Int. J. Nonlinear Anal. Appl. 13 (2022) 2, 3031–3036 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2022.25798.3130

On automorphisms of strong semilattice of π -groups

Aftab Hussain Shah, Dilawar Juneed Mir*

Department of Mathematics, Central University of Kashmir, Ganderbal-191201, India

(Communicated by Abasalt Bodaghi)

Abstract

In this paper, we make a start by considering the automorphisms of strong semilattice of π -groups, relating them to the automorphisms of underlying π -groups. We also provide a condition under which an automorphism of strong semilattice of π -groups can be constructed.

Keywords: Automorphisms, Linking homomorphisms, π -groups, π -regular 2020 MSC: 20D45, 20M18

1 Introduction

Let Λ be a semilattice and for each $\alpha \in \Lambda$, let S_{α} be a semigroup and suppose $S_{\alpha} \cap S_{\beta} = \emptyset$ for $\alpha \neq \beta$. For every $\alpha, \beta \in \Lambda$ with $\alpha \geq \beta$, there exists a homomorphism $f_{\alpha,\beta} : S_{\alpha} \to S_{\beta}$ satisfying the following conditions:

- (i) $f_{\alpha,\alpha} = \mathrm{Id}_{S_{\alpha}}$ for any $\alpha \in \Lambda$.
- (ii) For any $\alpha, \beta, \gamma \in \Lambda$ with $\alpha \geq \beta \geq \gamma, f_{\beta,\gamma} f_{\alpha,\beta} = f_{\alpha,\gamma}$.

The semigroup operation on $S = \bigcup_{\alpha \in \Lambda} S_{\alpha}$ is defined in terms of the multiplication in the components S_{α} and the homomorphism $f_{\alpha,\beta}$ (called linking homomorphism) by $st = f_{\alpha,\gamma}(s)f_{\beta,\gamma}(t)$ for $s \in S_{\alpha}$ and $t \in S_{\beta}$, where $\gamma = \alpha \land \beta$. Then S with multiplication defined above is a strong semilattice Λ of semigroup S_{α} , and is denoted by $S = (\Lambda, \{S_{\alpha}\}_{\alpha \in \Lambda}, \{f_{\alpha,\beta}\}_{\alpha \geq \beta}).$

A semigroup S is said to be a π -group if there exists a subgroup G^S of S which is an ideal, and for any $s \in S$, there exists a natural number $n \in \mathbb{N}$ such that $s^n \in G^S$. An element $s \in S$ is said to be regular if there exists an element $a \in S$ such that sas = s and S is said to be regular if every element of S is regular. An element s of S is said to be π -regular if there exists a positive integer $n \in \mathbb{N}$ such that $s^n \in s^n Ss^n$ and S is said to be π -regular if every element of S is regular. Infact, π -regular semigroups is one of the important classes of non-regular semigroups. Let R^S denote the set of all regular elements of S. We write, $S = R^S \cup N^S$, where $N^S = S \setminus R^S$ is the set of non-regular elements of S.

The set of idempotents in S will be denoted by E_S . Thus $E_S = \{e_\alpha; \alpha \in \Lambda\}$. If S is a π -group and $s \in \mathbb{R}^S$, then s = se for the (unique) idempotent e, and so $s \in \mathbb{G}^S$. Since obviously $\mathbb{G}^S \subseteq \mathbb{R}^S$, so we have $\mathbb{G}^S = \mathbb{R}^S$ in a π -group. In this paper, we are looking for automorphisms of strong semilattice of π -groups.

*Corresponding author

Email addresses: aftab@cukashmir.ac.in (Aftab Hussain Shah), mirjunaid@cukashmir.ac.in (Dilawar Juneed Mir)

2 Automorphisms

In this section, first, we fix some notations without further mention. Let S be a strong semilattice of π -groups. We write $S_{\alpha} = R_{\alpha} \cup N_{\alpha}$, where $N_{\alpha} = S_{\alpha} \setminus R_{\alpha}$ is the set of non-regular elements of S_{α} and it is the partial semigroup by definition of π -group.

