Int. J. Nonlinear Anal. Appl. 13 (2022) 2, 379–386 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2020.22106.2327

The preimage of $A_{\infty}(Q_0)$ for the local Hardy-Littlewood maximal operator

Alvaro Corvalàn

Instituto del Desarrollo Humano, Universidad Nacional de General Sarmiento, Facultad de Ingenieriacuteía y Ciencias Agrarias, Pontificia Universidad Catoacutelica, Argentina

(Communicated by Madjid Eshaghi Gordji)

Abstract

We describe here all those weight functions u such that $Mu \in A_{\infty}(Q)$ for M the local Hardy-Littlewood maximal operator restricted to a cube $Q \subset \mathbb{R}^n$. In a recent paper it is shown that for the maximal operator in \mathbb{R}^n , $Mu \in A_{\infty}$ implies that $Mu \in A_1$; here we see that the same is true for the local M but this imposes a stronger condition for weights in Q, that is, for M restricted to a finite cube $Mu \in A_{\infty}$ if and only if $u \in A_{\infty}$. This differs from the case in \mathbb{R}^n where there are weights u not belonging to A_{∞} such that Mu is in A_{∞} . As an application we get a new shorter proof of a result of I. Wik. We also give a characterization for those weights in terms the K-functional of Peetre.

Keywords: Maximal Operators, A_{∞} classes, Weigths, Rearrangements 2020 MSC: Primary 42B25

1 Introduction

The goal of this work is to characterize the weights u on a cube $Q_0 \subset \mathbb{R}^n$ (Let's point out that along this work the cubes have their sides parallel the coordinate axes, and a weight is a positive measurable function in a cube). such that Mu are in $A_{\infty}(Q_0) = \bigcup_{p=1}^{\infty} A_p(Q_0)$ where $A_p(Q_0)$ are the Muckenhoupt classes of weights for M the local maximal operators of Hardy-Littlewood associated with a fixed cube Q_0 , that is:

$$Mf(x) = \sup_{x \in Q \subset Q_0} \frac{1}{|Q|} \int_Q |f(z)| dz$$

To our knowledge, there are no previous works characterizing the weights in the preimage of A_{∞} for the local maximal operator M.

We will show that as in the case for M in the whole \mathbb{R}^n , if $Mu \in A_{\infty}(Q_0)$ then, $Mu \in A_1(Q_0)$ (see 5 for \mathbb{R}^n). Then, following a result from 2 we have that weights u satisfying that $Mu \in A_{\infty}(Q_0)$ (and a fortiori $Mu \in A_1(Q_0)$) can be characterized by means of an inequality for Peetre's K – functional. Thus, this inequality ensures that u must satisfy a reverse Hölder condition, RH_p , for some p > 1 but this implies that u itself belongs to $A_{\infty}(Q_0)$. This contrasts with the \mathbb{R}^n case, where there are weights not belonging to A_{∞} but such that $Mu \in A_{\infty}$ -for instance weak- A_{∞} weights-.

Email address: acorvala@campus.ungs.edu.ar (Alvaro Corvalàn)

Received: October 2020 Accepted: December 2020

As an application we give a new proof of an interesting result: In 12 I. Wik proved that if $u \in A_p(Q_0)$ then $u^* \in A_p([0, |Q_0|])$, being u^* the non-increasing rearrangement of u. Although it is not mentioned in 12, an immediate consequence of this is the fact that equimeasurable A_{∞} weight functions supported on finite cubes included in \mathbb{R}^n , even for different n, belong to the same A_p classes. The proof we give here is much shorter; the original requires several previous lemmas, including one on coverings subsumed here in the Herz-Stein equivalence.

So the main results of this work are the following:

Proposition 1.1. Let $Q_0 \subset \mathbb{R}^n$ and u a weight $Mu \in A_1(Q_0)$ if and only $Mu \in A_\infty(Q_0)$.

Theorem 1.2. A weight u satisfies $Mu \in A_{\infty}(Q_0)$ if and only if for some C > 0, s > 1 and for any $Q \subset Q_0$ and

$$\left(\frac{1}{t}K\left(t, u^{s}, L^{1}, L^{\infty}\right)\right)^{\frac{1}{s}} \leq C \cdot \frac{1}{t}K\left(t, u, L^{1}, L^{\infty}\right)$$

$$(1.1)$$

for 0 < t < |Q|, where L^1 and L^{∞} means $L^1(Q)$ and $L^{\infty}(Q)$.

