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Abstract

In this paper, we introduce and study (G,α)-univex functions by generalizing the α-univex functions and establish the
relationships between vector variational-like inequality problems and vector optimization problems. Furthermore, we
formulate equivalence among the vector critical points, weak efficient points of vector optimization problems and the
solution of weak vector variational-like inequality problems under pseudo (G,α)-univexity assumptions. An example
is also constructed to validate the main result.
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1 Introduction

In 1980, Giannessi [5] introduced the notion of vector variational inequality in finite dimensional Euclidean spaces,
which have been generalized by numerous authors in various ways, see for example [1, 7, 9, 10, 12, 13, 16, 18, 20]
and the references therein. The concept of pre-univex functions, univex functions, and pseudo-univex functions was
introduced by Bector et al. [4], as a generalization of invex functions [6]. More information on the applications of
univex and generalized univex functions can be found in [14, 15, 17, 19] and the references therein.

A new class of functions called α− invex functions was introduced by Noor [21], as a generalization of invex functions
and studied some properties of α-preinvex (α-invex) functions. Ruiz-Garzon et al. [23] established relationship between
vector variational-like inequality and optimization problems based on the concept of pseudo-invexity. Mishra et al.
[19] proposed a new notion of α-pseudo-univex function, which is a generalized convex function that combines the
concepts of α-invex functions and pseudo-univex. Furthermore, various relationships are established between vector
variational-like inequalities and vector optimization problem under the assumptions of α-pseudo-univex functions.
Under the assumption of smooth (G,α)-invex functions, the solution properties of the vector optimization problem,
the Minty vector variational-like inequality problem, and the Stampacchia vector variational-like inequality problem
were examined by Jayswal and Choudhury [8]. Li and Yu [24] introduced a class of generalized invex functions
called (α, ρ, η)-invex functions and established the connection between two types of vector variational-like inequalities
and multiobjective programming problem. Pooja et al. [11], found some links between approximate convexity and
generalized approximate convexity and established relationships between vector variational inequalities and nonsmooth
vector optimization problems.
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Motivated and inspired by the work of Mishra et al. [19], and Jayswal and Choudhury [8], we introduce a new type
of functions namely (G,α)-univex functions and establish the relationship between vector variational-like inequality
problems and vector optimization problems. We also establish relationship between the vector critical points and weak
efficient solutions.

This paper is organized as follows: In section 2, we review several definitions and results that will be used in latter
sections. In section 3, we establish relationship between vector variational-like inequality and vector optimization
problems by using (G,α)-univex function.

2 Preliminaries

The following stipulation for equalities and inequalities will be used throughout this paper. If x, y ∈ Rn, then
x ≤ y ⇔ xi ≤ yi, i = 1, 2, 3, ..., n with strict inequality holding for at least one i;
x ≦ y ⇔ xi ≤ yi, i = 1, 2, 3, ..., n;
x = y ⇔ xi = yi, i = 1, 2, 3, ..., n;
x < y ⇔ xi < yi, i = 1, 2, 3, ..., n.

Suppose X ⊆ Rn be a nonempty set, η : X×X → Rn be a continuous map, α : X×X → R+ \{0} be a bifunction.
Let b : X ×X → R+ and ϕ : R → R be two functions.

First of all, we recall some definitions, known results and concepts which will be used in the sequel.

Definition 2.1. [21] A subset X of Rn is said to be α-invex set with respect to η and α, if for all x, u ∈ X, t ∈ [0, 1],
we have x+ tα(u, x)η(u, x) ∈ X.

It is well-known that α-invex set may not be convex set [21]. From now onward, we suppose that X ⊆ Rn be
nonempty, open and α-invex set, unless otherwise specified.

Definition 2.2. [2] A function G : R → R is said to be increasing, if

x < y ⇔ G(x) < G(y), ∀ x, y ∈ R.

Lemma 2.3. [2] G−1 is an increasing function iff G is an increasing function.