Lemma 2.1. Let S be a strong semilattice of π -groups. Let $\phi \in \operatorname{Aut}(S)$, then the following hold:

- (i) $\phi|_{E_S}$ is an automorphism of semilattices.
- (ii) If $G \subseteq S$ is a group, then there exists $\alpha \in \Lambda$ such that $G \subseteq S_{\alpha}$.
- (iii) For each $\alpha \in \Lambda$, $\phi|_{s_{\alpha}}$ is an isomorphism of π -groups from S_{α} to S_{τ} , where $\phi(e_{\alpha}) = e_{\tau}$.

Proof. Let $\phi \in \operatorname{Aut}(S)$.

(i). Suppose $e_{\alpha} \in E_S$, we have $\phi(e_{\alpha}) = \phi(e_{\alpha}e_{\alpha}) = \phi(e_{\alpha})\phi(e_{\alpha})$, that is, $\phi(e_{\alpha})$ is idempotent, hence $\phi(E_S) \subseteq E_S$.

Now for any $e_{\gamma} \in E_S$, since ϕ is onto, therefore there exists some $s \in S$ such that $\phi(s) = e_{\gamma}$. Now we show that $s \in E_S$. For this we have

$$\phi(s) = e_{\gamma}$$

= $e_{\gamma}e_{\gamma}$ (as $e_{\gamma} \in E_S$)
= $\phi(s)\phi(s)$
= $\phi(s^2)$ (as ϕ is homomorphism)

That is, $\phi(s) = \phi(s^2)$. Since ϕ is injective, therefore we have $s = s^2$, implies, s is idempotent. Hence we have $e_{\gamma} = \phi(s) \in \phi(E_S)$, that is, $E_S \subseteq \phi(E_S)$. Thus we have $\phi(E_S) = E_S$. Since each S_{α} contains a unique idempotent e_{α} , and $\phi \in \operatorname{Aut}(S)$ permutes the idempotents, ϕ induces a bijection on Λ . Since $e_{\alpha}e_{\beta} = e_{\beta}$ if and only if $\alpha \geq \beta$, then ϕ preserves the order on Λ .

(ii). Suppose G is a subgroup of S. Let e be the identity element of G. Then $e = e_{\alpha} \in S_{\alpha}$ for some $\alpha \in \Lambda$. We show that G is a subgroup of S_{α} . Let $g \in G$, then $g \in S_{\beta}$ for some $\beta \in \Lambda$. Since e is the identity element of G, so ge = g. Also, $g = ge = f_{\beta,\alpha\beta}(g)f_{\alpha,\alpha\beta}(e) \in S_{\alpha\beta}$. So $\beta = \alpha\beta$, as $S_{\beta} \cap S_{\alpha\beta} = \emptyset$, this implies, $\beta \leq \alpha$.

Let g^{-1} be the inverse of g, then $g^{-1} \in S_{\eta}$ for some $\eta \in \Lambda$. Thus $gg^{-1} = e \in S_{\alpha}$. Also, $e = gg^{-1} = f_{\beta,\beta\eta}(g)f_{\eta,\beta\eta}(g^{-1}) \in S_{\beta\eta}$. So $e \in S_{\beta\eta}$, implies, $\alpha = \beta\eta$ and so $\alpha \leq \beta$. Hence $\alpha = \beta$ and $g \in S_{\alpha}$, that is, $G \subseteq S_{\alpha}$.

(iii). Let $g \in S_{\alpha}$, since S_{α} is a π -group, so there exists a subgroup $G^{S_{\alpha}}$ of S_{α} which is an ideal of S_{α} and there exists $n \in \mathbb{N}$ such that $g^n \in G^{S_{\alpha}}$. Since $G^{S_{\alpha}}$ is a group, it implies the inverse of g^n exists in $G^{S_{\alpha}}$. That is, $g^{-n} \in G^{S_{\alpha}} \subseteq S_{\alpha}$ such that $g^n g^{-n} = e_{\alpha} \in S_{\alpha}$. Let $\phi(g^n) \in S_{\gamma}$ for some $\gamma \in \Lambda$. Also, by part (i), $\phi(e_{\alpha}) = e_{\tau} \in S_{\tau}$ for some $\tau \in \Lambda$ and $\phi(g^{-n}) \in S_{\gamma}$.