And finally, because it will be seen that the condition

$$\left(\frac{1}{t}K\left(t, u^{s}, L^{1}, L^{\infty}\right)\right)^{\frac{1}{s}} \leq C \cdot \frac{1}{t}K\left(t, u, L^{1}, L^{\infty}\right)$$

$$(1.2)$$

for 0 < t < |Q| implies that $u \in A_{\infty}(Q_0)$, we have:

Theorem 1.3. Let u a weight on a cube Q_0 , the following statements are equivalent:

$$\begin{split} &\text{i) } u \in A_{\infty}\left(Q_{0}\right) \\ &\text{ii) } u \in \bigcup_{r > 1} RH_{r}\left(Q_{0}\right) \\ &\text{iii) } \left(Mu^{s}\right)^{\frac{1}{s}}\left(x\right) \leq C.Mu\left(x\right) \text{ for some } s > 1, C > 0 \text{ and } a.e. \ x \in Q_{0} \\ &\text{iv) } Mu \in A_{1}\left(Q_{0}\right) \\ &\text{v) } Mu \in A_{\infty}\left(Q_{0}\right) \\ &\text{vi) } \exists C > 0, s > 1: \left(\frac{1}{t}K\left(t, u^{s}, L^{1}, L^{\infty}\right)\right)^{\frac{1}{s}} \leq C.\frac{1}{t}K\left(t, u, L^{1}, L^{\infty}\right) \text{ for } 0 < t < |Q|, \ \forall Q \subset Q_{0}. \end{split}$$

Theorem 1.4. (I. Wik) Let $u \in A_p(Q_0)$ for a finite cube $Q_0 \subset \mathbb{R}^n$. Then $u^* \in A_p([0, |Q_0|])$ for u^* the non-increasing rearrangement of u.

2 Definitions, lemmas and some of the proofs

The definition of $A_p(Q_0)$ and $RH_p(Q_0)$ classes is analogous to the definition of A_p and RH_p classes in \mathbb{R}^n , but requiring that the cubes were included in Q_0 . To lighten the notation, from now on, if there is no ambiguity we will write A_p , A_∞ , RH_p instead of $A_p(Q_0)$, $A_\infty(Q_0)$ and $RH_p(Q_0)$.

A weight w is a non-negative locally integrable function. A weight $w \in A_p$ class for 1 if and only if

$$[w]_{A_p} := \sup_{Q \subset Q_0} \left(\frac{1}{|Q|} \int_Q w \right) \left(\frac{1}{|Q|} \int_Q w^{-\frac{1}{p-1}} \right)^{p-1} < +\infty$$

A weight $w \in A_1$ if and only if

 $Mw\left(x\right)\leq Cw\left(x\right) \ a.e. \ x\in Q_{0}$

and $[w]_{A_1}$ is the minimal constant C such that this inequality occurs.

Of course we will denote $A_{\infty} = \bigcup_{p < \infty} A_p$ and in this section A_p classes and $[A_p]$ constants refers to the ones for the local maximal Hardy-Littlewood operator for Q_0 .

We also define the reverse Hölder classes: $w \in RH_r$ for r > 1 if and only if w fulfills a reverse Hölder inequality with exponent r for each $Q \subset Q_0 : \left(\frac{1}{|Q|} \int_Q w^r\right)^{\frac{1}{r}} \leq C \cdot \frac{1}{|Q|} \int_Q w$ with C independent from Q. It is well known (cf 6) that $A_{\infty} = \bigcup_{r>1} RH_r$.

As we have mentioned in the introduction we can reduce the problem of describing the weights whose image is in A_{∞} to those whose images are in A_1 ; actually $Mu \in A_{\infty} \iff Mu \in A_1$ it is true both for the local and for the usual maximal operator of Hardy-Littlewood (see 5 for the usual, non-local, case); the proof for the non-local operator still works if we show that $(Mu)^{\delta}$ is in A_1 for $0 \le \delta < 1$ and M the local maximal operator respect to Q_0 . For the usual maximal operator of Hardy-Littlewood this is the first statement of the characterization of Coifman and Rochberg for the A_1 weights. The analogous result is true for the local operator, moreover we have:

Lemma 2.1. Let Q_0 any domain in \mathbb{R}^n and $Mf(x) = \sup_{x \in Q \subset Q_0} \frac{1}{|Q|} \int_Q |f(z)| dz$

(1) Let $f \in L^1(Q_0)$ be such that $Mf(x) < \infty$ a.e. and $0 \le \delta < 1$, then $w(x) = (Mf(x))^{\delta}$ is in A_1 . Also the A_1 constant depends only on δ .