Now, we introduce the concept of (G,α)-univex function by generalizing α-univex function introduced and studied
by Mishra et al. [19] as follows:

Definition 2.4. Suppose X ⊆ Rn be a nonempty set and G : R → R be a continuous differentiable real valued
increasing function. The differentiable function f : X → Rp with p× n matrix as its Jacobian is said to be :

(i) (G,α)-univex with respect to α, η, ϕ and b, if

b(x, u) ϕ[G(fi(x))−G(fi(u))] ≥ ⟨G′(fi(u))α(x, u)∇f(u), η(x, u)⟩ ,

∀ x, u ∈ X, i = 1, 2, ..., p,

(ii) strictly (G,α)-univex with respect to α, η, ϕ and b, if

b(x, u) ϕ[G(fi(x))−G(fi(u))] > ⟨G′(fi(u))α(x, u)∇f(u), η(x, u)⟩ ,

∀ x, u ∈ X, x ̸= y, i = 1, 2, ..., p,

(iii) pseudo (G,α)-univex with respect to α, η, ϕ and b, if

b(x, u) ϕ[G(fi(x))−G(fi(u))] < 0 ⇒ ⟨G′(fi(u))α(x, u)∇f(u), η(x, u)⟩ < 0,

∀ x, u ∈ X, i = 1, 2, ..., p.

Remark 2.5. If G(x) = x, then (G,α)-univex function reduces to α-univex function.
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Given X ⊆ Rn and a function f : X → Rp, the vector optimization problem (for short, V OP ) is given as follows:

Min {f(x)} such that x ∈ X.

In vector optimization problems, objectives often conflict with each other. Consequently, the concept of optimality for
single-objective optimization problems cannot be applied directly to vector optimization. In this regard, the concept
of efficient solutions is more useful for vector optimization problems.

Definition 2.6. [20] Given an open set X ⊆ Rn and a function f : X → Rp. A point z ∈ X is said to be efficient
(Pareto), iff there exists no y ∈ X such that f(y) ≤ f(z).

Definition 2.7. [20] Given an open set X ⊆ Rn and a function f : X → Rp. A point z ∈ X is said to be weakly
efficient (Pareto), iff there exists no y ∈ X such that f(y) < f(z).

The vector variational-like inequality problem is a generalized form of the vector variational inequality problem,
which was introduced and studied by Siddiqi et al. [25] and Yang [26].

Suppose X ⊆ Rn be a nonempty set and F : X → Rp be a function. The variational-like inequality problem (for
short, V LIP ), is to find a point y ∈ X such that

⟨F (y), η(x, y)⟩ ≥ 0, ∀ x ∈ X.

A vector variational-like inequality problem (for short, V V LIP ), is to find a point y ∈ X, there exists no x ∈ X
such that ⟨F (y), η(x, y)⟩ ≤ 0.

A weak vector variational-like inequality problem (for short, WV V LIP ), is to find a point y ∈ X, there exists no
x ∈ X such that ⟨F (y), η(x, y)⟩ < 0.

In general, for each x, y ∈ X, α(x, y) > 0,

⟨α(x, y) F (y), η(x, y)⟩ ≤ 0 ⇔ ⟨F (y), η(x, y)⟩ ≤ 0,

and
⟨α(x, y) F (y), η(x, y)⟩ < 0 ⇔ ⟨F (y), η(x, y)⟩ < 0.

3 Relationship between V V LIP and V OP

In this section, we shall extend the results in [19] from α-univex functions to (G,α)-univex functions.

Theorem 3.1. Let f : X ⊆ Rn → Rp be a differentiable function. If F = ∇f , f is (G,α)-univex with respect to
α, η, ϕ and b with ϕ(t) ≤ 0, whenever t ≤ 0.
If y ∈ X solves the V V LIP with respect to same α, η, ϕ and b, and G′(fi(y)) > 0, i = 1, 2, ..., p, then y is an efficient
solution to the V OP .

Proof . Suppose that y is not an efficient solution to the V OP . Then there exist x ∈ X such that f(x)− f(y) ≤ 0.
As G is an increasing function, we have

G(fi(x))−G(fi(y)) ≤ 0, i = 1, 2, ..., p.

Since ϕ(t) ≤ 0, whenever t ≤ 0 and b : X ×X → R+, we have

b(x, y) ϕ[G(fi(x))−G(fi(y))] ≤ 0, i = 1, 2, ..., p.

