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Abstract

This paper is concerned to establish new variants of the well-known Hermite-Hadamard (HH) inequality for 3-times
differentiable functions. Under the utility of these identities, we establish some new inequalities for the class of
functions whose absolute value of the third derivative are MT-convex. The results presented here would provide
generalizations of those given in earlier works. Finally, we present applications of our findings for means of real
numbers and applications for particular functions are pointed out.
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2010 MSC: Primary 26D15;, Secondary 26A51, 26D10

1 Introduction

Many research papers have studied the properties of convex functions that make this concept interesting in mathe-
matical analysis [5, 3].

Definition 1.1. A function g : [a, b] ⊂ R → R is said to be convex if the following inequality holds

g(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y), x, y ∈ [a, b], t ∈ [0, 1].

The use of the convex function to study the integral inequalities have been deeply investigated, especially for the
well-known inequality of Hermite-Hadamard type (HH-type inequality). The HH-type inequalities are one of the most
important type inequalities and have a strong relationship to convex functions. In 1893 Hermite and Hadamard [6]
found independently that for any convex function g : [a, b] → R, the inequality

g

(
a+ b

2

)
≤ 1

b− a

∫ b

a

g(x)dx ≤ g(a) + g(b)

2
, (1.1)

holds.
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The classical inequalities for means can be derived from the HH-type inequality (1.1) for appropriate particular
choices of the function g. The reader is referred to [11, 12, 13, 14, 1] for the generalization, improvement and extension
of the HH-type inequality (1.1).

In recent years, important generalizations have been made in the context of convexity: quasi-convex [8], pseudo-
convex [9], strongly convex [23], strongly (s,m)-convex [19, 20, 22], invex and preinvex [10], approximately convex [7],
and MT-convex [15].

In view of the above indices, We would like to extend the works done in [2] and [16] to establish some modified
HH-type inequalities for the 3-times differentiable MT-convex functions. For this we recall the well-known AM-GM
inequality for two positive real numbers which can be stated as follows: If x, y ∈ R+, then

√
xy ≤ x+ y

2
.

In [24], Tunç and Yidirim defined the so-called MT-convex function as follows

Definition 1.2. [24] A function g : I ⊂ R → R is said to be MT-convex on the interval I if the inequality

g(tx+ (1− t)y) ≤
√
t

2
√
1− t

g(x) +

√
1− t

2
√
t

g(y), (1.2)

holds for all x, y ∈ I and t ∈ (0, 1).

Remark 1.3. In (1.2), if we take t = 1
2 inequality (1.2) reduce to Jensen convex.

Example 1.4. f, g : (1,∞) → R, f(x) = xp, g(x) = (1 + x)p, p ∈ (1, 1
1000 ) are MT-convex functions, but they are

not convex.

Remark 1.5. It is important to note that all of the positive convex functions is also an MT-convex function, but the

reverse is not always true. Since g is MT-convex and t ≤
√
t

2
√
1−t

, (1− t) ≤
√
1−t

2
√
t

it is written

g(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y) ≤
√
t

2
√
1− t

g(x) +

√
1− t

2
√
t

g(y),

this indicates that each positive convex function is a MT-convex function.

In this paper, we discover novel integral identities for three times diferentiable functions. We use these identities to
establish some general inequalities for functions whose third derivatives absolute values are MT-convex. These general
inequalities give us some new estimates for the right-hand side of integrals inequalities of Hermite-Hadamard type.
The main results are framed and justified in Section 2, followed by applications of our results to some special means
and a particular function in Section 3.

2 Main Results

In this section we present new Hermite-Hadamard type inequalities for 3-times differentiable MT-convex functions.
To prove our main results, we need the following lemma by Pshtiwan et al.[16]

Lemma 2.1. [16] Suppose that g : J ⊂ R → R is a differentiable function such that a, b ∈ J with a < b. If
g′′′ ∈ L[a, b], then we have

g

(
a+ b

2

)
− 1

b− a

∫ b

a

g(x)dx+
(b− a)2

24
g′′

(
a+ b

2

)
=

(b− a)3

96

[∫ 1

0

t3g′′′
(
t
a+ b

2
+ (1− t)a

)
dt

+

∫ 1

0

(t− 1)3g′′′
(
tb+ (1− t)

a+ b

2

)
dt

]
.
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Next we establish the first result of this section, for this we assume throughout the paper that g ∈ L[a, b] that the
function g is differential and continuous on [a, b]

