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Abstract

In this article, the double reduction method is used to find solutions to a (1+1) nonlinear partial differential equation
that arises in the theory of dispersionless integrable systems. Four nontrivial conservation laws of the equation are
constructed via the multiplier method, based on a particular form of admitted multipliers. Two of the constructed
conservation laws are found to have associated Lie point symmetries and are utilised to construct invariant solutions.
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1 Introduction

The double reduction method [38, 39] is a well-known, but relatively recent, group-theoretical method for efficiently
finding invariant solutions of a given partial differential equation (PDE). The method proposed by Sjöberg [38, 39],
and recently improved by Anco and Gandarias [5], is applicable in every case where a given PDE admits a Lie point
or Lie Bäcklund symmetry with an associated conservation law (in the sense defined later under preliminaries). In the
case of a scalar PDE with two independent variables, the double reduction method reduces a PDE of order q to an
ordinary differential equation (ODE) of order q−1. Bokhari et al [11, 10] have extended the double reduction method
to the case of a system of PDEs.

The method of double reduction, when applicable, is particularly attractive because determination of conservation
laws of PDEs and admitted symmetries can be achieved easily using systematic routines. For Lagrangian PDE
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systems, the set of admitted Noether symmetries can be shown to lead to the set of all admitted local conservation
laws [26, 8, 3, 4]. For PDEs that may not admit Noether symmetries, other approaches have been proposed for
constructing conservation laws [1, 2, 24, 40, 25, 3, 4, 26, 20, 15, 16, 36]. Furthermore, establishing which conservation
laws have associated symmetries is easily done through the definition of the association [24].

Application of the double reduction method has been reported in the literature (see, for example, [31, 17, 37, 21]).
In this paper, we apply double reduction to a second-order nonlinear PDE known as the Gibbons-Tsarev (GT) equation

utt − uxutx + utuxx − 1 = 0, (1.1)

which arises in the theory of dispersionless integrable systems (see, for example, [18]). The equation has attracted
interest from many researchers. For example, Kaptsov et al [22, 23] applied the method of differential constraints to
find solutions of the GT equation that are expressible in terms of solutions of Painlevé equations. Lelito and Morozov
[29], on the other hand, used methods of group analysis of differential equations to find solutions of the GT equation
that arise as invariant solutions (in the “classical” way [27, 28, 13, 34, 15, 30]) from Lie point symmetries admitted
by the equation. Baran et al [7], using a known Lax pair, constructed an infinite series of conservation laws and the
algebra of nonlocal symmetries associated with these conservation laws for the GT equation.

In this paper, we employ the double reduction method and find invariant solutions of the GT equation. The
multiplier method is utilised to construct low-order multipliers of the equation of a particular form, namely, polynomial
functions of degree at most three in the variables x, t, u and the first-order derivatives of u. This leads to four non-
trivial conservation laws of (1.1), two of which have associated Lie point symmetries. Solutions are then constructed
systematically, from the two conservation laws and associated Lie point symmetries, according to the double reduction
algorithm.

The rest of the paper is organized as follows. In Section 2, basic definitions and results that are relevant to the
double reduction method are discussed. The main elements of the method are presented in Section 3. Construction of
conservation laws of the GT equation is reported in Section 4. In Section 5, two exact solutions of the GT equation
are constructed by the double reduction method. Concluding remarks are given in Section 6.

2 Preliminaries

Let us consider a PDE of order q (q ≥ 1) with n independent variables x = (x1, x2, . . . , xn) and one dependent
variable u = u(x),

F (x, u, . . . , u(q)) = 0, (2.1)

where u(q) denotes the collection {uq} of qth-order partial derivatives.

A one parameter Lie group of infinitesimal transformations in (x, u) given by

x̃i = xi + ε ξi(x, u) +O(ε2),
ũ = u+ ε η(x, u) +O(ε2),

(2.2)

where ε is the group parameter, with associated infinitesimal generator

X = ξi(x, u)
∂

∂xi
+ η(x, u)

∂

∂u
. (2.3)

Eq. (2.3) is a symmetry of (2.1) if and only if

X(q)F (x, u, . . . , u(q))
∣∣
(2.1)

= 0, (2.4)

where X(q) is the qth extension of (2.3). An n-tuple

T =
(
T 1(x, u, . . . , u(q−1)), . . . , T

n(x, u, . . . , u(q−1))
)
, (2.5)

is a conservation vector of (2.1) if
DiT

i = 0 (2.6)

on solutions of (2.1). Here Di is the total derivative operator with respect to xi defined by

