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Abstract

In the present paper, a novel two-step iterative method, based on real interval arithmetic, is produced. By using
this method, we obtain enclosures of roots of systems of nonlinear equations. Discussion on the convergence analysis
for the produced method is presented. The efficiency, accuracy, and validity of this method are demonstrated by its
application to four implemented examples with INTLAB and by comparing our results with the results obtained by
other methods available in the literature.
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1 Introduction

The modern history of interval arithmetic can be traced back to the thesis of Moore [30] and the publication of
his book Interval Analysis [31]. Following this, a number of conferences devoted to interval analysis were held with
accompanying proceedings [33, 34, 35]. Further books on the subject have appeared [2, 23, 47] and bibliographies have
been published [17, 18, 19].

In practice, based on interval arithmetic, we can provide rigorous enclosures for solutions of nonlinear equations.

Recently there has been a growing interest in interval arithmetic in a number of application areas [48]. In [5], Chen
and Ward provided a tutorial on the use of interval arithmetic in design. Rao and Berke [46] discussed the uncertainty
in engineering analysis/design problems and they mention a number of situations where an uncertain parameter can
be modeled as an interval number. In manufacturing, the inspection of machine parts can be subject to variations
leading naturally to an interval treatment as is discussed in [22]. Interval analysis, applied to vibrate systems, is
considered in [7]. In [36, 37, 38], Oppenheimer and Michel provided a basis for interval analysis of linear electrical
systems. The process of finding bounds on the parameters or state of a dynamical system is discussed in a series of
papers in [27], where interval analytic methods form a central focus. In control systems and robotics, interval analysis
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has been applied to stability analysis [26, 42], model conversion [16], and robot motion planning [43, 44]. For more
details concerning the application of interval arithmetic, see [39].

Let
F (X) = (f1(X), f2(X), . . . , fn(X))

T
= 0, (1.1)

be the system of nonlinear equations, where functions f1, f2, . . . , fn are the coordinate functions of F and each of them
maps a vector X = (x1, x2, . . . , xn) of the n−dimensional space Rn into the real line R.

One of the basic problems in scientific and engineering applications is to solve systems of nonlinear equations and
find solutions of these equations. This problem has fascinated mathematicians for centuries and the literature is full of
ingenious methods, discussions of their merits, and shortcomings. For a review on iterative methods, see, for instance,
[4, 6, 8, 9, 10, 13, 24, 25, 28, 29, 41, 45, 50, 54, 55, 56, 57].

In recent years, some iterative methods, based on real interval arithmetic, have been proposed and analyzed for
solving nonlinear equations and systems of nonlinear equations (see, for instance, [3, 11, 12, 14, 15, 32, 40, 51, 52]). It
has been shown that these methods are efficient in their performance.

In this paper, we restrict our attention to the problem of finding enclosures of roots of systems of nonlinear
equations in Rn, given by (1.1), one of the oldest and the most important problems in the theory and practice. To do
this, we produce a new iterative method based on real interval arithmetic which we feel is more efficient than other
methods currently found in the interval analysis literature. Furthermore, we provide error bounds of approximations
to the solutions.

2 Preliminaries

2.1 Interval arithmetic

In the following, from [31, 32], we present an introduction about the interval arithmetic.
The set of real intervals are denoted by IR and each x ∈ IR is as follows:

x = [x, x] = {x ∈ R| x ≤ x ≤ x}.

Also, m(x) = (x + x)/2 and w(x) = x − x are the mid-point and the width of x = [x, x], respectively. By using
monotonicity properties, the following relations hold:

x− y = [x− y, x− y],
x+ y = [x+ y, x+ y],
x.y = [min{xy, xy, xy, xy},max{xy, xy, xy, xy}],
x/y = x.(1/y),
1/y = [1/y, 1/y], 0 /∈ y.

Note that subtraction and division are not the inverse operations of addition and multiplication, respectively.

Definition 2.1. If x(i+1) ⊆ x(i), for all i, then the interval sequence x(i) is nested.