Now we have

$$egin{aligned} \phi(e_lpha) &= \phi(g^ng^{-n}) \ &= \phi(g^n)\phi(g^{-n}) \in S_\gamma \end{aligned}$$

That is, $S_{\tau} = S_{\gamma}$. Hence $\phi(S_{\alpha}) \subseteq S_{\tau}$. Since ϕ is an automorphism and so ϕ^{-1} exists and will do same and hence $\phi^{-1}(S_{\tau}) \subseteq S_{\alpha}$, that is, $S_{\tau} \subseteq \phi(S_{\alpha})$ and from part (i), we are done. \Box

By the above lemma we know that every automorphism of S induces an automorphism of Λ . We will denote this automorphism of semilattices by ϕ_{Λ} . Hence, we can write $\phi_{\Lambda}(\alpha) = \tau$, where $\phi(e_{\alpha}) = e_{\tau}$. Let $\phi \in \operatorname{Aut}(S)$. Then we write ϕ_{α} for $\phi|_{S_{\alpha}}$, where $\alpha \in \Lambda$. By Lemma 2.1, we know ϕ_{α} is an isomorphism. So given an automorphism ϕ of S, we obtain family { $\phi_{\alpha} : \alpha \in \Lambda$ } of π -group isomorphisms and a semilattice automorphism denoted by ϕ_{Λ} . Thus we have ϕ_{Λ} and { $\phi_{\alpha} : \alpha \in \Lambda$ } determines ϕ completely.

Following lemma is due to Lallement; for the proof, one can see [2].

Lemma 2.2. Let $\varphi : S \to T$ be a homomorphism from a regular semigroup S into a semigroup T. Then $\operatorname{im}(\varphi)$ is regular.

Let $S = (\Lambda, \{S_{\alpha}\}_{\alpha \in \Lambda}, \{f_{\alpha,\beta}\}_{\alpha \ge \beta})$ be strong semilattices of π -groups. Note that $R^{S} = \bigsqcup_{\alpha \in \Lambda} R^{S_{\alpha}}$. Now, for any $s \in S$, we define a mapping $\psi : S \to R^{S}$ by

$$\psi(s) = e_{\alpha}s \quad \text{if } s \in S_{\alpha}.$$

Where e_{α} is the unique idempotent of the π -group S_{α} . Since we know R^S is an ideal of S. Thus the map ψ is well defined. The following lemma shows that the map ψ commutes with the linking homomorphisms.

Lemma 2.3. Let $S = (\Lambda, \{S_{\alpha}\}_{\alpha \in \Lambda}, \{f_{\alpha,\beta}\}_{\alpha \geq \beta})$ be strong semilattices of π -groups. Then for any $\alpha, \beta \in \Lambda$ with $\alpha \geq \beta$ and for any $s \in S_{\alpha}$, we have

$$\psi f_{\alpha,\beta} = f_{\alpha,\beta} \ \psi.$$

Proof. Let $\alpha, \beta \in \Lambda$ with $\alpha \geq \beta$. Then for any $s \in S_{\alpha}$ we have

$$\begin{aligned} f_{\alpha,\beta} \ \psi(s) &= f_{\alpha,\beta}(e_{\alpha}s) \\ &= f_{\alpha,\beta}(e_{\alpha})f_{\alpha,\beta}(s) \\ &= e_{\beta}(f_{\alpha,\beta}(s)) \\ &= \psi \ f_{\alpha,\beta}(s). \end{aligned}$$

Thus we have

$$\psi f_{\alpha,\beta} = f_{\alpha,\beta} \ \psi.$$

 \Box Next, we start from semilattices automorphism and a family of π -group isomorphisms satisfying a condition under which an automorphism of strong semilattices of π -groups can be constructed.

