) \leq w_{\lambda_0}(x, y) < \epsilon$. Now, consider the ball $B_{\lambda-\lambda_0}(y, \epsilon_0)$ such that $\epsilon_0 < \epsilon - w_{\lambda_0}(x, y)$. We claim that $B_{\lambda-\lambda_0}(y, \epsilon_0) \subseteq B_{\lambda}(x, \epsilon)$. If $z \in B_{\lambda-\lambda_0}(y, \epsilon_0)$, then $w_{\lambda-\lambda_0}(y, z) < \epsilon_0$. Therefore,

$$w_{\lambda}(x,z) \le w_{\lambda_0}(x,y) + w_{\lambda-\lambda_0}(y,z) < w_{\lambda_0}(x,y) + \epsilon_0 < \epsilon.$$

Consequently, $z \in B_{\lambda}(x, \epsilon)$ and hence $B_{\lambda-\lambda_0}(y, \epsilon_0) \subseteq B_{\lambda}(x, \epsilon)$. It remains to show that λ_0 exists. Choose $0 < \lambda_1 < \lambda$. By Lemma 2.1, $w_{\lambda}(x, y) \leq w_{\lambda_1}(x, y)$. If $w_{\lambda_1}(x, y) < \epsilon$, put $\lambda_0 := \lambda_1$. Otherwise, by continuity of $\lambda \to w_{\lambda}(x, y)$ and intermediate value theorem, there is $\lambda_1 < \lambda_0 < \lambda$ such that $w_{\lambda}(x, y) \leq w_{\lambda_0}(x, y) < \epsilon < w_{\lambda_1}(x, y)$. \Box

Example 2.4. Let X be a non-empty set and $A \subseteq X$. Then

- (0) A is an open set in (X, w^0) if and only if A is a single set or A = X;
- (1) A is an open set in (X, w^1) if and only if A is an open set in metric space (X, d);
- (2) A is an open set in (X, w^2) if and only if A is an open set in metric space (X, d);
- (3) For all $\lambda > 0$, $\epsilon > 0$ and $x \in X$ we have $B_{\lambda}(x, \epsilon) = \{y \in X : w_{\lambda}^{3}(x, y) < \epsilon\} = \{y \in X : d(x, y) < \lambda\};$
- (4) for all $\lambda > 0$, $\epsilon > 0$ and $x \in X$ we have $B_{\lambda}(x, \epsilon) = \{y \in X : w_{\lambda}^4(x, y) < \epsilon\} = \{y \in X : d(x, y) \le \lambda\}.$

The next example is a direct consequence of Theorem 2.3.

Corollary 2.5. Let (X, w) be a metric modular space. Define

$$\tau_w = \{ A \subseteq X : x \in A \Leftrightarrow \exists \lambda > 0, \epsilon > 0 \ s.t \ B_\lambda(x, \epsilon) \subseteq A \}.$$

Then, (X, τ_w) is a topological space.

Theorem 2.6. Let (X, w) be a metric modular space. Then, τ_w is Hausdorff.

Proof. Let x, y be two distinct points of X. For any $\lambda > 0$, we have $w_{\lambda}(x, y) > 0$. Put $w_{\lambda}(x, y) = r$, for some r > 0. Moreover, for $B_{\lambda/2}(x, r/2)$ and $B_{\lambda/2}(y, r/2)$, we get $B_{\lambda/2}(x, r/2) \cap B_{\lambda/2}(y, r/2) = \emptyset$. In other words, if there exists an element z such that $z \in B_{\lambda/2}(x, r/2) \cap B_{\lambda/2}(y, r/2)$, then

$$r = w_{\lambda}(x, y) \le w_{\lambda/2}(x, z) + w_{\lambda/2}(z, y) < r,$$

which leads us to a contradiction. Therefore, τ_w is Hausdorff. \Box

Definition 2.7. Let (X, w) be a metric modular space. A subset A of X is called w-bounded if and only if there exist $\lambda > 0$ and $\epsilon > 0$ such that $w_{\lambda}(x, y) < \epsilon$ for all $x, y \in A$.