Definition 2.2. f is an interval extension of f on x, if it satisfy the following properties:

f(x) ⊇ {f(x) |x ∈ x}, (inclusion),
f([x, x]) = f(x), (restriction).

Definition 2.3. An interval f is Lipschitz, if for every x ⊆ x(0), there is a constant L such that

w(f(x)) ≤ Lw(x).

Lemma 2.4 (see [32]). A natural interval extension f, defined on x ⊆ x(0), is Lipschitz, i.e.

w(f(x)) ≤ Lw(x).

Lemma 2.5 (see [32]). For any a, b ∈ R and x,y ∈ IR, the following relations hold:

w(ax+ by) = |a|w(x) + |b|w(y),
w(xy) ≤ |x|w(y) + |y|w(x),
w(1/y) ≤ |1/y|2w(y) if 0 /∈ y.
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2.2 Multivariate interval Newton method

Let M(IRn×n) and IRn, be the sets of n × n interval matrices and n × 1 interval vectors, respectively. The
multivariate interval Newton method with the second-order convergence rate, introduced by Moore et al. [32] for
finding enclosures of roots of systems of nonlinear equations (1.1), is as follows:

X(i+1) = X(i) ∩
{
m(X(i))−

(
F ′(X(i))

)−1

F (m(X(i)))

}
, i = 0, 1, 2, . . . , (2.1)

where X(0) ∈ IRn is an initial vector and F ′(X(i)) ∈ M(IRn×n) is an interval extension of Jacobian matrix of F over

X(i). The order of convergence of this sequence is two.

2.3 Singh et al.’s method

For solving system of nonlinear equations, defined by (1.1), Singh et al. [52] proposed the following interval itera-
tive methods, denoted by PM1 and PM2:

PM1 method:

N(X(i)) = m(X(i))−
(
F ′(X(i))

)−1

F (m(X(i))),

Y(i) = N(X(i)) ∩X(i),

P(X(i)) = m(Y(i))−
(
F ′(X(i))

)−1

F (m(Y(i))),

X(i+1) = P(X(i)) ∩X(i). (2.2)

PM2 method:

N(X(i)) = m(X(i))−
(
F ′(X(i))

)−1

F (m(X(i))),

Y(i) = N(X(i)) ∩X(i),

P(X(i)) = m(Y(i))−
(
F ′(X(i))

)−1

F (m(Y(i))),

Z(i) = P(X(i)) ∩X(i),

S(X(i)) = m(Z(i))−
(
F ′(X(i))

)−1

F (m(Z(i))),

X(i+1) = S(X(i)) ∩X(i). (2.3)

The orders of convergence of these methods are three and four, respectively.

3 New interval iterative method

In this section, a new interval iterative method is produced to find enclosures of roots of systems of nonlinear
equations.

Suppose that X∗ ∈ X(0) is a root of F ∈ C(X(0)). Let F ′(X(0)) be nonsingular. Using (2.1) yields

X∗ ∈ Y(0) = X(0) ∩
{
m(X(0))−

(
F ′(X(0))

)−1

F (m(X(0)))

}
⊂ X(0).

Let F (X∗) = 0 and Y ∈ Y(0). Taylor expansion of F (Y ) about X∗ gives

F (Y ) = F (X∗) + (Y −X∗)F ′(ξ),

F (Y ) = F (X∗) + (Y −X∗)F ′(η),

where ξ, η ∈ Y(0) ⊂ X(0). Let X ∈ X(0) and ξ, η be two vectors of the same length, parallel and with the same
direction with vectors X, Y , respectively. Since fk, for all k, is a smooth function, it can be supposed that f ′

k(ξ) ≈
f ′
k(X), f ′

k(η) ≈ f ′
k(Y ) and therefore we have F ′(ξ) ≈ F ′(X), F ′(η) ≈ F ′(Y ). Hence, we get

F (Y ) = (Y −X∗)F ′(X),
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F (Y ) = (Y −X∗)F ′(Y ).