Theorem 2.4. Let $S = (\Lambda, \{S_{\alpha}\}_{\alpha \in \Lambda}, \{f_{\alpha,\beta}\}_{\alpha \geq \beta})$ be strong semilattices of π -groups. Let $\phi_{\Lambda} \in \operatorname{Aut}(\Lambda)$ and for each $\alpha \in \Lambda, \phi_{\alpha} : S_{\alpha} \to S_{\phi_{\Lambda}(\alpha)}$ be an isomorphism of π -groups. Also, assume that the following conditions are satisfied.

- (1) $\phi | N^S$ is a partial automorphism of N^S , and for any $s, s' \in N^S$, if $ss' \notin N^S$, then $\phi(s)\phi(s') \notin N^S$.
- (2) $\psi \phi_{\beta} f_{\alpha,\beta} = \psi f_{\phi_{\Lambda}(\alpha),\phi_{\Lambda}(\beta)} \phi_{\alpha}.$

Define a mapping ϕ on S by $\phi(s) = \phi_{\alpha}(s)$ if $s \in S_{\alpha}$. Then ϕ is an automorphism of S. Conversely, every automorphism of strong semilattices of π -groups satisfies the conditions.

Proof. Suppose there exists a semilattice automorphism $\phi_{\Lambda} : \Lambda \to \Lambda$ and a family of π -group isomorphisms $\{\phi_{\alpha} : \alpha \in \Lambda\}$ where $\phi_{\alpha} : S_{\alpha} \to S_{\phi_{\Lambda}(\alpha)}$ satisfying the above two conditions. Let $\phi : S \to S$ be a map defined by $\phi(s) = \phi_{\alpha}(s)$ if $s \in S_{\alpha}$. We show that $\phi \in \operatorname{Aut}(S)$. Let $s_1, s_2 \in S$. If $s_1 = s_2$, then there exists $\alpha \in \Lambda$ such that $s_1, s_2 \in S_{\alpha}$. Since $\phi_{\alpha} : S_{\alpha} \to S_{\phi_{\Lambda}(\alpha)}$ is an isomorphism, therefore we have

$$s_1 = s_2$$

$$\Leftrightarrow \ \phi_{\alpha}(s_1) = \phi_{\alpha}(s_2)$$

$$\Leftrightarrow \ \phi(s_1) = \phi(s_2).$$

That is, ϕ is well defined and injective. Now for any $t \in S$, there exists some $\alpha \in \Lambda$ with $\phi_{\Lambda}(\alpha) = \delta \in \Lambda$ such that $t \in S_{\delta}$. As $\phi_{\alpha} : S_{\alpha} \to S_{\phi_{\Lambda}(\alpha)}$ is an isomorphism. Therefore there exists some $s \in S_{\alpha}$ such that $t = \phi_{\alpha}(s) = \phi(s)$, and so ϕ is surjective. Hence ϕ is bijective.

Now we need to show ϕ is a homomorphism. For this, let $s_{\alpha} \in S_{\alpha}$ and $s_{\beta} \in S_{\beta}$. Then we have the following cases.

Case 1: If $s_{\alpha}s_{\beta} \in N_{\alpha\beta}$, then $s_{\alpha} \in N_{\alpha}$ and $s_{\beta} \in N_{\beta}$, hence by condition (1), we have $\phi(s_{\alpha}s_{\beta}) = \phi(s_{\alpha})\phi(s_{\beta})$.

Case 2: If $s_{\alpha}s_{\beta} \notin N_{\alpha\beta}$, then we have $\phi(s_{\alpha}s_{\beta}) \notin N^S$, therefore we have