It is easy to see that every subset A of metric modular space (X, w^0) is bounded if and only if A is a single set. In addition, the subset A of metric modular spaces (X, w^i) , i = 1, 2, 3, 4, is a bounded set if and only if A is a bounded set in metric space (X, d).

Definition 2.8. A metric modular space (X, w) is called *w*-compact if each of its *w*-open covers has a finite subcover. Indeed, X is *w*-compact if for every collection C of *w*-open subsets of X with $X = \bigcup_{U \in C} U$, there is a finite subset F of C such that $X = \bigcup_{U \in F} U$.

Every w-compact set is w-bounded as it will be shown in the next result.

Theorem 2.9. Let (X, w) be a metric modular space. Then, every w-compact subset A of X is w-bounded. In particular, every w-compact set is w-bounded.

Proof. Suppose that $\lambda > 0, \epsilon > 0$. Consider an open cover $\{B_{\lambda}(x, \epsilon) : x \in A\}$ of A. Since A is compact, there exist $x_1, x_2, \ldots, x_n \in A$ such that $A \subseteq \bigcup B_{\lambda}(x_i, \epsilon)$. Let $x, y \in A$. Then, $x \in B_{\lambda}(x_i, \epsilon)$ and $y \in B_{\lambda}(x_j, \epsilon)$ for some i, j. Therefore, $w_{\lambda}(x, x_i) < \epsilon$ and $w_{\lambda}(y, x_j) < \epsilon$. Set

$$\alpha = \max\{w_{\lambda}(x_k, x_t) : 1 \le k \le n, 1 \le t \le n\}.$$

Then, $\alpha > 0$. Now we have

$$w_{3\lambda}(x,y) \le w_{\lambda}(x,x_i) + w_{\lambda}(x_i,x_j) + w_{\lambda}(x_j,y) \le 2\epsilon + \alpha.$$

Putting $m > 2\epsilon + \alpha$, we get $w_{\lambda}^{3}(x, y) \leq m$ for each $x, y \in A$ and so A is w-bounded. \Box

Proposition 2.10. Let (X, w) be a metric modular space. Then, $\lim_{n\to\infty} w_{\lambda}(x_n, x) = 0$, for all $\lambda > 0$ if and only if $x_n \xrightarrow{\tau_w} x$.

Proof. Suppose that $\lim_{n\to\infty} w_{\lambda}(x_n, x) = 0$, for all $\lambda > 0$. Fix $\lambda > 0$ and $\epsilon > 0$. Then there exists $n_0 \in \mathbb{N}$ such that $w_{\lambda}(x_n, x) < \epsilon$ for all $n > n_0$. It follows that $x_n \in B_{\lambda}(x, \epsilon)$. Thus, $x_n \xrightarrow{\tau_w} x$.

Conversely, if $x_n \xrightarrow{\tau_w} x$ then for $\epsilon > 0$ and $\lambda > 0$, there exists $n_0 \in \mathbb{N}$ such that $x_n \in B_\lambda(x, \epsilon)$ for all $n > n_0$. This means that $w_\lambda(x_n, x) < \epsilon$, for all $n > n_0$. Therefore, $\lim_{n \to \infty} w_\lambda(x_n, x) = 0$. \Box

Definition 2.11. Let (X, w) be a metric modular space. We define a *w*-closed ball with center $x \in X$ and radius $\epsilon > 0, \lambda > 0$ as

$$B_{\lambda}[x,\epsilon] = \{ y \in X; B_{\lambda}(x,y) \le \epsilon \}.$$

Lemma 2.12. Every *w*-closed ball is a *w*-closed set.