Di =
∂

∂xi
+ ui

∂

∂u
+ uij

∂

∂uj
+ · · ·+ uii1i2...in

∂

∂ui1i2...in
+ · · · . (2.7)
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Equation (2.6) is called a conservation law of (2.1). A function Λ(x, u, u(1), . . .) for which the equation

ΛF = DiT
i (2.8)

holds identically for arbitrary functions u(x) is called a multiplier of (2.1). It follows from (2.8) that the conservation
law (2.6) holds for all solutions of (2.1). Determining equations for the admitted multipliers are obtained by taking
the variational derivative of (2.8) (see, for example, [33]),

δ

δu
(ΛF ) = 0, (2.9)

which must hold for arbitrary functions u(x), where δ/δu is the Euler operator defined by

δ

δu
=

∂

∂u
+
∑

(−1)kDi1 , . . . , Dik

∂

∂ui1,...,ik
. (2.10)

A Lie symmetry generator X of the form (2.3) is associated with a conserved vector T of (2.1) if X and T satisfy the
relations [24]

X
(
T i

)
+ T iDk

(
ξk
)
− T kDk

(
ξi
)
= 0, i = 1, . . . , n. (2.11)

3 The Double Reduction Method

Consider the PDE (2.1), with n = 2 and x = (x1, x2) = (t, x), which admits a Lie point symmetry with operator
X that is associated with a conservation law

DtT
t +DxT

x = 0. (3.1)

The aim is to find similarity variables r, s, w such that in the new variables X = ∂
∂s , so that (3.1) becomes [38, 39]

DrT
r +DsT

s = 0, (3.2)

with

T r =
T tDt(r) + T xDx(r)

Dt(r)Dx(s)−Dx(r)Dt(s)
(3.3)

and

T s =
T tDt(s) + T xDx(s)

Dt(r)Dx(s)−Dx(r)Dt(s)
. (3.4)

The components T t and T x depend on (t, x, u, u(1), u(2), . . . , u(q−1)). This means T r and T s depend on (r, s, w,wr, wrr, . . . , wr(q−1))
for solutions invariant with respect to X. Therefore, the conservation law in canonical variables (3.2) becomes

∂T s

∂s
+DrT

r = 0. (3.5)

It follows from the association of X with T that, in canonical variables,

XT r ≡ ∂T r

∂s
= 0 and XT s ≡ ∂T s

∂s
= 0. (3.6)

This leads to further reduction of the conservation law (3.5) to

DrT
r = 0, (3.7)

or, equivalently, the reduced ODE of order q − 1, namely

T r = k, (3.8)

where k is an arbitrary constant.
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4 Conservation laws of the GT equation and associated Lie symmetries

We seek conservation laws of (1.1) via the multiplier approach [33, 3, 32]. Let us consider first-order multipliers of
the form

Λ = Λ(t, x, u, ux, ut), (4.1)

on the equation (1.1). Determining equations for the multipliers can be obtained by taking the variational derivative
defined in (2.9),

δ

δu
[Λ (utt − uxutx + utuxx − 1)] = 0. (4.2)

The determining equations that arise from (4.2) are intractable for an arbitrary Λ. For the purpose of double reduction,
however, a particular form of Λ would suffice provided that it leads to conservation laws that have symmetries of the
GT equation associated with them. In light of this, we assume that Λ is a sum of monomials of degree up to three
involving the variables t, x, u, ut, ux,

Λ(t, x, u, ux, ut) = δ0 + δ1x+ δ2t+ δ3u+ δ4ux + δ5ut + δ6u
2 + δ7uux

+ δ8u
2
x + δ9uut + δ10uxut + δ11u

2
t + δ12xu+ δ13xux

+ δ14xut + δ15x
2 + δ16tu+ δ17tux + δ18tut + δ19tx

+ δ20t
2 + δ21u

3 + δ22u
2ux + δ23uu

2
x + δ24u

3
x + δ25u

2ut

+ δ26uuxut + δ27u
2
xut + δ28uu

2
t + δ29uxu

2
t + δ30u

3
t

+ δ31xu
2 + δ32xuux + δ33xu

2
x + δ34xuut + δ35xuxut

+ δ36xu
2
t + δ37x

2u+ δ38x
2ux + δ39x

2ut + δ40x
3 + δ41tu

2

+ δ42tuux + δ43tu
2
x + δ44tuut + δ45tuxut + δ46tu

2
t

+ δ47txu+ δ48txux + δ49txut + δ50tx
2 + δ51t

2u

+ δ52t
2ux + δ53t

2ut + δ54t
2x+ δ55t

3, (4.3)

where δi are arbitrary constants. This assumption on the form of admitted multipliers allows the determining equations
from (4.2) to be solved easily, and we obtain