(2) Conversely, if $w \in A_1$ then there are $f \in L^1(Q_0)$ and k(x) with k and k^{-1} both belonging to L^{∞} such that $w(x) = k(x) (Mf(x))^{\delta}$.

The result is probably part of the folklore of the subject but we didn't see the result explicity written so we give the proof:

Proof. For the first statement we can rely in the corresponding result for \mathbb{R}^n . Then, let's write $M_{\mathbb{R}^n}$ for the usual Hardy-Littlewood operator in \mathbb{R}^n and we keep M for the local maximal operator respect to Q_0 . Also we extend f being null outside Q_0 , and thus, if $x \in Q_0$, then $M_{\mathbb{R}^n}(f)(x) \leq M(f \cdot \chi_{Q_0})(x) = Mf(x)$. Therefore

$$M\left(\left(Mf\right)^{\delta}\right)(x) \le M_{\mathbb{R}^{n}}\left(\left(Mf\right)^{\delta}\right)(x) = M_{\mathbb{R}^{n}}\left(\left(Mf \cdot \chi_{Q_{0}}\right)^{\delta}\right)(x)$$
$$\le C \cdot \left(Mf \cdot \chi_{Q_{0}}\right)^{\delta}(x) = C \cdot \left(Mf(x)\right)^{\delta}$$

where the second inequality follows from the corresponding theorem for the usual case.

And then $(Mf(x))^{\delta} \in A_1$. The dependence of the constant only on δ is inherited for the usual case.

For the proof of (2) we can observe that for any cube $Q_1 \subset Q_0$ the local operator respect to Q_1 : $M_{Q_1}f(x) = \sup_{x \in Q \subset Q_1} \frac{1}{|Q|} \int_Q |f(z)| dz$ satisfies $M_{Q_1}w \leq Mw \leq cw$ and then $M_{Q_1}(M_{Q_1}w) \leq cM_{Q_1}w$ and this condition for local M implies a reverse Hölder inequality for w in Q_1 (see for instance 2 sections 3 and 4 for two different proofs) with r and C independent from the cube Q_1 :

$$\left(\frac{1}{|Q_1|} \int_{Q_1} w^r\right)^{\frac{1}{r}} \le C \cdot \frac{1}{|Q_1|} \int_{Q_1} w$$

and then Hölder inequality:

$$\frac{1}{|Q_1|} \int_{Q_1} w \le \left(\frac{1}{|Q_1|} \int_{Q_1} w^r\right)^{\frac{1}{r}} \le C \cdot \frac{1}{|Q_1|} \int_{Q_1} w$$

and taking suprema for $Q_1 \subset Q$ and using that *a.e.* in Q is $w \leq Mw \leq cw$ we have:

$$w \le Mw \le \left(M\left(w^{r}\right)\right)^{\frac{1}{r}} \le C.Mw \le cCw$$

and then for $f = w^r$ and $\delta = \frac{1}{r} \in (0, 1)$ we have for *a.e.* $x \in Q_0$:

$$1 \le \frac{\left(M\left(f\right)\right)^{\delta}\left(x\right)}{w\left(x\right)} \le cC$$

so if $k(x) = \frac{w(x)}{(M(f))^{\delta}(x)}$ we have that $k \in L^{\infty}(Q_0)$ and $k^{-1} \in L^{\infty}(Q_0)$ and $w(x) = k(x) (Mf(x))^{\delta}$ as we wished to prove. \Box

As we mentioned before, using this local version of the theorem, we can obtain for the local operator M the proposition that follows below. The analogous result for $M_{\mathbb{R}^n}$ can be found in 5. The proof for local M goes in the

same way once it was established the statement of the previous lemma with the Coifman-Rochberg characterization for $A_1(Q_0)$; but we include it here for completeness:

Proposition 2.2. If u is any weight, $Mu \in A_{\infty} \iff Mu \in A_1$

Proof. The implication $Mu \in A_1 \implies Mu \in A_\infty$ is obvious because $A_1 \subset A_\infty$. So we need only to prove that $Mu \in A_\infty \implies Mu \in A_1$.

