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Abstract

Animal model is a type of mixed-effects model, where covariance among data points comes from genetic and environ-
mental effects. In this paper, the multivariate normal distribution are assumed for the genetic random effects. A new
approximate maximum likelihood method is proposed to obtain the estimates of the genetic variance components and
heritability. The effectiveness of the proposed method is illustrated through a simulation study.
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1 Introduction

Animal models are used to answer various scientific questions, from basic science to the development and evaluation
of new vaccines or treatments. These models are kind of linear mixed models popularized by [18]. Linear Mixed Models
are a kind of generalized Linear Mixed Models (GLMMs). In these models, the response variable is assumed to follow
an exponential family distribution, ([3]). The likelihood function of GLMMs cannot usually be given in a closed form
and the maximum likelihood estimations are very challenging. For this problem, there are numerical ways to obtain
maximize likelihood estimates of the parameters in the GLMMs, see e.g. [28], [8], [10], [22], [23] and [1]. Animal model
is a type of the GLMM with the genetic random effects and is used to model the genetic responses, see e.g. [15], [16],
[17], [26], [2], [27], [25] and [19].

Whether changes in an animal trait are attributed to environmental or biological reasons is a fundamental question
in biology. In the animal model, all known relationships from a pedigree are taken as the genetic random effects
and partitioned observed variance into additive genetic variance and other (environmental) sources of variance, [16].
Obtaining an estimate of these variance components and the heritability component is one of the most important
goals in studying the animal model. Heritability value describes how much of a change in a trait is due to genetic
factors. The heritability is defined as h2 = VG

VP
, where VG is additive genetic effects variance and VP = VG + VR is

the phenotypic variance that is equal to the sum of genetic and environmental variance in the animal models. The
restricted maximum likelihood (REML) method is useful for inferences about variance components in the animal
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model. In REML estimation, the maximum likelihood method is applied to the linear transformation of the data
K′y, where K is a matrix of full rank for which K′Z = 0 for fixed effect matrix Z. There are many articles on the
application of this method in animal models ([11], [24] [5]). The likelihood approach in the animal model often involves
calculating intractable multidimensional integrals because the integration dimension in likelihood function is equal to
the number of genetic random effects. Consequently, it is intractable to obtain the maximum likelihood estimates
(MLE) by directly maximizing the likelihood function and an extension of REML to the hierarchical animal models
is often hampered by analytically intractable integrals. The maximization algorithms for the REML such as EM is
generally not recommended when the dimensionality of the integral is high. Laplace approximations are usually used
to approximate high-dimensional integrals in complex models ([20]), so these approximations seem to be helpful for
an animal model. In this paper, a higher-order Laplace approximation is proposed to inference and find the MLE of
the variance components and the heritabilit in the animal model.

This paper is organized as follows: In Section 2, the notations and modified Laplace approximation are defined.
The model and the proposed method of approximate likelihood inference are described in Section 3. Section 4 shows
the results of a simulation study.

2 Notation and approach

In this article, we use the notation proposed by [21]. Let x ∈ Rn and xi be the ith component of x, f(x) be a real

function and its derivative shown as fi =
∂f

∂xi
and fij =

∂2f

∂xi∂xj
. The Hessian matrix is shown by fxx and f ij is the

(i, j) element of f−1
xx matrix. If p = i1, i2, · · · , iν , then fp =

∂νf

∂xi1∂xi2 · · · ∂xiν

. The calculated value of the function f

in û is denoted byf̂ .

2.1 Modified Laplace approximation

According to the Laplace approximation, we have∫
Rn

e−Mg(x)dx ≃
(
2π

M

)n
e−Mg(x0)

|ĝxx|1/2
, as M → ∞, (2.1)

in which g has a minimum at x0 and ĝxx is the Hessian matrix in x0. The idea of the Laplace approximation is relevant
to using Taylor expansion around the minimum point of function g instead of g in. [21] developed the formal Laplace
approximation as follows:

I =

∫
Rp

exp {−g(x)}dx, (2.2)

when g has derivatives of all orders and is unimodal with a unique minimum at û = 0 and g = O(n). With considering
g(x) = g(0) + 1