$$\begin{split} \phi(s_{\alpha}s_{\beta}) &= \phi_{\alpha\beta}(s_{\alpha}s_{\beta}) \\ &= \phi_{\alpha\beta}(f_{\alpha,\alpha\beta}(s_{\alpha})f_{\beta,\alpha\beta}(s_{\beta})) \\ &= \phi_{\alpha\beta}(f_{\alpha,\alpha\beta}(s_{\alpha}))\phi_{\alpha\beta}(f_{\beta,\alpha\beta}(s_{\beta})) \\ &= e_{\phi_{\Lambda}(\alpha\beta)}\phi_{\alpha\beta}(f_{\alpha,\alpha\beta}(s_{\alpha}))\phi_{\alpha\beta}(f_{\beta,\alpha\beta}(s_{\beta})) \\ &= (e_{\phi_{\Lambda}(\alpha\beta)}\phi_{\alpha\beta}(f_{\alpha,\alpha\beta}(s_{\alpha})))(e_{\phi_{\Lambda}(\alpha\beta)}\phi_{\alpha\beta}(f_{\beta,\alpha\beta}(s_{\beta}))) \\ &= (\psi \ \phi_{\alpha\beta} \ f_{\alpha,\alpha\beta}(s_{\alpha}))(\psi \ \phi_{\alpha\beta} \ f_{\beta,\alpha\beta}(s_{\beta})). \end{split}$$

On the other hand, we have

$$\begin{aligned} \phi(s_{\alpha})\phi(s_{\beta}) &= \phi_{\alpha}(s_{\alpha})\phi_{\beta}(s_{\beta}) \\ &= f_{\phi_{\Lambda}(\alpha),\phi_{\Lambda}(\alpha\beta)}(\phi_{\alpha}(s_{\alpha}))f_{\phi_{\Lambda}(\beta),\phi_{\Lambda}(\alpha\beta)}(\phi_{\beta}(s_{\beta})) \\ &= (e_{\phi_{\Lambda}(\alpha\beta)}f_{\phi_{\Lambda}(\alpha),\phi_{\Lambda}(\alpha\beta)}(\phi_{\alpha}(s_{\alpha}))) \ (e_{\phi_{\Lambda}(\alpha\beta)}f_{\phi_{\Lambda}(\beta),\phi_{\Lambda}(\alpha\beta)}(\phi_{\beta}(s_{\beta}))) \quad (by \text{ condition (1)}) \\ &= (\psi \ f_{\phi_{\Lambda}(\alpha),\phi_{\Lambda}(\alpha\beta)} \ \phi_{\alpha}(s_{\alpha})) \ (\psi \ f_{\phi_{\Lambda}(\beta),\phi_{\Lambda}(\alpha\beta)} \ \phi_{\beta}(s_{\beta})) \\ &= (\psi \ \phi_{\alpha\beta} \ f_{\alpha,\alpha\beta}(s_{\alpha}))(\psi \ \phi_{\alpha\beta} \ f_{\beta,\alpha\beta}(s_{\beta})) \quad (by \text{ condition (2)}). \end{aligned}$$

Hence we have $\phi(s_{\alpha}s_{\beta}) = \phi(s_{\alpha})\phi(s_{\beta})$. Thus ϕ is an automorphism of S.

Conversely, suppose ϕ is an automorphism of S. By Lemma 2.1, we have the existence of semilattice automorphism ϕ_{Λ} and a family $\{\phi_{\alpha} : S_{\alpha} \to S_{\phi_{\Lambda}(\alpha)}\}$ of π -group isomorphisms. Since $\phi \in \operatorname{Aut}(S)$, then image of N^S is N^S , by Lemma 2.2. Therefore, condition (1) holds clearly.

Now for any $\alpha \geq \beta$, then $\alpha\beta = \beta$. For $s \in S_{\alpha}$, we have $e_{\beta}s = f_{\beta,\beta}(e_{\beta})f_{\alpha,\beta}(s) = e_{\beta}f_{\alpha,\beta}(s) = \psi f_{\alpha,\beta}(s)$. Thus we have,

$$\begin{aligned} \phi(e_{\beta}s) &= \phi(\psi f_{\alpha,\beta}(s)) \\ &= \phi_{\beta}(\psi f_{\alpha,\beta}(s)) \\ &= \phi_{\beta} \ \psi \ f_{\alpha,\beta}(s). \end{aligned}$$

