
Int. J. Nonlinear Anal. Appl. 13 (2022) 2, 473–478
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2021.25640.3072

Solving quadratic programming problem via dynamic
programming approach

Naghada Saber∗, Nejmaddin Sulaiman

Department of Mathematics, College of Education, Salahaddin University-Erbil, Iraq

(Communicated by Javad Vahidi)

Abstract

In this paper, we define the dynamic programming approach to solve quadratic programming problem when the
objective function can be written as the product of two linear factors with single linear constraint. An algorithm is
proposed for solving such problems, we also solved the problems by simplex method to obtained the exact solution as
dynamic programming technique. To demonstrate our proposed method, numerical examples are also illustrated.
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1 Introduction

Non-linear programming is an optimization problem in which either the objective function or some of the con-
straints are nonlinear functions. Quadratic programming (QP) is a mathematical optimization problem with quadratic
objective function and linear inequality (or equality) constraints. QP is viewed as a discipline in Operational Research,
it is used in the field of Management Science, Health Science and Engineering. Several techniques have been intro-
duced for solving nonlinear QP problems. Some of them are extensions of the simplex method and others are based
on different principles. Wolf’s method [12], Swarups simplex method [11] and Gupta and Sharma’s method [1] are the
most popular methods for solving QP problems.

Many researchers working in this field such as [10] are studied a technique for solving and transforming multi-
objective quadratic programming problems. In [3], authors proposed an objective separable method based on a
simplex method for solving a QP problem where the objective function can be factorized as two linear functions.
The main idea is to transform the QP problem into two linear programming problems and then solve each LP by
the simplex method. [7] suggested a new technique for solving QP problems having linearly factorized objective
function. The idea is to transform the problem into Multi objective LPP and solve it by Chandra Sen’s method.
[2] developed a computer technique for determining the optimal solution of QP problem having linearly factorized
objective function. [9] proposed a new modified simplex method to solve the Quadratic fractional programming
problem. Optimal transform techniques to solve multi-objective linear programming problems have been presented
by [8]. Moreover, [5] presented a dynamical system approach for solving quadratic programming problems subject to
equality constraints. Dynamic programming approach for solving constrained linear-quadratic regulator problems has
been proposed by [4].
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In this paper, we show how dynamic programming can be used for determining the optimal solution of the QP
problem in which the objective function can be written as the product of two linear functions with a single linear
constraint. We transform the problem into two linear programming problems.

2 Mathematical Formulation

2.1 Quadratic Programming Problem

The general form of quadratic programming problem states as follows:

max(or min)Z = a+ C
′
x+ x

′
Hx

subject to:

Ax

≥≤
=

 b, x ≥ 0.

here, A = (aij)m×n is a matrix of coefficients, i = 1, 2, . . . ,m, j = 1, 2, . . . , n. b = (b1, b2, . . . , bm), x = (x1, x2, . . . , xn),
C = (c1, c2, . . . , cn) and H = (hij)n×n is a positive definite or positive semi-definite symmetric square matrix, moreover
the objective function is quadratic with linear constraints.

2.2 Dynamic Programming Approach

Dynamic programming is a mathematical technique dealing with the optimization of multistage decision processes.
DP technique converts one problem in n variables into n smaller sub-problems, each in one variable. In the terminology
of DP, each sub-problem is referred to as a stage. There are two ways of DP backward recursive approach and forward
recursive approach. The advantage of DP is to be easier and has more influence than other optimization techniques.

2.3 Bellman’s Principle of Optimality

An optimal policy (set of decisions) has the property that whatever the initial state and decisions are, the remaining
decisions must constitute an optimal policy with regard to the state resulting from the first decision.
Mathematically, this can be written as:

fN (x) = max
dn∈{x}

[r(dn) + fN−1{T (x, dn)}] ,

where,
fN (x) = the optimal return from an N -stage process when initial state is x.
r(dn) = immediate return due to decision dn,
T (x, dn) = the transfer function which gives the resulting state,
{x} = set of admissible decisions.

We shall consider the implication of this principle as a multi-stage decision problem. It should always be borne in
mind that a problem that does not satisfy the principle of optimality cannot be solved by dynamic programming.

2.4 Definition (decomposable)

An optimization problem is said to be decomposable if it can be solved by recursive optimization through N -stage,
at each stage optimization, being done over one decision variable. In other words, the validity of the recursive equation

F )j(sj) = max
dj

{fjoFj−1(sj−1)}, 2 ≥ j ≥ N,

with F1(s1) = maxdj
f1 implies decomposability.
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2.5 Definition (monotonic non-decreasing and monotonic non-increasing)

The function f(x, y) is said to be monotonic non-decreasing function of x for all feasible values of y if

x1 > x2 ⇒ f(x1, y) ≥ f(x2, y)

for every feasible value of y it is said to be monotonic non-increasing if

x1 > x2 ⇒ f(x1, y) ≤ f(x2, y),

for every feasible value of y.

Theorem 2.1. In a serial double-stage minimization or maximization problem, if
i. The objective ψ2 function is a separable function of stage returns f1(s1, d1) and f2(s2, d2), and
ii. ψ2 is a monotonic non-decreasing function of f1 for every feasible value of f2, then the theorem is decomposable.

Theorem 2.2. If the real valued return function ψN (fN , fN−1, . . . , f1) satisfies
i. The condition of separability, i.e.
ψN (fN , fN−1, . . . , f1) = fNoψN−2 where ψN (fN , fN−1, . . . , f1) is real-valued; and
ii. ψN is a monotonic non-decreasing function of ψN−1 for every fN , then ψN is decomposable, i.e.

max
dN ,...,d1

ψN (fN , . . . , f1) = max
dN

[fNo max
dN ,...,d1

ψN−1]

The two theorems prove that the monotonicity is the sufficient condition for decomposability.