From the above equations, we can write

2F (Y ) = (Y −X∗)(F ′(X) + F ′(Y )).

Since F ′(X) ∈ F ′(X(0)), F ′(Y ) ∈ F ′(Y(0)), by using (5), we obtain

X∗ = Y − 2(F ′(X) + F ′(Y ))−1F (Y ) ∈ Y − 2(F ′(X(0)) + F ′(Y(0)))−1F (Y ),

for any Y ∈ Y(0), in particular for Y = m(Y(0)). Hence

X∗ ∈ m(Y(0))− 2(F ′(X(0)) + F ′(Y(0)))−1F (m(Y(0))).

Since X∗ ∈ X(0), we can write

X∗ ∈ X(1) := X(0) ∩
{
m(Y(0))− 2(F ′(X(0)) + F ′(Y(0)))−1F (m(Y(0)))

}
⊂ X(0).

Continuing this process gives
Y(i) = X(i) ∩

{
m(X(i))−

(
F ′(X(i))

)−1

F (m(X(i)))

}
,

X(i+1) = X(i) ∩
{
m(Y(i))− 2

(
F ′(X(i)) + F ′(Y(i))

)−1

F (m(Y(i)))

}
.

(3.1)

Therefore, we have produced a new interval iterative method to fined enclosures of roots of systems of nonlinear
equations.

4 Convergence analysis

Here, the convergence of the iterative method (3.1) is discussed.

Theorem 4.1. Let F ∈ C(X(0)). Suppose that

0 /∈
{
F ′(X(i))

}
,
{
F ′(X(i)) + F ′(Y(i))

}
, i = 0, 1, 2, . . . .

If X(0) contains a root X∗ of F , then do all intervals X(i), i = 1, 2, . . .. Therefore, the nested interval sequence {X(i)},
generated by (3.1), converges to X∗.

Proof . By induction, if X∗ ∈ X(0), then X∗ ∈ X(i) for i = 0, 1, 2, . . .. Also, if there is an i such that X∗ = m(X(i)),

then we have w(X(i+1)) = 0 and therefore the convergence is proved. Now, let X∗ ̸= m(X(i)) for i = 0, 1, 2, . . .. Since

0 /∈
{
F ′(X(i))

}
,
{
F ′(X(i)) + F ′(Y(i))

}
, i = 0, 1, 2, . . . ,

therefore {
2
(
F ′(X(i)) + F ′(Y(i))

)−1

F (m(Y(i)))

}
, i = 0, 1, 2, . . . ,

consists entirely of elements of the same sign. Thus, the mid-point of X(i) is not contained in X(i+1). Therefore
w(X(i+1)) < 1

2w(X
(i)) and the convergence is proved. □

Theorem 4.2. Let F ∈ C(X(0)). Suppose that

0 /∈
{
F ′(X(i))

}
,
{
F ′(X(i)) + F ′(Y(i))

}
, i = 0, 1, 2, . . . .

(i) If

{
m(Y(i))− 2

(
F ′(X(i)) + F ′(Y(i))

)−1

F (m(Y(i)))

}
∩X(i) = ∅, for i = 0, 1, 2, . . . , then X(i) contains no roots

of F .
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(ii) If

{
m(Y(i))− 2

(
F ′(X(i)) + F ′(Y(i))

)−1

F (m(Y(i)))

}
⊂ X(i), for i = 0, 1, 2, . . ., then X(i) contains exactly one

root of F .

In this case, the method (3.1) has three order of convergence.

Proof . (i) Suppose that X(0) contains a root X∗, then Theorem 4.1 results in

X∗ ∈
{
m(Y(i))− 2

(
F ′(X(i)) + F ′(Y(i))

)−1

F (m(Y(i)))

}
, i = 0, 1, 2, . . . ,

which means that

X∗ ∈ X(i) ∩
{
m(Y(i))− 2

(
F ′(X(i)) + F ′(Y(i))

)−1

F (m(Y(i)))

}
, i = 0, 1, 2, . . . .