Theorem 2.2. Suppose that g : J ⊆ [0,+∞) → R is a differentiable function such that g′′′ ∈ L[a, b], where a, b ∈ J
with a < b. If |g′′′| is MT-convex function on [a, b], then we have∣∣∣∣∣g

(
a+ b

2

)
− 1

b− a

∫ b

a

g(x)dx+
(b− a)2

24
g′′

(
a+ b

2

)∣∣∣∣∣
≤ 5π(b− a)3

24576

[
14

∣∣∣g′′′ (a+ b

2

) ∣∣∣+ |g′′′(a)|+ |g′′′(b)|
]
.

(2.1)

Proof . Making use of Lemma 2.1 and the MT-convexity |g′′′|, we have that∣∣∣∣∣g
(
a+ b

2

)
− 1

b− a

∫ b

a

g(x)dx+
(b− a)2

24
g′′

(
a+ b

2

)∣∣∣∣∣
≤ (b− a)3

96

[∫ 1

0

t3
∣∣∣∣g′′′ (ta+ b

2
+ (1− t)a

)∣∣∣∣ dt
+

∫ 1

0

(t− 1)3
∣∣∣∣g′′′ (tb+ (1− t)

a+ b

2

)∣∣∣∣ dt
]

≤ (b− a)3

96

∫ 1

0

t3
[ √

t

2
√
1− t

∣∣∣g′′′ (a+ b

2

) ∣∣∣+ √
1− t

2
√
t

|g′′′(a)|
]
dt

+
(b− a)3

96

∫ 1

0

(1− t)3
[ √

t

2
√
1− t

|g′′′(b)|+
√
1− t

2
√
t

∣∣∣g′′′ (a+ b

2

) ∣∣∣] dt
≤ (b− a)3

96

[
35π

128

∣∣∣g′′′ (a+ b

2

) ∣∣∣+ 5π

256
|g′′′(a)|+ 5π

256
|g′′′(b)|

]
.

This rearranges to the desired result. □

Corollary 2.3. Let the assumptions of Theorem 2.2 be valid and let

H =

∣∣∣∣∣g
(
a+ b

2

)
− 1

b− a

∫ b

a

g(x)dx+
(b− a)2

24
g′′

(
a+ b

2

)∣∣∣∣∣ .
Then,

(i) if |g′′′| is increasing, then we have

H ≤ 5π(b− a)3

1536
|g′′′(b)|, (2.2)

(ii) if |g′′′| is decreasing, then we have

H ≤ 5π(b− a)3

1536
|g′′′(a)|, (2.3)

(iii) if g′′′
(
a+b
2

)
= 0, then we have

H ≤ 5π(b− a)3

24576

[
|g′′′(a)|+ |g′′′(b)|

]
, (2.4)

(iv) if g′′′(a) = g′′′(b) = 0, then we have

H ≤ 35π(b− a)3

12288

∣∣∣g′′′ (a+ b

2

) ∣∣∣, (2.5)

Theorem 2.4. Suppose that g : J ⊆ [0,+∞) → R is a differentiable function such that g′′′ ∈ L[a, b], where a, b ∈ J
with a < b. If |g′′′|q is MT-convex function on [a, b] and q > 1 with 1

p + 1
q = 1, then we have∣∣∣∣∣g

(
a+ b

2

)
− 1

b− a

∫ b

a

g(x)dx+
(b− a)2

24
g′′

(
a+ b

2

)∣∣∣∣∣ ≤ (b− a)3

96(3p+ 1)
1
p

(π
4

) 1
q

Hq,

where Hq =
(∣∣∣g′′′ (a+b

2

) ∣∣∣q + |g′′′(a)|q
) 1

q

+
(
|g′′′(b)|q +

∣∣∣g′′′ (a+b
2

) ∣∣∣q) 1
q

.
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Proof . Let p > 1. Then from Lemma 2.1 and using the Hölder inequality, we can deduce∣∣∣∣∣g
(
a+ b