Λ = δ0 + δ4ux + δ5

(
2ut − 3t− 3u2x

2

)
+ δ24

(
4tux + 2u3x − 3uxut − x

2

)
. (4.4)

Using the multiplier in (4.4), we determine T t and T x such that

Λ (utt − uxutx + utuxx − 1) = DtT
t +DxT

x, (4.5)

according to (2.8). We obtain

T t = δ24

(
tu3x − 2tuxut +

u5x
4

− u3xut −
xu2x
2

+
3uxu

2
t

4
+
xut
2

)
+ δ0

(
u2x − ut

)
+ δ4

(
u3x
2

− uxut

)
+ δ5

(
3

2
ut

(
t+ u2x

)
− 3tu2x

2
− u

2
− u4x

2
− u2t

2

)
− λux + ψ(x), (4.6)

and

T x = δ24

(
2tu− tu2xut + tu2t −

u4xut
4

+
3u2xu

2
t

4
+
xuxut

2
− u3t

4
− x2

4

)
+ δ5

(
1

2
uxut(3t− 2ut)−

3tx

2
+
u3xut
2

)
+ δ0 (x− uxut)

+ δ4

(
u− u2xut

2
+
u2t
2

)
− λut + ϕ(t), (4.7)
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for arbitrary functions ψ and ϕ and a constant λ. If u(t, x) is a solution of (1.1), the left hand side of (4.5) vanishes.
Therefore, the following non-trivial conserved vectors of (1.1) arise from multipliers of the form (4.3):

T t
1 = u2x − ut,
T x
1 = x− uxut,

(4.8)

T t
2 =

u3x
2

− uxut,

T x
2 = u− u2xut

2
+
u2t
2
,

(4.9)

T t
3 =

3

2
ut

(
t+ u2x

)
− 3tu2x

2
− u

2
− u4x

2
− u2t

2
,

T x
3 =

1

2
uxut(3t− 2ut)−

3tx

2
+
u3xut
2

,
(4.10)

T t
4 = tu3x − 2tuxut +

u5x
4

− u3xut −
xu2x
2

+
3uxu

2
t

4
+
xut
2
,

T x
4 = 2tu− tu2xut + tu2t −

u4xut
4

+
3u2xu

2
t

4
+
xuxut

2
− u3t

4
− x2

4
.

(4.11)

It is to be noted that a different form of Λ in (4.3) might lead to other conservation laws of (1.1).

Next is to establish which of the constructed conservation laws have associated Lie point symmetries of (1.1). Lie
point symmetries of (1.1) can be determined from Lie’s algorithm [19, 33, 12, 9]. This has been implemented in many
computer packages including MathLie [6] and SADE [35].

As did Lu and Zhang [30], we determined that (1.1) admits the following Lie point symmetries:

X1 = ∂x, X2 = ∂t, X3 =
3

2
x∂x + t∂t + 2u∂u, X4 = ∂u, X5 = −1

2
t∂x + x∂u. (4.12)

A linear combination of these symmetries is

X = Σ5
i=1κiXi ≡ ξt∂t + ξx∂x + η∂u, (4.13)

where κi are arbitrary constants. Extending X once gives

X(1) = (κ2 + κ3t) ∂t +

(
κ1 +

3κ3x

2
− κ5t

2

)
∂x + (2κ3u+ κ4 + κ5x) ∂u

+
(
κ3ut +

κ5ux
2

)
∂ut

+
(κ3ux

2
+ κ5

)
∂ux

. (4.14)

For each of the constructed conservation vectors (T t
i , T

x
i ) , i = 1, 2, . . . , 4, parameters in (4.13) can be determined for

which (2.11) is satisfied. That is
X(1)T t + T tDxξ

x − T xDxξ
t = 0,

X(1)T x + T xDtξ
t − T tDtξ

x = 0.
(4.15)

It turns out that two of the conserved vectors (4.8) and (4.9) have associated Lie point symmetries of the form

Φ1 = κ1∂x + κ2∂t = κ1X1 + κ2X2 (4.16)

and
Φ2 = κ2∂t + κ4∂u = κ2X2 + κ4X4, (4.17)

respectively.