Also, we have

$$\begin{split} \phi(e_{\beta})\phi(s) &= e_{\phi_{\Lambda}(\beta)}\phi_{\alpha}(s) \\ &= (e_{\phi_{\Lambda}(\beta)})(e_{\phi_{\Lambda}(\alpha)})(\phi_{\alpha}(s)) \\ &= e_{\phi_{\Lambda}(\beta)} \ \psi \ \phi_{\alpha}(s) \\ &= f_{\phi_{\Lambda}(\alpha),\phi_{\Lambda}(\beta)} \ \psi \ \phi_{\alpha}(s). \end{split}$$

Thus we have

$$\phi_{\beta} \ \psi \ f_{\alpha,\beta} = f_{\phi_{\Lambda}(\alpha),\phi_{\Lambda}(\beta)} \ \psi \ \phi_{\alpha}. \tag{1}$$

Now for any $\alpha \in \Lambda$ and $s \in S_{\alpha}$ we have

$$\begin{split} \phi_{\alpha}\psi(s) &= \phi_{\alpha}(e_{\alpha}s) \\ &= \phi_{\alpha}(e_{\alpha})\phi_{\alpha}(s) \\ &= e_{\phi_{\Lambda}(\alpha)}\phi_{\alpha}(s) \\ &= \psi \ \phi_{\alpha}(s). \end{split}$$

Therefore, we have

$$\phi_{\alpha} \ \psi = \psi \ \phi_{\alpha}. \tag{2}$$

Hence we have

 $\psi \phi_{\beta} f_{\alpha,\beta} = \phi_{\beta} \psi f_{\alpha,\beta} \text{ (by equation (2))}$ $= f_{\phi_{\Lambda}(\alpha),\phi_{\Lambda}(\beta)} \psi \phi_{\alpha} \text{ (by equation (1))}$ $= \psi f_{\phi_{\Lambda}(\alpha),\phi_{\Lambda}(\beta)} \phi_{\alpha} \text{ (by Lemma (2.3))}.$

That is,

$$\psi \phi_{\beta} f_{\alpha,\beta} = \psi f_{\phi_{\Lambda}(\alpha),\phi_{\Lambda}(\beta)} \phi_{\alpha}$$

Thus the proof is completed. \Box In the following theorem, we provide a construction for the automorphisms of S from the automorphisms of underlying π -groups S_{α} .

Theorem 2.5. Suppose all the linking homomorphisms are bijective and $\Lambda = \{\alpha, \beta\}_{\alpha \leq \beta}$. Consider $S = S_{\alpha} \cup S_{\beta}$, then every automorphism of S_{α} or S_{β} gives rise to an automorphism of S.

Proof. Suppose all the linking homomorphisms be bijective. Then $S_{\alpha} \cong S_{\beta} \cong \mathbb{G}$. Let $\theta \in \operatorname{Aut}(\mathbb{G})$ be the arbitrary automorphism of \mathbb{G} . Since $S_{\alpha} \cong S_{\beta} \cong \mathbb{G}$, therefore we have the isomorphisms $\phi_{\alpha} : \mathbb{G} \to S_{\alpha}$ and $\phi_{\beta} : \mathbb{G} \to S_{\beta}$.

Let $\theta^{\phi}: S \to S$ be the map defined by

$$\theta^{\phi}(s) = \begin{cases} \phi_{\alpha}\theta\phi_{\alpha}^{-1}(s) & \text{if } s \in S_{\alpha} \\ \phi_{\beta}\theta\phi_{\beta}^{-1}(s) & \text{if } s \in S_{\beta}. \end{cases}$$

We show that $\theta^{\phi} \in \operatorname{Aut}(S)$. For this, we first show that for all $s \in S_{\beta}$

$$\theta^{\phi} f_{\beta,\alpha}(s) = f_{\beta,\alpha} \theta^{\phi}(s). \tag{3}$$