Using (G,α)-univexity of f with respect to α, η, ϕ and b. It follows that there exist x ∈ X such that

⟨G′(fi(y))α(x, y)∇f(y), η(x, y)⟩ ≤ 0, i = 1, 2, ..., p.

Since G′(fi(y)) > 0, i = 1, 2, ..., p and α(x, y) > 0, there exists x ∈ X such that ⟨∇f(y), η(x, y)⟩ ≤ 0, which means
that y is not a solution of V V LIP , which is a contradiction. Hence y must be an efficient solution to the V OP . □

The validity of the above theorem has been shown in the following example.
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Example 3.2. Let X = {x = (x1, y1) ∈ R2 : x1 ≥ 1, y1 ≥ 1 and x1 ≥ y1}. Consider the following V OP :

Minimize f(x = (x1, y1)) = log

(
x2
1

y21

)
, subject to x ∈ X,

where f : X → R be a differentiable function. Suppose x = (x1, y1), y = (x2, y2) ∈ X, we define G(t) =
√
et, α(x, y) =

6y2

y1
, η(x, y) = (x1 − x2, y1 − y2), b(x, y) = 2 and ϕ(t) = 3t. Then f is (G,α) univex function with respect to α, η, ϕ

and b. Here, G′(t) =
√
et

2 , G′(f(y)) =
(

x2

2y2

)
and ∇f(y) = 2

(
1
x2
,− 1

y2

)
. Now,

b(x, y) ϕ[G(f(x))−G(f(y))]− ⟨G′(f(y))α(x, y)∇f(y), η(x, y)⟩

= 6

[(
x1

y1

)
−
(
x2

y2

)]
−
〈(

x2

2y2

)(
6y2
y1

)
2

(
1

x2
,− 1

y2

)
, (x1 − x2, y1 − y2)

〉
= 6

[
x1y2 − y1x2

y1y2
−
(
x1y2 − y1x2

y1y2

)]
= 0.

We observe that y = (1, 1) solves the V V LIP ,

⟨∇f(y), η(x, y)⟩ =

〈
2

(
1

x2
,− 1

y2

)
, (x1 − x2, y1 − y2)

〉
= 2(x1 − y1) ≥ 0, ∀ x = (x1, y1) ∈ X.

Hence by Theorem 3.1, y = (1, 1) is an efficient to the V OP .

Theorem 3.3. Let f : X ⊆ Rn → Rp be a differentiable function. If F = ∇f , −f is strictly (G,α)-univex function
with respect to α, η, ϕ and b with ϕ(t) ≤ 0, whenever t ≤ 0. If y ∈ X is a weak efficient solution to the V OP and
G′(fi(y)) > 0, i = 1, 2, ..., p , then y solves the V V LIP with respect to same α, η, ϕ and b.

Proof . Suppose that y does not solve V V LIP . Then there exist x ∈ X such that

⟨α(x, y)∇f(y), η(x, y)⟩ ≤ 0.

Using the strict (G,α)-univexity of the function −f with respect to α, η, ϕ and b and G′(fi(y)) > 0, i = 1, 2, ..., p,
we have

b(x, u) ϕ[G(fi(x))−G(fi(y))] < ⟨G′(fi(y))α(x, y)∇f(y), η(x, y)⟩ ≤ 0, i = 1, 2, ..., p.

Therefore, there exists x ∈ X such that

b(x, y) ϕ[G(fi(x))−G(fi(y))] < 0, i = 1, 2, ..., p.

Since ϕ(t) ≤ 0, whenever t ≤ 0 and b : X ×X → R+, we have

G(fi(x))−G(fi(y)) < 0, i = 1, 2, ..., p.

As G−1 is an increasing function, we have f(x) − f(y) < 0, which contradicts y ∈ X being a weakly efficient
solution of V OP . Hence y must be a solution of V V LIP . □

As every efficient solution is also a weakly efficient solution to the V OP , so the following result is trivial to prove:

Corollary 3.4. Let f : X ⊆ Rn → Rp be a differentiable function. If F = ∇f , −f is strictly (G,α)-univex function
with respect to α, η, ϕ and b with ϕ(t) ≤ 0, whenever t ≤ 0. If y ∈ X is an efficient solution to the V OP and
G′(fi(y)) > 0, i = 1, 2, ..., p, then y also solves the V V LIP with respect to same α, η, ϕ and b.