5 Double reduction of the GT Equation

Canonical variables r, s and w are determined as a starting point. These variables transform the generator Φi to
its canonical form Φ̃i = ∂/∂s. This means that they must satisfy the equations

Φir = Φiw = 0,Φis = 1. (5.1)

Clearly r and w are invariants of Φi and are therefore easily obtained from the characteristic equations

dx

ξ
=
dt

τ
=
du

η
. (5.2)

The variable s can be determined by inspection. More systematically, it can be obtained from an invariant J =
v − s(x, y) of the extended operator Φi + ∂v, where v is an auxiliary variable [33].
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5.1 Double reduction of (1.1) by Φ1

The following canonical variables are obtained from Φ1 :

r =
κ2x− κ1t

κ2
, s =

t

κ2
, w = u, κ2 ̸= 0, (5.3)

where w = w(r). The inverse canonical coordinates follow from (5.3) and are given by

t = κ2s, x = κ1s+ r, u = w. (5.4)

From (5.4) partial derivatives of u in terms of the canonical variables are derived following the routine outlined in [19].
We obtain

ux = wr, ut = −κ1
κ2
wr,

uxx = wrr, utx = −κ1
κ2
wrr, utt =

κ21
κ22
wrr, κ2 ̸= 0.

(5.5)

By substituting (5.4) and (5.5) into T t
1 and T x

1 , and using (3.3) and (3.4), we obtain the following components of the
reduced vector:

T r
1 = κ2w − κ21w

2
r

2κ2
, T s

1 = −κ1w
2
r

κ2
− w3

r

2
. (5.6)

The first component in (5.6), in accordance with (3.8), results in a known first-order nonlinear ODE called Chrystal’s
equation (see [14] and the references therein)

2κ22w − κ21(w
′)2 = k, (5.7)

where k is an arbitrary constant. Equation (5.7) admits the translation symmetry ∂r, and is thus tractable via Lie
symmetry methods for ODEs (see, for example, [14, 9, 19, 33, 12]). The solution is

w =
κ22r

2 − 2c1κ2r + c21
2κ21

, (5.8)

where c1 is an arbitrary constant. Finally, from (5.4) and (5.8), a solution of the GT equation (1.1) obtained via the
double reduction method and using Φ1 is

u(t, x) =
(κ2x− κ1t)

2

2κ21
− c1(κ2x− κ1t)

κ21
+

c21
2κ21

. (5.9)

5.2 Double deduction of (1.1) by Φ2

The canonical coordinates in this case are

r = x, s =
t

κ2
, w =

κ2u− κ4t

κ2
, (5.10)

where w = w(r). From (5.10) the inverse canonical coordinates are given by

t = κ2s, x = r, u = κ4s+ w. (5.11)

It follows from (5.11) that the partial derivatives of u in terms of the canonical variables are given by

ux = wr, ut =
κ4
κ2
, uxx = wrr, utx = utt = 0. (5.12)

By substituting (5.11) and (5.12) into T t
2 and T x

2 , and using (3.3) and (3.4), we obtain components of the reduced
vector

T r = κ2r − κ4wr, T s =
κ4
κ2

− w2
r . (5.13)

From the first component in (5.13), we deduce, in accordance with (3.8), that the reduced conservation law in this
case satisfies the simple ODE

κ2r − κ4wr = k, (5.14)
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where k is an arbitrary constant. The solution of (5.14) is

w(r) =
κ2r

2

2κ4
+ c1, (5.15)

where c1 is an arbitrary constant. The solution of the GT equation (1.1) obtained via the double reduction method
and using Φ2 follows from (5.11) and (5.15):

u(t, x) =
κ22x

2 + 2κ24t

2κ2κ4
+ c1. (5.16)

6 Concluding remarks

In this paper the double reduction method was used to find exact solutions of the GT equation, an equation that
arises in the theory of dispersionless integrable systems. The multiplier method was employed to construct conservation
laws of the equation. It is noteworthy that we did not insist on determining all the admitted multipliers for the
equation, in which case the determining equations are intractable. Instead, only multipliers (and hence conservation
laws) corresponding to a particular form of the multiplier were determined. We determined multipliers for the GT
equation that are polynomial functions in the variables t, x, u and the first derivatives of u, and with degree of at
most three. Four non-trivial conservation laws were determined, two of which were found to have associated Lie point
symmetries. The double reduction method was then invoked in the two cases, leading to first-order ODEs that were
easily solved and ultimately yielded two general solutions of the GT equation.
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