Since $\phi_{\beta} : \mathbb{G} \to S_{\beta}$ and $f_{\beta,\alpha} : S_{\beta} \to S_{\alpha}$ are isomorphisms, we can define $\phi_{\alpha} = f_{\beta,\alpha}\phi_{\beta}$. Therefore, we have

$$\begin{aligned} \phi_{\alpha}^{-1} &= (f_{\beta,\alpha}\phi_{\beta})^{-1} \\ \Rightarrow & \phi_{\alpha}^{-1} = \phi_{\beta}^{-1}f_{\beta,\alpha}^{-1} \\ \Rightarrow & \phi_{\alpha}\theta\phi_{\alpha}^{-1} = \phi_{\alpha}\psi\phi_{\beta}^{-1}f_{\beta,\alpha}^{-1} \\ \Rightarrow & \phi_{\alpha}\theta\phi_{\alpha}^{-1} = f_{\beta,\alpha}\phi_{\beta}\theta\phi_{\beta}^{-1}f_{\beta,\alpha}^{-1} \\ \Rightarrow & \phi_{\alpha}\theta\phi_{\alpha}^{-1}f_{\beta,\alpha} = f_{\beta,\alpha}\phi_{\beta}\theta\phi_{\beta}^{-1} \end{aligned}$$

Now for any $s \in S_{\beta}$, we have

$$\begin{aligned} \phi_{\alpha}\theta\phi_{\alpha}^{-1}f_{\beta,\alpha}(s) &= f_{\beta,\alpha}\phi_{\beta}\theta\phi_{\beta}^{-1}(s) \\ \Rightarrow & \phi_{\alpha}\theta\phi_{\alpha}^{-1}(f_{\beta,\alpha}(s)) = f_{\beta,\alpha}\theta^{\phi}(s) \\ \Rightarrow & \theta^{\phi}(f_{\beta,\alpha}(s)) = f_{\beta,\alpha}\theta^{\phi}(s). \end{aligned}$$

Hence for all $s \in S_{\beta}$ we have $\theta^{\phi} f_{\beta,\alpha}(s) = f_{\beta,\alpha} \theta^{\phi}(s)$.

It is clear that θ^{ϕ} is bijective. Now we show that θ^{ϕ} is a homomorphism. For this, we have the following cases. **Case(i).** If $s, t \in S_{\alpha}$ or S_{β} , then we have

$$\psi^{\phi}(st) = \phi_{\alpha}\theta\phi_{\alpha}^{-1}(st)$$
$$= \phi_{\alpha}\theta\phi_{\alpha}^{-1}(s)\phi_{\alpha}\theta\phi_{\alpha}^{-1}(t)$$
$$= \theta^{\phi}(s)\theta^{\phi}(t).$$

Case(ii). If $s \in S_{\alpha}$ and $t \in S_{\beta}$, then we have

$$\begin{aligned} \theta^{\phi}(st) &= \theta^{\phi}(f_{\alpha,\alpha}(s)f_{\beta,\alpha}(t)) \\ &= \theta^{\phi}(sf_{\beta,\alpha}(t)) \\ &= \theta^{\phi}(ss_{\alpha}) \quad \text{(where } s_{\alpha} = f_{\beta,\alpha}(t)) \\ &= \phi_{\alpha}\theta\phi_{\alpha}^{-1}(ss_{\alpha}) \\ &= \phi_{\alpha}\theta\phi_{\alpha}^{-1}(s)\phi_{\alpha}\theta\phi_{\alpha}^{-1}(s_{\alpha}) \\ &= \theta^{\phi}(s)\theta^{\phi}(f_{\beta,\alpha}(t)) \\ &= \theta^{\phi}(s)f_{\beta,\alpha}\theta^{\phi}(t) \quad \text{(by equation (3))} \\ &= \theta^{\phi}(s)\theta^{\phi}(t). \end{aligned}$$

Hence we have $\theta^{\phi} \in \operatorname{Aut}(S)$ and every automorphism of S can be constructed in this way. \Box

The next lemma helps us to prove the above theorem for arbitrary semilattices.

Lemma 2.6. Let $S = (\Lambda, \{S_{\alpha}\}_{\alpha \in \Lambda}, \{f_{\alpha,\beta}\}_{\alpha \geq \beta})$ be strong semilattices of π -groups with all the linking homomorphisms bijective, then for any $\lambda \in \Lambda$, we have $S \cong \Lambda \times S_{\lambda} (\cong \Lambda \times \mathbb{G})$.