If $Mu \in A_{\infty} = \bigcup_{p < \infty} A_p$, then $Mu \in A_p$ for some $p \ge 1$. If p = 1 the result is ready. Let p > 1. Because of the

latter lemma we have that $(Mu)^{\delta} \in A_1$ for any δ with $0 \leq \delta < 1$ and any u locally integrable. We will see that if $Mu \in A_p$ actually we can extend δ to be 1, that is: $Mu \in A_1$.

We will use the following result: For a measure space (Ω, μ) with measure $\mu(\Omega) = 1$ and $\left(\int_{\Omega} |f|^r d\mu\right)^{\frac{1}{r}} < \infty$ for some r > 0, we have that

$$\lim_{r \to 0^+} \left(\int_{\Omega} \left| f \right|^r d\mu \right)^{\frac{1}{r}} = \exp\left(\int_{\Omega} \log\left(\left| f \right| \right) d\mu \right)$$

(see, for instance, 11, ej 5 d) Chap 3).

Let's remark that using that $\mu(\Omega) = 1$ and Hölder Inequality we obtain $\left(\int_{\Omega} |f|^{r_1} d\mu\right)^{\frac{1}{r_1}} \ge \left(\int_{\Omega} |f|^{r_2} d\mu\right)^{\frac{1}{r_2}}$ if $r_1 \ge r_2$. So for r > 0 we have that

$$\left(\int_{\Omega} \left|f\right|^{r} d\mu\right)^{\frac{1}{r}} \ge \exp\left(\int_{\Omega} \log\left(\left|f\right|\right) d\mu\right) = \lim_{r \to 0^{+}} \left(\int_{\Omega} \left|f\right|^{r} d\mu\right)^{\frac{1}{r}}$$

Now for q > p, and using that

$$\sup_{Q} \frac{Mu(Q)}{|Q|} \left(\frac{1}{|Q|} \int_{Q} Mu(x)^{-\frac{1}{q-1}} dx\right)^{q-1} = [Mu]_{A_q} \le [Mu]_{A_p}$$

, we obtain that for any cube $Q \subset Q_0$:

$$\frac{Mu(Q)}{|Q|} \left(\frac{1}{|Q|} \int_{Q} Mu(x)^{-\frac{1}{q-1}} dx\right)^{q-1} \le [Mu]_{A_{p}} < \infty$$

If q tends to infinity then $\frac{1}{q-1}$ tends to 0^+ , so taking $r = \frac{1}{q-1}$ and applying the mentioned result for $f = Mu^{-1}$, $\Omega = Q$ and $d\mu = \frac{dx}{|Q|}$, we have

$$\lim_{q \to +\infty} \left(\frac{1}{|Q|} \int_Q Mu(x)^{-\frac{1}{q-1}} dx \right)^{q-1} = \exp\left(\int_Q \log\left(Mu(x)^{-1}\right) dx \right)$$
$$= \exp\left(\int_Q -\log\left(Mu(x)\right) dx \right) = \frac{1}{\exp\left(\int_Q \log\left(Mu(x)\right) dx \right)}$$

Taking limit in $\frac{Mu(Q)}{|Q|} \left(\frac{1}{|Q|} \int_Q Mu(x)^{-\frac{1}{q-1}} dx\right)^{q-1} \leq [Mu]_{A_p}$ we have that

$$\frac{Mu(Q)}{|Q|} \frac{1}{\exp\left(\int_Q \log\left(Mu\left(x\right)\right) dx\right)} \le [Mu]_{A_p}$$

$$\frac{Mu(Q)}{|Q|} \le [Mu]_{A_p} \cdot \exp\left(\int_Q \log\left(Mu\left(x\right)\right) dx\right)$$

, so

Also, applying the observation for f = Mu we get for any r > 0 that

$$\left(\frac{1}{|Q|}\int_{Q} (Mu)^{r} dx\right)^{\frac{1}{r}} \ge \exp\left(\int_{Q} \log\left(Mu\left(x\right)\right) dx\right)$$