2

)
− 1

b− a

∫ b

a

g(x)dx+
(b− a)2

24
g′′

(
a+ b

2

)∣∣∣∣∣
≤ (b− a)3

96

[∫ 1

0

t3
∣∣∣∣g′′′ (ta+ b

2
+ (1− t)a

)∣∣∣∣ dt
+

∫ 1

0

(1− t)3
∣∣∣∣g′′′ (tb+ (1− t)

a+ b

2

)∣∣∣∣ dt
]

≤ (b− a)3

96

(∫ 1

0

t3pdt

) 1
p
(∫ 1

0

∣∣∣∣g′′′ (ta+ b

2
+ (1− t)a

)∣∣∣∣q dt)
1
q

+
(b− a)3

96

(∫ 1

0

(1− t)3pdt

) 1
p
(∫ 1

0

∣∣∣∣g′′′ (tb+ (1− t)
a+ b

2

)∣∣∣∣q dt)
1
q

.

The MT-convexity of |g′′′|q on [a, b] implies that∫ 1

0

∣∣∣∣g′′′ (ta+ b

2
+ (1− t)b

)∣∣∣∣q dt
≤

∫ 1

0

[ √
t

2
√
1− t

∣∣∣g′′′ (a+ b

2

) ∣∣∣q + √
1− t

2
√
t

|g′′′(a)|q
]
dt

=
π

4

∣∣∣g′′′ (a+ b

2

) ∣∣∣q + π

4
|g′′′(a)|q,

and ∫ 1

0

∣∣∣∣g′′′ (tb+ (1− t)
a+ b

2

)∣∣∣∣q dt
≤

∫ 1

0

[ √
t

2
√
1− t

|g′′′ (b) |q +
√
1− t

2
√
t

∣∣∣g′′′ (a+ b

2

) ∣∣∣q] dt
=

π

4
|g′′′(b)|q + π

4

∣∣∣g′′′ (a+ b

2

) ∣∣∣q.
Therefore, we obtain∣∣∣∣∣g

(
a+ b

2

)
− 1

b− a

∫ b

a

g(x)dx+
(b− a)2

24
g′′

(
a+ b

2

)∣∣∣∣∣ ≤ (b− a)3

96(3p+ 1)
1
p

(π
4

) 1
q

Hq,

where we used the identities ∫ 1

0

t3pdt =

∫ 1

0

(1− t)3pdt =
1

3p+ 1
.

Thus, our proof is completely done. □

Corollary 2.5. Let the assumptions of Theorem 2.4 be valid and let

H =

∣∣∣∣∣g
(
a+ b

2

)
− 1

b− a

∫ b

a

g(x)dx+
(b− a)2

24
g′′

(
a+ b

2

)∣∣∣∣∣ .
Then,

(i) if |g′′′| is increasing, then we have

H ≤ (b− a)3

96(3p+ 1)
1
p

(π
2

) 1
q

[∣∣∣∣g′′′ (a+ b

2

)∣∣∣∣+ |g′′′(b)|
]
,
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(ii) if |g′′′| is decreasing, then we have

H ≤ (b− a)3

96(3p+ 1)
1
p

(π
2

) 1
q

[
|g′′′(a)|+

∣∣∣∣g′′′ (a+ b

2

)∣∣∣∣] ,
(iii) if g′′′

(
a+b
2

)
= 0, then we have

H ≤ (b− a)3

96(3p+ 1)
1
p

(π
4

) 1
q
[
|g′′′(a)|+ |g′′′(b)|

]
,

(iv) if g′′′(a) = g′′′(b) = 0, then we have

H ≤ (b− a)3

48(3p+ 1)
1
p

(π
4

) 1
q

∣∣∣∣g′′′ (a+ b

2

)∣∣∣∣ .
Theorem 2.6. Suppose that g : J ⊆ [0,+∞) → R is a differentiable function such that g′′′ ∈ L[a, b], where a, b ∈ J
with a < b. If |g′′′|q is MT-convex function on [a, b] and q ≥ 1 with 1

p + 1
q = 1, then we have∣∣∣∣∣g

(
a+ b

2

)
− 1

b− a

∫ b

a

g(x)dx+
(b− a)2

24
g′′

(
a+ b

2

)∣∣∣∣∣ ≤ (b− a)3

384
Kq,

where Kq =
(

35π
64

∣∣∣g′′′ (a+b
2

) ∣∣∣q + 5π
64 |g

′′′(a)|q
) 1

q

+
(

5π
64 |g

′′′ (b) |q + 35π
64

∣∣∣g′′′ (a+b
2

) ∣∣∣q) 1
q

.