Therefore, if

X(i) ∩
{
m(Y(i))− 2

(
F ′(X(i)) + F ′(Y(i))

)−1

F (m(Y(i)))

}
= ∅, i = 0, 1, 2, . . . ,

then X(i) cannot contains a root of F .
(ii) Since 0 /∈ F ′(X(i)), thus, for all X ∈ X(i), F ′(X) ̸= 0 and F is monotonic on X(i). Therefore, from the continuity

of F , we can deduce that it has at most one root in X(0). In other words, the function F has at most one root in X(i).
Now we try to find a root X∗ ∈ X(i). From Theorem 4.1, the function F has exactly one root in X(i).
Now, we prove the order of convergence of (3.1). We know that the order of convergence of sequence {Y(i)}, generated
by (2.1), is two.

Now consider the Mean Value Theorem as follows:

F (m(Y(i))) = (m(Y(i))−X∗)F ′(δ), (4.1)

where δ is between m(Y(i)) and X∗. Since{
m(Y(i))− 2

(
F ′(X(i)) + F ′(Y(i))

)−1

F (m(Y(i)))

}
⊂ X(i),

from the formulas (3.1) and (4.1), we get

X(i+1) = m(Y(i))− λ(m(Y(i))−X∗)F ′(δ),

where

λ = 2
(
F ′(X(i)) + F ′(Y(i))

)−1

.

Therefore
w(X(i+1)) = w(λ) |(m(Y(i))−X∗)||F ′(δ)|. (4.2)

Using Lemma 2.5 yields

w(λ) = 2

∣∣∣∣(F ′(X(i)) + F ′(Y(i))
)−1

∣∣∣∣2w(F ′(X(i)) + F ′(Y(i)))

= 2

∣∣∣∣(F ′(X(i)) + F ′(Y(i))
)−1

∣∣∣∣2 (w(F ′(X(i))) + w(F ′(Y(i)))
)
. (4.3)

Also, by using Lemma 2.4, we can write

w(F ′(X(i))) ≤ L1w(X
(i)),

w(F ′(Y(i))) ≤ L2w(Y
(i)).

Let

2

∣∣∣∣(F ′(X(i)) + F ′(Y(i))
)−1

∣∣∣∣2 ≤ K1, (4.4)

|F ′(δ)| ≤ K2. (4.5)
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It is clear that ∣∣∣m(Y(i))−X∗
∣∣∣ ≤ w(Y(i)). (4.6)

By using a monotone vector norm, Theorem 4.1, and from (4.3), (4.4), we get

∥w(λ)∥ ≤ K1

(
L1∥w(X(i))∥+ L2∥w(Y(i))∥

)
≤ K1

(
L1∥w(X(i))∥+ L2∥w(X(i))∥2

)
≤ K1

(
L1 + L2∥w(X(i))∥

)
∥w(X(i))∥. (4.7)

From (4.2), (4.5)-(4.7), and Theorem 4.1, we clearly have

∥w(X(i+1))∥ ≤ K1K2C
(
L1 + L2∥w(X(i))∥

)
∥w(X(i))∥3.

Therefore, the sequence {X(i+1)} converges to X∗. □

5 Numerical results

In this section, we consider four examples to demonstrate the efficiency and practicability of the new method. We
compare the new method (3.1) with the methods of PM1 (2.2) and PM2 (2.3). All examples are tested using Matlab
R2015a and version 8 of INTLAB toolbox, created by Rump [49]. The results are displayed in Tables 1,2,4, and 5. If

X(i+1) = X(i) or
∥∥∥w(X(i))

∥∥∥
∞

= max
1≤k≤n

w(X(i))k ≤ ε = 10−15, then we can determine a final interval vector X∗ which

contains X∗. The obtained results show that the new method with three order of convergence is faster and more
efficient than the methods reported in [52] with three and four orders of convergence.