Thus

$$\frac{Mu(Q)}{|Q|} \le [Mu]_{A_p} \cdot \exp\left(\int_Q \log\left(Mu\left(x\right)\right) dx\right) \le [Mu]_{A_p} \left(\frac{1}{|Q|} \int_Q |Mu|^r dx\right)^{\frac{1}{r}}$$

, and then

$$\frac{Mu(Q)}{|Q|} \le [Mu]_{A_p} \left(\frac{1}{|Q|} \int_Q |Mu|^r \, dx\right)^{\frac{1}{r}}$$

We take $r = \delta$ with $0 \le \delta < 1$ and we use that $(Mu)^r = (Mu)^{\delta} \in A_1$; then

$$\frac{1}{Q|} \int_{Q} |Mu|^{r} dx \leq [(Mu)^{r}]_{A_{1}} \cdot (Mu(x))^{r}$$

a.e for every $x \in Q \subset Q_0$.

So we have a.e for $x \in Q$

$$\frac{Mu(Q)}{|Q|} \le [Mu]_{A_p} \left(\frac{1}{|Q|} \int_Q |Mu|^r \, dx\right)^{\frac{1}{r}}$$
$$\le [Mu]_{A_p} \cdot \left([(Mu)^r]_{A_1} \cdot (Mu(x))^r\right)^{\frac{1}{r}}$$
$$= [Mu]_{A_p} \cdot \left([(Mu)^r]_{A_1}\right)^{\frac{1}{r}} \cdot (Mu(x))$$

Taking $C = [Mu]_{A_p} \cdot ([(Mu)^r]_{A_1})^{\frac{1}{r}}$ independent of Q, for every Q we obtain that

$$\frac{Mu(Q)}{|Q|} \le C \cdot Mu(x)$$

a.e for $x \in Q$.

Then for almost every $x \in Q_0$ we have that

$$M(Mu)(x) = \sup_{Q_0 \supset Q \ni x} \frac{Mu(Q)}{|Q|} \le C \cdot Mu(x)$$

, that is

$$M(Mu)(x) \le C \cdot Mu(x)$$

and then we obtain that $Mu \in A_1(Q_0)$. \Box

A result similar to the next lemma for the operator $M_{\mathbb{R}^n}$ is due to Neugebauer (see 8). For the local maximal operator M is essentially proven along 2; for completeness we isolate here their argument:

Lemma 2.3. Let M the local maximal operator of Hardy-Littlewood associated with Q_0 . For a weight u it holds that $Mu \in A_1$ if and only if there exists s > 1 and $C_0 > 0$ such that $(Mu^s)^{\frac{1}{s}}(x) \leq C_0.Mu(x)$

Proof. The non trivial implication: If $Mu \in A_1$ then $(Mu^s)^{\frac{1}{s}}(x) \leq C_0.Mu(x)$ was already mentioned in the second part of the previous theorem, coming from the reverse Hölder inequalities.

The other implication is consequence of the first part of the theorem: If $(Mu^s)^{\frac{1}{s}}(x) \leq C_0.Mu(x)$, we name $u^s = f$ and $\delta = \frac{1}{s}$ and because $(Mu^s)^{\frac{1}{s}} = (Mf)^{\delta} \in A_1$ we have that $a.e \ x \in Q_0$

$$M\left(Mu\right)\left(x
ight)\leq M\left(\left(Mu^{s}
ight)^{rac{1}{s}}
ight)\left(x
ight)\leq$$

$$[(Mu^{s})^{\frac{1}{s}}]_{A_{1}}(Mu^{s})^{\frac{1}{s}}(x) \leq [(Mu^{s})^{\frac{1}{s}}]_{A_{1}}C_{0}.Mu(x)$$

so for $C = [(Mu^s)^{\frac{1}{s}}]_{A_1}C_0$ we have $M(Mu)(x) \leq CMu(x)$ a.e. $x \in Q_0$. That is $Mu \in A_1$. \Box

Now, putting together the last lemma and the proposition we have the corresponding criterion for the local M operator:

Criterion 2.4. Let u a weight function in Q_0 , $Mu \in A_{\infty}$ if and only if there exists s > 1 and $C_0 > 0$ such that $(Mu^s)^{\frac{1}{s}}(x) \leq C_0.Mu(x)$.