Proof . From Lemma 2.1, properties of modulus, and power mean inequality, we have∣∣∣∣∣g
(
a+ b

2

)
− 1

b− a

∫ b

a

g(x)dx+
(b− a)2

24
g′′

(
a+ b

2

)∣∣∣∣∣
≤ (b− a)3

96

[∫ 1

0

t3
∣∣∣∣g′′′ (ta+ b

2
+ (1− t)a

)∣∣∣∣ dt
+

∫ 1

0

(1− t)3
∣∣∣∣g′′′ (tb+ (1− t)

a+ b

2

)∣∣∣∣ dt
]

≤ (b− a)3

96

(∫ 1

0

t3dt

) 1
p
(∫ 1

0

t3
∣∣∣∣g′′′ (ta+ b

2
+ (1− t)a

)∣∣∣∣q dt)
1
q

+
(b− a)3

96

(∫ 1

0

(1− t)3dt

) 1
p
(∫ 1

0

(1− t)3
∣∣∣∣g′′′ (tb+ (1− t)

a+ b

2

)∣∣∣∣q dt)
1
q

.

Then, by using the MT-convexity of |g′′′|q on [a, b], we have∫ 1

0

t3
∣∣∣∣g′′′ (ta+ b

2
+ (1− t)a

)∣∣∣∣q dt
≤

∫ 1

0

t3
[ √

t

2
√
1− t

∣∣∣g′′′ (a+ b

2

) ∣∣∣q + √
1− t

2
√
t

|g′′′(a)|q
]
dt

=
35π

256

∣∣∣g′′′ (a+ b

2

) ∣∣∣q + 5π

256
|g′′′(a)|q,

and ∫ 1

0

(1− t)3
∣∣∣∣g′′′ (tb+ (1− t)

a+ b

2

)∣∣∣∣q dt
≤

∫ 1

0

(1− t)3
[ √

t

2
√
1− t

|g′′′ (b) |q +
√
1− t

2
√
t

∣∣∣g′′′ (a+ b

2

) ∣∣∣q] dt
=

5π

256
|g′′′ (b) |q + 35π

256

∣∣∣g′′′ (a+ b

2

) ∣∣∣q.
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Therefore, we obtain ∣∣∣∣∣g
(
a+ b

2

)
− 1

b− a

∫ b

a

g(x)dx+
(b− a)2

24
g′′

(
a+ b

2

)∣∣∣∣∣
≤ (b− a)3

96

(
1

4

) 1
p
(
1

4

) 1
q

Kq.

Hence, our proof is completely done. □

Remark 2.7. If q = p
p−1 (p > 1), the constants of Theorem 2.4 are improved, since 1

(3p+1)
1
p
< 1.

Corollary 2.8. Let the assumptions of Theorem 2.4 be valid and let

H =

∣∣∣∣∣g
(
a+ b

2

)
− 1

b− a

∫ b

a

g(x)dx+
(b− a)2

24
g′′

(
a+ b

2

)∣∣∣∣∣ .
Then,

(i) if |g′′′| is increasing, then we have

H ≤ (b− a)3

384

(
5π

8

) 1
q
[∣∣∣∣g′′′ (a+ b

2

)∣∣∣∣+ |g′′′(b)|
]
,

(ii) if |g′′′| is decreasing, then we have

H ≤ (b− a)3

384

(
5π

8

) 1
q
[
|g′′′(a)|+

∣∣∣∣g′′′ (a+ b

2

)∣∣∣∣] ,
(iii) if g′′′

(
a+b
2

)
= 0, then we have

H ≤ (b− a)3

384

(
5π

64

) 1
q [

|g′′′(a)|+ |g′′′ (b)|
]
,

(iv) if g′′′(a) = g′′′(b) = 0, then we have

H ≤ (b− a)3

384

(
35π

64

) 1
q
∣∣∣∣g′′′ (a+ b

2

)∣∣∣∣ .
3 Applications

Thanks to the results that we have obtained in the previous section, we can establish applications for special means
that will allow us to give an example of a particular function. We present these applications below.