2 ĝi1i2x
i1xi2 + 1

3! ĝi1i2i3x
i1xi2xi3 + · · · be Taylor expansion of g around zero, we have

I =

∫
Rp

exp {−g(0)} exp {−1

2
ĝi1i2x

i1xi2} exp { 1

3!
ĝi1i2i3x

i1xi2xi3 + · · · }dx (2.3)

= e−ĝ det | ĝxx
2π

|−1/2E

[
exp {− 1

3!
ĝi1i2i3X

i1Xi2Xi3 + · · · }
]

= e−ĝ det | ĝxx
2π

|−1/2E

[
1− 1

3!
ĝi1i2i3X

i1Xi2Xi3 + · · ·
]
,

where X is the multivariate normal random vector with mean 0 and variance and covariance matrix ĝ−1
xx. Then all

cumulants of odd order are zero and so

E
[
Xi1Xi2 · · ·Xi2m

]
=

∑
q1|···|q2m=Q∈P 2

2m

∏
q={i,j}∈Q

E[XiXj ] (2.4)

=
∑

q1|···|q2m=Q∈P 2
2m

∏
q={i,j}∈Q

cov(XiXj)

=
∑

q1|···|q2m=Q∈P 2
2m

∏
q={i,j}∈Q

gij .
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So, we can write Eq. (2.3) as follows:

I = e−ĝ det | ĝxx
2π

|−1/2
∞∑

m=0

∑
P,Q

(−1)t

(2m)!
ĝp1

· · · ĝpt
ĝq1 · · · ĝqm , (2.5)

and its logarithm is equal to

log I = −ĝ − 1

2
log

∣∣∣∣ ĝxx2π

∣∣∣∣+ ∞∑
m=1

∑
P,Q

P∨Q=1

(−1)t

(2m)!
ĝp1

· · · ĝpt
ĝq1 · · · ĝqm , (2.6)

where P and Q are partition of 2m indices such that P = p1| · · · |pt consists of t blocks, each of size 3 or more.
Q = q1| · · · |qm consists of m block each of size 2 and the graph of P ∨Q that means union of P and Q is a connected
graph. For example if P be i1i2i4|i3i5i7|i6i8i10i9 and Q be i1i2|i3i4|i5i6|i7i8|i9i10, we can draw P , Q and P ∨ Q as
follows

i1

i2 i4

i3 i5 i7

i6 i8 i10

i9

P

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

Q

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

i1

i2 i4

i3 i5 i7

i6 i8 i10

i9

P ∨Q

Often the main difficulty in applying the above formula is finding the minimum of g when the dimension of x is
large. [21] suggested to consider function g(x) = h(x) + ϵ(x) such that h(x) is a quadratic approximation to g in
around of the minimum and ϵ(x) and its first and second derivative be small in the neighbourhood of that point. In
this case, Eq. (2.6) can be written as

log I = −ĝ − 1

2
log{det

(
hxx

2π

)
}+

∑
m

1

(2m)!

∑
P,Q

P∨Q=1

(−1)tϵp1 · · · ϵpth
q1 · · ·hqm . (2.7)

This can be a good idea for [4] to provide a generalization of Laplace approximation with a bit of change in assumptions.
They suppose that h(x) = O(n) has a minimum at 0 and f(x) and its derivatives are O(1). Taylor expansion of h
around 0 gives

h(x) = ĥ+
1

2!
xi1xi2 ĥi1i2 +

1

3!
xi1xi2xi3 ĥi1i2i3 + · · · , (2.8)

such that sums are over all indices from 1 to n. f(x) also has a Taylor series around 0,

f(x) = f̂ + xj1 f̂j1 +
1

2!
xj1xj2 f̂j1j2 +

1

3!
xj1xj2xj3 f̂j1j2j3 + · · · . (2.9)
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Now, we have

I =

∫
Rp

exp {−g(x)}dx

=

∫
Rp

exp {− (h(x) + f(x))}dx

= e−ĥe−f̂

∫
e
−
1

2
xT ĥxxx

exp {− 1

3!
ĥ[i1i2i3]x

i1xi2xi3 − 1

4!
ĥ[i1i2i3]x

i1xi2xi3xi4 − · · · }

× exp {−f̂j1x
j1 − 1

2
f̂j1j2x

j1xj2 − · · · }dx

= e−ĥe−f̂

∣∣∣∣∣ ĥxx

2π

∣∣∣∣∣
−1/2

E

[(
1− 1

3!
ĥ[i1i2i3]X

i1Xi2Xi3 − · · ·
)(

1− f̂[j1]X
j1 − 1

2!
f̂[j1j2]X

j1Xj2 − · · ·
)]