Binding the former arguments for M the maximal operator of Hardy-Littlewood associated with Q_0 and the corresponding A_p classes we have already shown the following implications of the statement of Theorem 3:

$$i) \Leftrightarrow ii) \Rightarrow iii) \Leftrightarrow iv) \Leftrightarrow v)$$

The first equivalence i $(\Rightarrow ii)$ is known; the second implication: ii $(\Rightarrow iii)$ is obvious taking suprema; the equivalence iii $(\Rightarrow iv)$ is the Criterion mentioned above; and the non trivial implication of iv $(\Rightarrow v)$ follows from Proposition 1.

To end the proof of Theorem 3 we can observe that ii) gives iii) for any $Q \subset Q_0$ with the same RH_r constant and then we follow an argument from 2 (cf. 2 section 3) to see that for the local M operator if $(Mu^s)(x) \leq C.(Mu(x))^s$ for some s > 1, C > 0, then there is C > 0: for every $Q \subset Q_0$ and 0 < t < |Q| it occurs that

$$\left(\frac{1}{t}K\left(t, u^{s}, L^{1}, L^{\infty}\right)\right)^{\frac{1}{s}} \leq C \cdot \frac{1}{t}K\left(t, u, L^{1}, L^{\infty}\right)$$

; that is $iii) \Rightarrow vi$, and on the other hand that vi) can be easily rewritten to obtain ii) and then $vi) \Rightarrow ii$) closing the chain of deductions and proving Theorem 3. In the last section we give some definitions related to Peetre's K – functional and we sketch the proofs from 2 of the remaining implications of Theorem 3.

Let Â's remark again the difference with the global case, where the pointwise condition $(Mu^s)^{\frac{1}{s}}(x) \leq C_0.Mu(x)$ is strictly weaker than belonging to $\bigcup_{r>1} RH_r$ as we can see taking any non-doubling $weak - A_{\infty}$ weight u. That is, if u satisfies $\left(\frac{1}{|Q|}\int_Q u^s\right)^{\frac{1}{s}} \leq C \cdot \frac{1}{|2Q|}\int_{2Q} u$ for every $Q \subset \mathbb{R}^n$ for some C > 0 and s > 1 and then $(Mu^s)^{\frac{1}{s}} \leq C.Mu$ and thus $Mu \in A_{\infty}$ but being u non-doubling $u \notin A_p$ for any $p < \infty$, so $u \notin A_{\infty}$ and $u \notin RH_r$ for any r > 1.

3 Some more definitions and the missing implications

The first proof from 2 of the fact that $u \in \bigcup_{r>1} RH_r$ whenever $Mu \in A_1$ is based on interpolation theory, the K functionals and Holmstedt formula. We begin introducing some necessary definitions and recalling some known results:

A compatible couple of Banach spaces is a pair of two Banach spaces A_0 and A_1 that are continuously embedded in certain Hausdorff topological vector space Z. Clearly $A_0 \cap A_1$ and $A_0 + A_1$ with the norms $||x||_{A_0 \cap A_1} = \max(||x||_{A_0}, ||x||_{A_1})$ and $||x||_{A_0+A_1} = \inf(||x_0||_{A_0} + ||x_1||_{A_1} : x_i \in A_i)$ are also subspaces of Z and the obvious injections of $A_0 \cap A_1$ in A_i and of A_i in $A_0 + A_1$ are continuous.

For (A_0, A_1) a compatible couple of Banach spaces, $A_0 \supset A_1$, for $f \in A_0$ and t > 0 the K-functional is defined by

$$K(t, f, A_0, A_1) = \inf_{f=f_0+f_1, f_i \in A_i} \{ \|f_0\|_{A_0} + t \, \|f_1\|_{A_1} \}$$

If (X, μ) is a totally σ -finite measure space and $A_0 = L^1$, $A_1 = L^{\infty}$, respectively the μ -integrable and μ -essentially bounded real functions, they are continously embedded in the space Z of real μ -measurable functions. It is well known (see 4) that for any $f \in L^1 + L^{\infty}$.

$$K(t, f, L^{1}, L^{\infty}) = \int_{0}^{t} f^{*}(z) dz = t\left(\frac{1}{t} \int_{0}^{t} f^{*}(z) dz\right) = tf^{**}(t)$$

where $f^* = f^*_{\mu}$ denotes the non-increasing rearrangement of f respect to μ and $f^{**}(t) = \frac{1}{t} \int_0^t f^*(z) dz$ the action of the Hardy operator on f^* .