Example 5.1. Consider the following system of nonlinear equations, studied in [21]:

F = (f1, f2)
f1(x1, x2) ≡ x2

1 + x2
2 − 1 = 0,

f2(x1, x2) ≡ x2
1 − x2 = 0,

with
X∗ = {0.786151377757423, 0.618033988749895},
X(0) = {[0.7, 0.9], [0.5, 0.7]},
X∗ = {[0.78615137775742, 0.78615137775743], [0.61803398874989, 0.61803398874990]}.

The obtained results, reported in Table 1, confirm the efficiency and accuracy of the new method.

Table 1: Computation of
∥∥∥w(X(i))

∥∥∥
∞

Number of iterations i Methods
(3.1) PM1 PM2

1 3.6× 10−7 8.7× 10−4 5.3× 10−5

2 1.1× 10−16 1.0× 10−11 1.1× 10−16

3 1.1× 10−16

Example 5.2. Consider the following system of nonlinear equations, studied in [53]:

F = (f1, f2, f3)
f1(x1, x2, x3) ≡ 10x1 + sin(x1 + x2)− 1 = 0,
f2(x1, x2, x3) ≡ 8x2 − cos2(x3 − x2)− 1 = 0,
f3(x1, x2, x3) ≡ 12x3 + sin(x3)− 1 = 0,
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with
X∗ = {0.068978349172667, 0.246442418609183, 0.076928911987537},
X(0) = {[0, 1], [0, 1], [0, 1]},
X∗ = {[0.06897834917266, 0.06897834917267], [0.24644241860918, 0.24644241860919],

[0.07692891198753, 0.07692891198754]} .

The obtained results, reported in Table 2, confirm the efficiency and accuracy of the new method.

Table 2: Computation of
∥∥∥w(X(i))

∥∥∥
∞

Number of iterations i Methods
(3.1) PM1 PM2

1 1.2× 10−6 1.5× 10−2 1.1× 10−3

2 2.7× 10−17 3.6× 10−8 2.3× 10−15

3 2.7× 10−17 2.7× 10−17

Example 5.3. Consider the following integral equation, studied in [52, 53]:

F (x)(s) = −x(s)

4

∫ 1

0

s

s+ t
x(t)dt− 1 + x(s), x ∈ C[0, 1], s ∈ [0, 1].

By using Gauss-Legendre quadrature formula, we transform the above equation into a finite dimensional equation.
Therefore, we have ∫ 1

0

f(t)dt ≈
l∑

j=1

wjf(tj).

Let x(tl) = xl, l = 1, . . . , 8. Therefore, the following system of nonlinear equations can be obtained:

xl − xl

8∑
j=1

aljxj − 1 = 0, alj =
tlwj

4(tl + tj)
, l = 1, 2, ..., 8.

In Table 3, values of the abscissas tj and the weights wj of the eight-point Gauss-Legendre formula are reported.
Let

X∗ = {1.021719731461727, 1.073186381733582, 1.125724893656528, 1.169753312169115,
1.203071751305358, 1.226490874633312, 1.241524600593500, 1.249448516693481} ,

X(0) = {[0, 2], [0, 2], [0, 2], [0, 2], [0, 2], [0, 2], [0, 2], [0, 2]},
X∗ = {[1.02171973146172, 1.02171973146173], [1.07318638173358, 1.07318638173359],

[1.12572489365652, 1.12572489365653], [1.16975331216911, 1.16975331216912],
[1.20307175130535, 1.20307175130536], [1.22649087463331, 1.22649087463332],
[1.24152460059349, 1.24152460059351], [1.24944851669348, 1.24944851669349]} .

The obtained results, reported in Table 4, confirm the efficiency and accuracy of the new method.

Example 5.4. Consider the following boundary value problem, studied in [20, 52]:

y′′ = y + sin(y), y(0) = y(1) = 1.