Proof. Let $y \in \overline{B_{\lambda}[x,\epsilon]}$ and $B_1 = B_1(y,1)$. We know that $B_1 \cap B_{\lambda}[x,\epsilon] \neq \emptyset$. Choose $y_1 \in B_1$. Set $B_2 = B_{1/2}(y,1/2) \cap B_1$. Since $B_2 \cap B_{\lambda}[x,\epsilon] \neq \emptyset$, one can take $y_2 \in B_2 \cap B_{\lambda}[x,\epsilon]$. This process can be repeated to find $y_n \in B_n \cap B_{\lambda}[x,\epsilon]$. It is obvious that $y_n \frac{\tau_w}{\to} y$. Now, for each $n \in \mathbb{N}$ we have

$$w_{\lambda+1/n}(y,x) \le w_{1/n}(y,y_n) + w_{\lambda}(y_n,x) \le 1/n + \epsilon.$$

Due to the continuity of the mapping $\lambda \mapsto w_{\lambda}(y, x)$, we find

$$\lim_{n \to \infty} w_{\lambda+1/n}(y, x) = w_{\lambda}(y, x).$$

Consequently, $w_{\lambda}(y, x) = \lim_{n \to \infty} w_{\lambda+1/n}(y, x) \leq \epsilon$. Hence, $y \in B_{\lambda}[x, \lambda]$ which implies that $B_{\lambda}[x, \lambda]$ is a *w*-closed set. \Box

Definition 2.13. A sequence $\{x_n\}$ in a metric modular space X is said to be a w-Cauchy sequence if and only if for each $\epsilon > 0, \lambda > 0$, there is $n_0 > 0$ such that $w_{\lambda}(x_{n+m}, x_n) < \epsilon$ for all $n > n_0, m > 0$.

If every w-Cauchy sequence is convergent in τ_w -topology, then X is called w-complete metric modular set.

Theorem 2.14. Let X be a w-complete metric modular set. Then, the intersection of a countable number of dense w-open sets is dense.

Proof. Assume that B_0 is a nonempty w-open set and D_1, D_2, D_3, \ldots dense w-open sets in X. Since $B_o \cap D_1$ is nonempty w-open set, there are $x_1 \in B_o \cap D_1$ and $0 < \lambda_1 < 1, 0 < \epsilon_1 < 1$ such that $B_{\lambda_1}[x_1, \epsilon_1] \subseteq B_o \cap D_1$. Due to being dense D_2 , there are $x_2 \in B_{\lambda_1}(x_1, \epsilon_1) \cap D_2$ and $0 < \lambda_2 < 1/2$ and $\epsilon_2 < 1/2$ such that $B_{\lambda_2}[x_2, \epsilon_2] \subseteq B_{\lambda_1}(x_1, \epsilon_1) \cap D_2$. Similarly by induction, we can find $x_n \in B_{\lambda_{n-1}}(x_{n-1}, \epsilon_{n-1}) \cap D_n$ and $0 < \lambda_n < 1/n, 0 < \epsilon_n < 1/n$ such that $B_{\lambda_n}[x_n, \epsilon_n] \subseteq B_{\lambda_{n-1}}(x_{n-1}, \epsilon_{n-1}) \cap D_n$. Given $\lambda > 0$, $\epsilon > 0$, we choose $N_0 > 0$ such that $1/N_0 < \epsilon$ and $1/N_0 < \lambda$. Then for every $n \ge N_0$, we have

$$w_{\lambda}(x_n, x_{n+m}) \le w_{1/n}(x_n, x_{n+m}) \le 1/n < \epsilon.$$

The relation above shows that $\{x_n\}$ is a *w*-cauchy sequence. Due to the *w*-completenss of *X*, we obtain $x_n \xrightarrow{\gamma_w} x$ for some $x \in X$. On the other hand, $x_{n+m} \in B_{\lambda_n}(x_n, \epsilon_n)$ for all m > 0. It follows from Lemma 2.12 that $x \in B_{\lambda_n}[x_n, \epsilon_n] \subseteq B_{n-1}(x_{n-1}, \epsilon_{n-1}) \cap D_n$, for all *n*. Therefore, $x \in B_0 \cap (\cap D_n) \neq \emptyset$. \Box

Definition 2.15. Let (X, w) be a metric modular space. A collection of sets $\{A_n\}_{n \in I}$ is said to have modular diameter zero if and only if for each pair $\lambda > 0, \epsilon > 0$, there exists $N \in I$ such that $w_{\lambda}(x, y) < \epsilon$ for all $x, y \in A_N$.