Another well known result (see 3) for $A_0 = L^p$ and $A_1 = L^\infty$ with 1 is that

$$K\left(t, f, L^{p}, L^{\infty}\right) \approx \left(\int_{0}^{t^{p}} f^{*}\left(z\right)^{p} dz\right)^{\frac{1}{2}}$$

Now if u satisfies *iii*), that is $(Mu^s)(x) \leq C.(Mu(x))^s$ for some s > 1, C > 0 and taking rearrangements in the last inequality one has

$$((Mu^s)^*(t))^{\frac{1}{s}} \le C. (Mu)^*(t)$$

for $0 < t < |Q_0|$. Applying the equivalence, due to Herz, Stein (cf. Bennett-Sharpley 4, theorem 3.8, see also 1), and valid for every locally integrable f:

$$\left(Mf\right)^{*}\left(t\right) \approx f^{**}\left(t\right)$$

to the inequality $(Mu^s)^*(t) \leq C. ((Mu)^*(t))^s$ one obtains

$$\left(\frac{1}{t}\int_{0}^{t}u^{*}(z)^{s} dz\right)^{\frac{1}{s}} \leq C \cdot \frac{1}{t}\int_{0}^{t}u^{*}(z) dz$$

that in terms of the mentioned equivalences for the K-functionals is written like this:

$$\frac{1}{t^{\frac{1}{s}}}K\left(t^{\frac{1}{s}}, u, L^{s}, L^{\infty}\right) \le C \cdot \frac{1}{t}K\left(t, u, L^{1}, L^{\infty}\right)$$

or equivalently, using that $K\left(t^{\frac{1}{s}}, u, L^{s}, L^{\infty}\right) \approx \left(K\left(t, u^{s}, L^{1}, L^{\infty}\right)\right)^{\frac{1}{s}}$ we can also write

$$\left(\frac{1}{t}K\left(t, u^{s}, L^{1}, L^{\infty}\right)\right)^{\frac{1}{s}} \leq C \cdot \frac{1}{t}K\left(t, u, L^{1}, L^{\infty}\right)$$

for $0 < t < |Q_0|$. So we have obtain that $iii) \Rightarrow vi$.

If one translates back the last inequality obtaining $\left(\frac{1}{t}\int_{0}^{t}u^{*}(z)^{s}dz\right)^{\frac{1}{s}} \leq C \cdot \frac{1}{t}\int_{0}^{t}u^{*}(z)dz$, then for $t = |Q_{0}|$ it results

$$\left(\frac{1}{|Q_0|} \int_0^{|Q_0|} u^*(z)^s \, dz\right)^{\frac{1}{s}} \le C \cdot \frac{1}{|Q_0|} \int_0^{|Q_0|} u^*(z) \, dz$$

and then

$$\left(\frac{1}{|Q_0|} \int_{Q_0} u(x)^s \, dx\right)^{\frac{1}{s}} \le C \cdot \frac{1}{|Q_0|} \int_{Q_0} u(x) \, dx$$

In 2 is observed that the argument can be localized for any $Q \subset Q_0$ because $M(Mu) \approx M_{L(\log L)}$ (see 10) where

$$M_{L(\log L)} = \sup_{Q \subset Q_0, x \in Q} \|u\|_{L(\log L)\left(Q, \frac{dx}{|Q|}\right)}$$

with $||u||_{L(\log L)(Q, \frac{dx}{|Q|})}$ the Luxemburg norm respect to the Young function $\Phi(t) = t(1 + \log^+ t)$, being $\log^+ t = \max(\log t, 0)$.

That is

$$\|u\|_{L(\log L)\left(Q,\frac{dx}{|Q|}\right)} = \inf\{\lambda > 0: \frac{1}{|Q|} \int_{Q} \Phi\left(\frac{u(x)}{\lambda}\right) dx \le 1\}$$

Clearly for any $Q \subset Q_0$ and $M_{L(\log L)}(x) \approx M(Mu)(x) \leq C.Mu(x)$ a.e. $x \in Q_0$ we have an analogous inequality with the same constant a.e. $x \in Q$ and then for the restriction of u to any Q the argument of 2 gives a similar reverse Hölder inequality with the same constant C and exponent s:

$$\left(\frac{1}{|Q|}\int_{Q}u^{s}\right)^{\frac{1}{s}} \leq C.\frac{1}{|Q|}\int_{Q}u^{s}$$

from where one can recover that $(Mu^s)^{\frac{1}{s}}(x) \leq C.Mu(x)$ a.e. $x \in Q_0$. Then we have that $vi \Rightarrow ii$ for the statement of Theorem 3. Now putting together the results of this sections with the implications proven in the previous section we end the proof of the theorem.