Theorem 3.5. Suppose f : X ⊆ Rn → Rp be a differentiable function. If F = ∇f , f is pseudo (G,α)-univex function
with respect to α, η, ϕ and b with ϕ(t) ≤ 0, whenever t ≤ 0.
If y ∈ X solves the WV V LIP with respect to same α, η, ϕ and b and G′(fi(y)) > 0, i = 1, 2, ..., p, then y is a weakly
efficient solution to the V OP .
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Proof . Suppose that y is not a weakly efficient solution to the V OP . Then there exist x ∈ X such that f(x)−f(y) < 0.
Since G is an increasing function, we have

G(fi(x))−G(fi(y)) < 0, i = 1, 2, ..., p.

Also, since ϕ(t) ≤ 0, whenever t ≤ 0 and b : X ×X → R+, we have

b(x, y) ϕ[G(fi(x))−G(fi(y))] < 0, i = 1, 2, ..., p.

By using pseudo (G,α)-univexity of f with respect to α, η, ϕ and b, there exist x ∈ X such that

⟨G′(fi(y))α(x, y)∇f(y), η(x, y)⟩ < 0, i = 1, 2, ..., p.

Given that G′(fi(y)) > 0, i = 1, 2, ..., p and α(x, y) > 0, it follows that there exists x ∈ X such that ⟨∇f(y), η(x, y)⟩ <
0, which means that y is not a solution to the WV V LIP , which is a contradiction. □

Theorem 3.6. Let f : X ⊆ Rn → Rp be a differentiable function. If F = ∇f , f is strictly (G,α)-univex function
with respect to α, η, ϕ and b with ϕ(t) ≤ 0, whenever t ≤ 0. If y ∈ X is a weak efficient solution of V OP and
G′(fi(y)) > 0, i = 1, 2, ..., p, then y ∈ X is an efficient solution to the V OP .

Proof . Suppose that y is a weakly efficient solution to the V OP , but not an efficient solution to V OP . Then there
exist x ∈ X such that f(x)− f(y) ≤ 0. As G is an increasing function, so we have

G(fi(x))−G(fi(y)) ≤ 0, i = 1, 2, ..., p.

Since ϕ(t) ≤ 0, whenever t ≤ 0 and b : X ×X → R+, we have

b(x, y) ϕ[G(fi(x))−G(fi(y))] ≤ 0, i = 1, 2, ..., p.

By the strict (G,α)-univexity of the function f with respect to α, η, ϕ and b, we have

0 ≥ b(x, y) ϕ[G(fi(x))−G(fi(y))] > ⟨G′(fi(y))∇f(y), η(x, y)⟩ , i = 1, 2, ..., p.

Thus, there exists x ∈ X such that ⟨G′(fi(y))α(x, y)∇f(y), η(x, y)⟩ < 0, i = 1, 2, ..., p. Since G′(fi(y)) > 0, i =
1, 2, ..., p and α(x, y) > 0, there exists x ∈ X such that ⟨∇f(y), η(x, y)⟩ < 0. Therefore, y does not solve WV V LIP .
Thus, by Theorem 3.5 , we get a contradiction. Hence y must be an efficient solution to the V OP . □

Now, we need the following definition and Lemma:

Definition 3.7. [22] A feasible solution y ∈ X is said to be a vectorial critical point to the V OP , if there exists a
vector λ ∈ Rp with λ ≥ 0 such that ⟨λ,∇f(y)⟩ = 0.

Lemma 3.8. (Gordan’s Theorem) [3] If A is n×m matrix, then we have either

(i) Ax < 0, for some x ∈ Rm, or

(ii) ⟨A, y⟩ = 0, y ≥ 0, for some nonzero solution y ∈ Rn,

but not both.

Theorem 3.9. Suppose y ∈ X be a vector critical point to the V OP and G′(fi(y)) > 0, i = 1, 2, ..., p. Let f : X ⊆
Rn → Rp be a differentiable function. If F = ∇f , f is pseudo (G,α)-univex on X with respect to α, η, ϕ and b with
ϕ(t) ≤ 0, whenever t ≤ 0. Then y ∈ X is a weakly efficient solution to the V OP .