3.1 Applications for special means

Consider the special means of positive real numbers a > 0 and b > 0, define by:

� Arithmetic Mean:

A(a, b) =
a+ b

2
.

� Logarithmic mean:

L(a, b) =
b− a

ln |b| − ln |a|
, |a| ≠ |b|, a, b ̸= 0.

� Generalized log-mean:

Lp(a, b) =
[ bp+1 − ap+1

(p+ 1)(b− a)

] 1
p

, p ∈ Z \ {−1, 0}, a ̸= b.
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Remark 3.1. Let p ∈ (0, 1
1000 ) and x > 1. Then, we consider

g(x) =
xp+3

(p+ 1)(p+ 2)(p+ 3)
, g′′′(x) = xp,

therefore g
(
a+b
2

)
= Ap+3(a,b)

(p+1)(p+2)(p+3) . Furthermore, we have

1

b− a

∫ b

a

g(x)dx =
1

(p+ 1)(p+ 2)(p+ 3)

[
bp+4 − ap+4

(p+ 4)(b− a)

]
=

1

(p+ 1)(p+ 2)(p+ 3)
Lp+3
p+3(a, b).

Proposition 3.2. Let p ∈ (0, 1
1000 ) and b > a > 1, then we have∣∣∣∣Ap+3(a, b)− Lp+3

p+3(a, b) +
(b− a)2(p+ 2)(p+ 3)

24
Ap+1(a, b)

∣∣∣∣
≤ 5π(b− a)3(p+ 1)(p+ 2)(p+ 3)

24576× 2p

[
14(a+ b)p + 2p(ap + bp)

]
.

Proof . Since xp is MT-convex for each x > 1 and p ∈ (0, 1
1000 ), so the assertion follows from inequality (2.1) with

g(x) = xp+3

(p+1)(p+2)(p+3) . □

Proposition 3.3. Let a, b ∈ R such that a < b and [a, b] ⊂ (0,+∞), then we have∣∣∣∣A−1(a, b)− L−1(a, b) +
(b− a)2

12
A−3(a, b)

∣∣∣∣ ≤ 5π(b− a)3

256× β4
1

.

Proof . The assertion follows from inequality (2.3) with g(x) = 1
x , x ∈ [a, b], since |g′′′(x)| = 6

x4 is decreasing and
MT-convex. □

3.2 Application to a particular function

We define g : R → R, by g(x) = ex, then we have g′′′(x) = ex is MT-convex.

Applying the inequality (2.2), we can deduce∣∣∣∣(1 + (b− a)2

24

)
e

a+b
2 − 1

b− a

(
eb − ea

)∣∣∣∣ ≤ 5π(b− a)3

1536
eb.

Particularly for a = 0 and b = x, it follows that∣∣∣∣(1 + x2

24

)
e

x
2 − 1

x
(ex − 1)

∣∣∣∣ ≤ 5πx3

1536
ex, (3.1)

and for x = 1, it follows that ∣∣∣∣2524√e− e+ 1

∣∣∣∣ ≤ 5πe

1536
.

For further illustration on the inequality (3.1), we present some plot example in the Figures 1.

4 Conclusion

A version of Hermite-Hadamard inequality via functions whose absolute value of the third derivative are MT-
convex has been acquired successfully. This result combines several versions (new and old) of the Hermite-Hadamard
inequality into a single form. We also established some special media applications that allowed us to give some
examples for a particular function. Employing the method outlined in this paper, we anticipate that some other
inequalities may be reestablished. We hope that the ideas used in this paper may inspire interested readers to explore
some new applications.
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1 +
x
2

24
ⅇ
x

2 -
ⅇx - 1

x

5π x3 ⅇx

1536

2 4 6 8
Eje X

-200

200

400

600

Eje Y

Figure 1: Plot illustration for inequality (3.1).

5 Acknowledgements

Thanks to the Dirección de investigación from Pontificia Universidad Católica del Ecuador for technical support to
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