4 An application

Now, let's give our proof of Wik's Theorem.

Proof. From our theorem 3 for Q_0 we have that

$$u \in A_{\infty} \iff Mu \in A_{\infty} \iff Mu \in A_1$$

Thus if we take $(Mu)^* : [0, |Q_0|] \longrightarrow \mathbb{R}^+$ the non-increasing rearrangement of Mu in Q_0 , and using that for non-increasing positive functions the Hardy-Littlewood operator M and the Hardy operator P with $Pf(t) = \frac{1}{t} \int_0^t |f(s)| ds$ are the same one, for $t \in [0, |Q_0|]$, the Herz-Stein equivalence $(Mf)^*(t) \approx f^{**}(t)$, and the above mentioned fact that if $u \in A_\infty$ then $Mu \in A_1$ we have that for some c > 0:

$$M((Mu)^{*})(t) = P((Mu)^{*})(t) = (Mu)^{**}(t)$$

$$\approx (M(Mu))^{*}(t) \le (cMu)^{*}t = c(Mu)^{*}(t)$$

Thus $(Mu)^* \in A_1$, but from Herz-Stein again and using that for u^* decreasing M is the same as P we get: $(Mu)^* \approx u^{**} = P(u^*) = M(u^*)$, so $M(u^*) \in A_1$. Now using again our theorem 3 for $[0, |Q_0|]$ considered as cube of \mathbb{R} and

for the weight u^* we have that $u^* \in A_{\infty}([0, |Q_0|])$. So far we have that $u^* \in A_q$ for some q > 1, but we we can't ensure yet that q = p as in Wik's result. To obtain this we continue as follows: Because $u \in A_p$ we have that $\sigma = u^{1-p'} \in A_{p'}$ and then aplying he above argument to σ we get that $\sigma^* \in A_{\infty}([0, |Q_0|])$, but $\sigma^* = (u^{1-p'})^* = (u^*)^{1-p'}$. And then we get that $u^* \in A_{\infty}$ and $(u^*)^{1-p'} \in A_{\infty}$, and it is a well known result (see for instance 9, theorem 2.17, chapter IV) that $w \in A_p \iff w \in A_{\infty}$ and $w^{1-p'} \in A_{\infty}$ for any weight w; so we have, at last, that $u^* \in A_p$. \Box

References

- I.U. Asekritova, N. Krugljak, L. Maligranda and L.E. Persson, Distribution and rearrangement estimates of the maximal function and interpolation, Studia Math. 124 (1997), 107–132.
- J. Bastero, M. Milman and F. Ruiz, Reverse Hölder inequalities and interpolation, Function spaces, interpolation spaces, and related topics, Israel Math. Conf. Proc. 13 (1999), 11–23
- [3] J. Bergh and J. Löfström, Interpolation spaces. An introduction, Grundlehren der mathematischen Wissenschaften 223. Berlin-Heidelberg-New York, Springer-Verlag, 1976.
- [4] C. Bennett and R. Sharpley, *Interpolation of Operators*. Pure and Applied Mathematics Series, Academic Press, New York, 1988.
- [5] A. Corvalán, Some characterizations of the preimage of A_{∞} for the Hardy-Littlewood maximal operator and consequences, Real Anal. Exchange 44 (2019), no. 1, 141–166.
- [6] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 15 (1974), 241–250.
- [7] R.R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 (1980), 249–254.
- [8] D. Cruz-Uribe SFO, Piecewise monotonic doubling measures, Rocky Mount. J. Math. 26 (1996), 1–39.
- [9] J. Garcia-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North Holland, New York, 1985.
- [10] C. Pérez, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal. 128 (1995), 163–185.
- [11] W. Rudin, Real and complex analysis, 3rd edition, New York, London, McGraw-Hill, 1987.
- [12] I. Wik, On Muckenhoupt's classes of of weight functions, Studia Math. 94 (1989), 245–255.