Proof . Suppose y ∈ X be a vector critical point to the V OP , then there exists λ ∈ Rp with λ ≥ 0 such that

⟨λ,∇f(y)⟩ = 0.
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Suppose on the contrary that y is not an efficient solution to the V OP . Then there exist x ∈ X such that
f(x)− f(y) ≤ 0. As G is an increasing function, we have

G(fi(x))−G(fi(y)) ≤ 0, i = 1, 2, ..., p.

Since ϕ(t) ≤ 0, whenever t ≤ 0 and b : X ×X → R+, we have

b(x, y) ϕ[G(fi(x))−G(fi(y))] ≤ 0, i = 1, 2, ..., p.

Using pseudo (G,α)-univexity of f with respect to α, η, ϕ and b, there exist x ∈ X such that

⟨G′(fi(y))α(x, y)∇f(y), η(x, y)⟩ < 0, i = 1, 2, ..., p.

Since G′(fi(y)) > 0, i = 1, 2, ..., p and α(x, y) > 0, there exists x ∈ X such that ⟨∇f(y), η(x, y)⟩ < 0.
Applying the Gordan’s theorem, we deduce that there is no λ ≥ 0 such that

⟨λ,∇f(y)⟩ = 0,

which is a contradiction to the fact that y is a vector critical point.

□

Theorem 3.10. Suppose f : X ⊆ Rn → Rp be a differentiable function and F = ∇f . Every vector critical points is a
weakly efficient solutions to the V OP iff f is pseudo (G,α)-univex on X with respect to α, η, ϕ and b with ϕ(t) ≤ 0,
whenever t ≤ 0 and G′(fi(w)) > 0, i = 1, 2, ..., p, where w be any vector critical point to the V OP .

Proof . The sufficient condition can be shown from Lemma 2.1 [22]. Next, we prove the necessary condition, that is,
if every vector critical point is a weak efficient solution, then f is pseudo (G,α)-univex with respect to α, η, ϕ and b
with ϕ(t) ≤ 0, whenever t ≤ 0. Suppose y ∈ X be a weak efficient solution to the V OP . Then there is no x ∈ X such
that f(x)− f(y) < 0. As G is an increasing function, we have

G(fi(x))−G(fi(y)) < 0, i = 1, 2, ..., p.

Since ϕ(t) ≤ 0, whenever t ≤ 0 and b : X ×X → R+, we have

b(x, y) ϕ[G(fi(x))−G(fi(y))] < 0, i = 1, 2, ..., p.

If y ∈ X is a vector critical point to the V OP , then there exists a vector λ ∈ Rp with λ ≥ 0 such that ⟨λ,∇f(y)⟩ = 0.
From the Gordan Theorem, there is no η such that ⟨∇f(y), η(x, y)⟩ ≤ 0. Since G′(fi(w)) > 0, i = 1, 2, ..., p and
α(x, y) > 0, we have

⟨G′(fi(y))α(x, y)∇f(y), η(x, y)⟩ < 0, i = 1, 2, ..., p.

Since every vector critical point is a weak efficient solution, so there exists x ∈ X such that f(x)− f(y) < 0, and
there exists η such that

⟨G′(fi(y))α(x, y)∇f(y), η(x, y)⟩ < 0, i = 1, 2, ..., p.

This is precisely the pseudo (G,α)-univexity condition for f . □

We can relate the vector critical points to the solutions of the WV V LIP by using Theorem 3.5 and Theorem 3.10.

Corollary 3.11. Let f : X ⊆ Rn → Rp be a differentiable function. If F = ∇f , f is pseudo (G,α)− univex function
with respect to α, η, ϕ and b with ϕ(t) ≤ 0, whenever t ≤ 0 and G′(fi(w)) > 0, i = 1, 2, ..., p, where w ∈ X. Then
the vector critical points, the weakly efficient points and the solutions of the WV V LIP are equivalent.

4 Conclusions

In this paper, the concept of (G,α)-univexity as a generalization of α-univexity has been introduced and discussed
the relationship between vector variational-like inequality problems and vector optimization problems under (G,α)-
univexity. Our results in this paper are generalization and refinement of some well-known results in the literature.
Further research is needed to approximate the solution of weak vector variational- like inequalities and its related
models with (G,α)-univexity assumptions.
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