The next result is a version of Baire's theorem for metric modular spaces.

Theorem 2.16. Let (X, w) be a metric modular space. Then, X is w-complete metric modular set if and only if every nested sequence of nonempty w-closed sets $\{A_n\}_{n=1}^{\infty}$ with modular diameter zero have nonempty intersection.

Proof. Assume that X is w-complete metric modular set and $\{A_n\}_{n=1}^{\infty}$ is a nested sequence of nonempty w-closed sets with modular diameter zero. Choose $x_n \in A_n$ for $n \in \mathbb{N}$. Since $\{A_n\}$ has modular diameter zero for each $\epsilon > 0$ and $\lambda > 0$ there exists N > 0 such that $w_{\lambda}(x, y) < \epsilon$ for all $x, y \in A_N$. For every $n, m \ge N$, we choose $x_n \in A_n \subseteq A_N$ and $x_m \in A_m \subseteq A_N$. Thus, $\{x_n\}$ is a w-cauchy sequence. By assumption, x_n converges to x for some $x \in X$. For each $n \in \mathbb{N}$ and k > n we have $x_k \in A_n$ and hence $x \in \overline{A_n} = A_n$ for every n and $x \in \bigcap_{n=1}^{\infty} A_n$.

Conversely, suppose that every nested sequence of nonempty w-closed sets $\{A_n\}_{n=1}^{\infty}$ with modular diameter zero have non-empty intersection. Let $\{x_n\}$ be a w-Cauchy sequence in X. Put $B_n = \{x_n, x_{n+1}, \ldots\}$ and $A_n = \overline{B_n}$. We wish to show that $\{A_n\}$ has modular diameter zero. Let $\epsilon > 0$ and $\lambda > 0$. Since $\{x_n\}$ is a w-Cauchy sequence, there is N > 0 such that $w_{\lambda/3}(x, y) < \epsilon/3$ for all $x, y \in B_N$. Take $x, y \in A_N$. Then, there exist sequences $\{x_n^1\}$ and $\{y_n^1\}$ in B_N such that x_n^1 converges to x and y_n^1 converges to y, and so for sufficiently large n, we have $x_n^1 \in B_{\lambda/3}(x, \epsilon/3)$ and $y_n^1 \in B_{\lambda/3}(y, \epsilon/3)$. Hence

$$w_{\lambda}(x,y) \le w_{\lambda/3}(x,x_n^1) + w_{\lambda/3}(x_n^1,y_n^1) + w_{\lambda/3}(y_n^1,y) < \epsilon.$$

Consequently, $\{A_n\}$ has modular diameter zero and hence $\bigcap_{n=1}^{\infty} A_n \neq \emptyset$. Take $x \in \bigcap_{n=1}^{\infty} A_n$. Then for $\epsilon > 0, \lambda > 0$, there exists N_1 such that $w_{\lambda-\lambda/3}(x_{N_1}, x) < \epsilon/3$. Thus, for all $n > N_1$,

$$w_{\lambda}(x_n, x) \le w_{\lambda/3}(x_n, x_{N_1}) + w_{\lambda - \lambda/3}(x_{N_1}, x) < \epsilon.$$

Hence, x_n converges to x. Therefore, X is w-complete metric modular set. \Box

Definition 2.17. Let X be a non-empty set and (Y, w) be a metric modular space. We say a sequence $\{f_n\}$ of functions from X to Y converges w-uniformly to a function f from X to Y if for given $\epsilon > 0, \lambda > 0$, there exists $n_0 \in \mathbb{N}$ such that $w_{\lambda}(f_n(x), f(x)) < \epsilon$ for all $n \ge n_0$ and for all $x \in X$.