Let

xi+1 = xi + h, h =
1

26
, x0 = 0, x26 = 1,

y(xi) = yi, y
′′

j =
yj−1 − 2yj + yj+1

h2
, i = 0, 1, . . . , 25, j = 1, 2, . . . , 25.

Then, the following system can be obtained:

yj−1 − 2yj + yj+1 = h2 (sin(yj) + yj) , j = 1, 2, . . . , 25.
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Table 3: The values of tj and wj , for j = 1, . . . , 8.

j tj wj

1 0.01985507175123188415821957 0.05061426814518812957626567
2 0.10166676129318663020422303 0.11119051722668723527217800
3 0.23723379504183550709113047 0.15685332293894364366898110
4 0.40828267875217509753026193 0.18134189168918099148257522
5 0.59171732124782490246973807 0.18134189168918099148257522
6 0.76276620495816449290886952 0.15685332293894364366898110
7 0.89833323870681336979577696 0.11119051722668723527217800
8 0.98014492824876811584178043 0.05061426814518812957626567

Table 4: Computation of
∥∥∥w(X(i))

∥∥∥
∞

Number of iterations i Methods
(3.1) PM1 PM2

1 8.0× 10−14 1.9× 10−4 8.8× 10−4

2 2.2× 10−16 5.0× 10−10 2.2× 10−16

3 2.2× 10−16

Also, let
X∗ = {0.028276938174808, 0.056637530355823, 0.085165644408382, 0.113945575579911,

0.143062259326381, 0.172601483033092, 0.202650096146265, 0.233296218130643,
0.264629443538373, 0.296741043313635, 0.329724161263333, 0.363674004393813,
0.398688025544152, 0.434866096434958, 0.472310668895130, 0.511126921625317,
0.551422889404289, 0.593309571143194, 0.636901012644448, 0.682314359331687,
0.729669873593532, 0.779090910740754, 0.830703846934660, 0.884637951833381,
0.941025198162492} ,

X(0) = {[0, 1], . . . , [0, 1]},

X∗ = {[0.02827693817480, 0.02827693817481], [0.05663753035582, 0.05663753035583],
[0.08516564440838, 0.08516564440839], [0.11394557557991, 0.11394557557992],
[0.14306225932638, 0.14306225932639], [0.17260148303309, 0.17260148303310],
[0.20265009614626, 0.20265009614627], [0.23329621813064, 0.23329621813065],
[0.26462944353837, 0.26462944353838], [0.29674104331363, 0.29674104331364],
[0.32972416126333, 0.32972416126334], [0.36367400439381, 0.36367400439382],
[0.39868802554415, 0.39868802554416], [0.43486609643495, 0.43486609643496],
[0.47231066889513, 0.47231066889514], [0.51112692162531, 0.51112692162532],
[0.55142288940428, 0.55142288940429], [0.59330957114319, 0.59330957114320],
[0.63690101264444, 0.63690101264445], [0.68231435933168, 0.68231435933169],
[0.72966987359353, 0.72966987359354], [0.77909091074075, 0.77909091074076],
[0.83070384693465, 0.83070384693467], [0.88463795183338, 0.88463795183339],
[0.94102519816249, 0.94102519816250]} .

The obtained results, reported in Table 5, confirm the efficiency and accuracy of the new method.

6 Conclusion

In this research study, a novel iterative method was produced to find enclosures of roots of systems of nonlinear
equations. Necessary and sufficient conditions about the convergency of the produced method were discussed. Also, the
convergence rate was studied. Comparison of this method with the methods available in the literature was performed



A novel two-step iterative method based on real interval arithmetic ... 2693

Table 5: Computation of
∥∥∥w(X(i))

∥∥∥
∞

Number of iterations i Methods
(3.1) PM1 PM2

1 3.3× 10−16 8.7× 10−5 1.2× 10−6

2 1.1× 10−16 1.1× 10−16

in four examples. As a result, it was found that the best method to find enclosures of roots of systems of nonlinear
equations is our new method. The main objective of this study was to try to get the correct enclosures of roots from
a practical point of view.
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