Proof . Fix $\lambda \in \Lambda$, then for each $\alpha \in \Lambda$ we have an isomorphism

$$\sigma_{\alpha} = f_{\lambda,\lambda\alpha}^{-1} f_{\alpha,\lambda\alpha} : S_{\alpha} \to S_{\lambda}$$

Now define a map $\chi: S \to \Lambda \times S_{\lambda}$ by $\chi(s) = (\alpha, \sigma_{\alpha}(s))$ if $s \in S_{\alpha}$. We show χ is an isomorphism. Let $s_1, s_2 \in S$. If $s_1 = s_2$, then there exists $\alpha \in \Lambda$ such that $s_1, s_2 \in S_{\alpha}$. Since $\sigma_{\alpha}: S_{\alpha} \to S_{\lambda}$ is an isomorphism, therefore we have

$$s_1 = s_2$$

$$\Leftrightarrow \ \sigma_{\alpha}(s_1) = \sigma_{\alpha}(s_2)$$

$$\Leftrightarrow \ (\alpha, \sigma_{\alpha}(s_1) = (\alpha, \sigma_{\alpha}(s_2))$$

That is, χ is well defined and injective. Now for any $(\alpha, t) \in \Lambda \times S_{\lambda}$, there exists some $s' \in S_{\alpha}$ such that $t = \sigma_{\alpha}(s')$ as σ_{α} is surjective, therefore we have $(\alpha, t) = (\alpha, \sigma_{\alpha}(s')) = \chi(s')$, that is, χ is surjective.

Now for any $s, t \in S$ then $s \in S_{\alpha}$ and $t \in S_{\beta}$ for some $\alpha, \beta \in \Lambda$. If $\alpha = \beta$, then there is nothing to prove. Now suppose $\alpha \neq \beta$, we have

$$\begin{split} \chi(st) &= (\alpha\beta, \sigma_{\alpha\beta}(st)) \\ &= (\alpha\beta, \sigma_{\alpha}(s)\sigma_{\beta}(t)) \quad (\text{as all the linking homomorphisms are bijective}) \\ &= (\alpha, \sigma_{\alpha}(s))(\beta, \sigma_{\beta}(t)) \\ &= \chi(s)\chi(t). \end{split}$$

Therefore χ is an isomorphism. \Box

Corollary 2.7. Let $S = (\Lambda, \{S_{\alpha}\}_{\alpha \in \Lambda}, \{f_{\alpha,\beta}\}_{\alpha \geq \beta})$ be strong semilattices of π -groups with all the linking homomorphisms bijective, then every automorphism of S_{α} for some $\alpha \in \Lambda$ gives rise to an automorphism of S.

Proof . The proof follows from Lemma 2.6 and Theorem 2.5. \Box

Acknowledgements

The authors thank the anonymous editor and reviewers whose comments and suggestions helped to improve the original version of this manuscript.

References

- D.J. Mir, A.H. Shah and S.A. Ahanger, On automorphisms of monotone transformation posemigroups, Asian-Eur. J. Math. 15 (2022), no. 2, 2250032.
- [2] J.M. Howie, Fundamentals of semigroup theory, volume 12 of London Mathematical Society Monographs, New series, The Clarendon Press, Oxford University Press, New York, Oxford science Publications, 1995.
- [3] J.D.P. Meldrum, Les demigroupes d'endomorphismes, Rend. Sci. Mat. Appl. A 125 (1991), 113-128.
- [4] J. Zhang, Y. Yang and R. Shen, The srong semilattices of π -groups, Eur. J. Pure Appl. Math. 3 (2018), 589–597.
- [5] M. Samman and J.D.P. Meldrum, On endomorphisms of semilattices of groups, Algebra Coll. 12 (2005), 93–100.
- [6] S. Bogdanovic, Semigroups with a system of subsemigroups, Novi Sad University press, Novi Sad, 1985.