Theorem 2.18. Let $f_n : X \longrightarrow Y$ be a sequence of continuous functions from a topological space X to a metric modular set (Y, w). If $\{f_n\}$ converges w-uniformly to f, then f is continuous.

Proof. Suppose that V is an w-open set. Let $x_0 \in f^{-1}(V)$. Since V is open, we can find $\epsilon > 0$ and $\lambda > 0$ such that $B_{\lambda}(f(x_0), \epsilon) \subseteq V$. Since $\{f_n\}$ converges w-uniformly to f, there exists $n_0 \in \mathbb{N}$ such that $w_{\lambda/3}(f_n(x), f(x)) < \epsilon/3$ for all $n \ge n_0$ and for all $x \in X$. On the other hand, f_{n_0} is continuous and so we can find a neighborhood U of x_0 such that $f_{n_0}(U) \subseteq B_{\lambda/3}(f_{n_0}(x_0), \epsilon/3)$. Hence, for all $x \in U$ we have

$$w_{\lambda}(f(x), f(x_0)) \leq w_{\lambda/3}(f(x), f_{n_0}(x)) + w_{\lambda/3}(f_{n_0}(x), f_{n_0}(x_0)) + w_{\lambda/3}(f_{n_0}(x_0), f(x_0)) < \epsilon$$

It follows from the relation above that $f(U) \subseteq B_{\lambda}(f(x_0), \epsilon) \subseteq V$. \Box

Acknowledgments

The author sincerely thank the anonymous reviewers for their careful reading, constructive comments and suggesting some related references to improve the quality of the first draft of paper.

References

- [1] H. Abobakr and R.A. Ryan, Modular Metric Spaces, Irish Math. Soc. Bull. 80 (2017), 35-44.
- [2] V. Chistyakov, Metric modulars and their application, Dokl. Akad. Nauk. 406 (2006), no. 2, 165–168.
- [3] V. Chistyakov, Modular metric spaces. I. Basic concepts, Nonlinear Anal. 72 (2010), no. 1, 1–14.
- [4] H. Hosseinzadeh and V. Parvaneh, Meir-Keeler type contractive mappings in modular and partial modular metric spaces, Asian-European J. Math. 13 (2020), no. 05, 2050087.
- [5] M.A. Khamsi, A convexity property in modular function spaces, Math. Japon. 44 (1996), no. 2, 269–279.
- [6] W.M. Kozlowski, *Modular function spaces*, Monographs and Text- books in Pure and Applied Mathematics, vol. 122, Marcel Dekker, Inc., New York, 1988.
- [7] M. Krbec, Modular interpolation spaces, I. Z. Anal. Anwend. 1 (1982), 25–40.
- [8] W.A.J. Luxemburg, Banach function spaces, Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1955.
- [9] L. Maligranda, Orlicz spaces and interpolation. Semin. Math., 5, Universidade Estadual de Campinas, Departamento de Matematica, Campinas, 1989.
- [10] S. Mazur and W. Orlicz, On some classes of linear spaces, Studia Math. 17 (1958), 97–119.
- [11] J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49–65.
- [12] J. Musielak and W. Orlicz, Some remarks on modular spaces, Bull. Acad. Polon. Sci. Sr. Math. Astron. Phys. 7 (1959), 661–668.
- [13] H. Nakano, Modulared Semi-Ordered Linear Spaces, Tokyo Math. Book Ser., 1, Maruzen Co., Tokyo, 1950.
- [14] H. Nakano, Topology and Linear Topological Spaces, Tokyo Math. Book Ser., 3, Maruzen Co., Tokyo, 1951.
- [15] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co., Ltd., Tokyo, 1950.
- [16] W. Orlicz, Collected Papers, vols. I, II. PWN, Warszawa, 1988.
- [17] C. Park, J.M. Rasias, A. Bodaghi and S.O. Kim, Approximate homomorphisms from ternary semigroups to modular spaces, RACSAM 113 (2019), 2175–2188.