3 Objective Solution Techniques

Let as consider the problem of quadratic objective function with single linear constraint:

Opt, Z = (

n∑
j=1

ajxj + a)(

n∑
j=1

bjxj + β) (3.1)

subject to:
n∑

j=1

cjxj{=,≤,≥}b, and x ≥ 0.

First, we construct two linear programming problems as follows:

Opt, Z =

n∑
j=1

bjxj + β (3.2)

subject to:
n∑

j=1

cjxj{=,≤,≥}b, and x ≥ 0

It is possible to apply the dynamic programming approach to each of them. We sequentially proceed to find the
optimal policy by considering the last decision first and proceeding backward to the decision.
Algorithm of the proposed method:
Step 1: Convert the original quadratic programming problem into two linear programming problems.
Step 2: Solve each LP problem separately and apply backward recursive approach.
Step 3: obtain the optimal solution for the given problem by storing the solutions of each LP problem.
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4 Numerical Examples

Consider the following examples of quadratic programming with single linear constraint.

Example 4.1. Consider the following

maxZ = 3x22 + 2x1x2 − 10x1 − 13x2 − 10

= (2x1 + 3x2 + 2)(x2 − 5)

subject to: x1 + x2 ≤ 1 and x1, x2 ≥ 0.

We construct two linear programming problem as follows

maxZ1 = 2x1 + 3x2 + 2 (4.1)

subject to: x1 + x2 ≤ 1 and x1, x2 ≥ 0.
maxZ2 = x2 − 5 (4.2)

Subject to: x1 + x2 ≤ 1 and x1, x2 ≥ 0.
From the constraint x2 = 1− x1, 0 ≤ x1 ≤ 1, and 0 ≤ x2 ≤ 1. From (4.1), we have

f2(1) = max
x2

{R2(x2)}

= max
0≤x2≤1

{3x2}

= 3(1− x1)

and

f1(1) = max
x1

{R1(x1) + f2(b− x1)}

= max
0≤x1≤1

{2x1 + 3(1− x1)}

= max
0≤x1≤1

{3− x1}.

So, if x1 = 0 then max = 3, put x1 = 0 in x2 = 1 − x1 we get x2 = 1. The optimal solution is (0, 1) and
max, Z1 = 3 + 2 = 5. For (4.2)

f2(1) = max
x2

{R2(x2)}

= max
0≤x2≤1

{x2}

= 1− x1

and

f1(1) = max
x1

{R1(x1) + f2(b− x1)}

= max
0≤x1≤1

{0 + 1− x1}

= max
0≤x1≤1

{1− x1}

So, if x1 = 0, then max = 1, put x1 = 0 in x2 = 1 − x1 we get x2 = 1. The optimal solution is (0, 1) and
max, Z2 = 1− 5 = −4. The optimal solution for the original problem is (0, 1) and max, Z = −20.

Example 4.2. Consider the following

minZ = −40x21 − 60x22 − 140x1x2 − 60x1 − 80x2 − 20

= (5x1 + 15x2 + 5)(−8x1 − 4x2 − 4)

subject to: 2x1 + 3x2 ≤ 6 and x1, x2 ≤ 2.



Solving quadratic programming problem via dynamic programming approach 477

From the constraint x2 = 2− 2
3x1, 0 ≤ x1 ≤ 3 and 0 ≤ x2 ≤ 2, for (4.1), we have

f2(6) = min
x2

{R2(x2)}

= min
0≤x2≤2

(15x2)

= 15 min
0≤x2≤2

{2− 2

3
x1}

= 15(2− 2

3
x1)

and

f1(6) = min
x1

{R1(x1) + f2(b− x1)}

= min
0≤x1≤3

{5x1 + 15(2− 2

3
x1)}

= min
0≤x1≤3

{30− 5x1}.

So, if x1 = 3, then min = 15 put x1 = 3 in x2 = 2− 2
3x1 we get x2 = 0.

The optimal solution is (3, 0) and min, Z1 = 15 + 5 = 20. For (4.1), we have

f2(6) = min
x2

{R2(x2)}

= min
0≤x2≤2

{−4x2}

= −4 min
0≤x2≤2

{2− 2

3
x1}

= −4(2− 2

3
x1)

and

f1(6) = min
x1

{R1(x1) + f2(b− x1)}

= min
0≤x1≤3

{−8x1 − 4(2− 2

3
x1)}

= min
0≤x1≤3

{−8− 16

3
x1}.

So, if x1 = 3, then min = −24 put x1 = 3 in x2 = 2 − 2
3x1 we get x2 = 0. The optimal solution is (3, 0) and

minZ2 = −24− 4 = −28. The optimal solution for the original problem is (3, 0) and minZ = −560.

The table below show us the comparison result between simplex method and our technique, we obtained the same
result.

Table 1: Comparison of numerical results

Examples Simplex method Dynamic programming technique
Example(4.1) x1 = 3, x2 = 0,maxZ = −20 x1 = 3, x2 = 0,maxZ = −20
Example(4.2) x1 = 3, x2 = 0,maxZ = −560 x1 = 3, x2 = 0,maxZ = −560

5 Conclusion

A dynamic programming approach is proposed for solving quadratic programming problems where the objective
function can be written as the product of two linear functions. After solving the numerical examples by the traditional
simplex method, we found that the optimal solution obtained by the DP approach is an exact solution. Further, this
work can be extended to multi constrained quadratic programming problems.
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