,

where X ∼ N(0, hxx). From Eq. (2.5)

I = e−ĥe−f̂

∣∣∣∣∣ ĥxx

2π

∣∣∣∣∣
−1/2 ∑

r∈{0,3,4,··· }

∞∑
s=0

(−1)
r 1

s! r!
ĥ[i1···ir]f̂[j1···js]E

[
Xi1 · · ·Xir Xj1 · · ·Xjs

]
,

therefore from Eqs. (2.4) and (2.7) we can write

log I = −ĝ − f̂ − 1

2
log | ĝxx

2π
|+

∞∑
m=1

1

(2m)!

P∨Q=1∑
P,Q

χp1 · · ·χpt .g
q1 · · · gqm , (2.10)

such that in above formula χpi
= f̂pi

for pi < 3 and χpi
= f̂pi

− ĝpi
for pi ⩾ 3.

3 Model

Let y = (y1, y2, · · · yn)T be the vector of n observations, then the classic form of the animal model can be written
as follows

y = ZTβ + u+ ϵ, (3.1)

where Z = (z1, z2, · · · , zn), zi = (zi1, zi2, · · · , ziq+1)
T
are covariates and β = (β0, · · · , βq)

T
is vector of fixed effects.

The vector of random effects u and ϵ are the additive genetic and the environmental origin random effects, respectively.
We called u as hidden variable and ϵ as residuals that are independent. Hidden variables are correlated with a
relationship matrix A, but residuals are independent, and I is n × n identity matrix. In this study we assume that
u ∼ N

(
0,Aσ2

u

)
and ϵ ∼ N

(
0, Iσ2

e

)
. For the animal model with normal observations and variance-covariance matrix

Σ =

(
σ2
uA 0
0 σ2

eI

)
, the direct heritability (h2

u) is defined as follows

h2
u =

σ2
u

σ2
u + σ2

e

,

which is in proportion to the phenotypic variance. The parameters of the model (3.1) are gathered inΘ = (βT , σ2
u, σ

2
e)

T .
This study aims to estimate the unknown parameters Θ using the approximate likelihood function with a modified
Laplace method.
We know that

yi|ui ∼ N(zT
i β + ui, σ

2
e), (3.2)

then fy|u =
∏n

i=1 fyi|ui
and the likelihood function can written as follows

L(Θ) =

∫ n∏
i=1

fyi|ui
.fu(u)du

=

∫
1√

2πσ2
e

n exp

{
−1

2σ2
e

n∑
i=1

(
yi − zT

i β − ui

)2}

× 1√
2πσ2

u

n
detA1/2

exp

{
−1

2σ2
u

uTA−1u

}
du.
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Let A−1 = [aij ]n×n, then we have

L(Θ) =
1

(2π)
n
(σ2

uσ
2
e)

n/2
detA1/2

(3.3)

×
∫

exp

{
−1

2σ2
e

n∑
i=1

(
yi − zT

i β − ui

)2
+

aii
σ2
u

ui

}
. exp

 −1

2σ2
u

∑
i ̸=j

aijuiuj

 du.

Here, we reparametrize the residual variance as σ2
e = kσ2

u, where k is equal to any positive value. Then according

to the heritability formula h2
u =

σ2
u

σ2
u + σ2

e

=
1

1 + k
, and the heritability only depend on k. With this selection, the

likelihood function (3.3) can be written as follows

L(Θ) =
1

(2πσ2
u)n(k)n/2 detA1/2

(3.4)

×
∫

exp

{
−1

2σ2
u

n∑
i=1

(
yi − zT

i β − ui

)2
k

+ aiiui

}
exp

 −1

2σ2
u

∑
i̸=j

aijuiuj

 du.

By using the modified Laplace formula for approximating the integral in Eq. (3.4), we have

l(Θ) = log (L(Θ)) = −n log (2πσ2
u)−

n

2
log (k)− 1

2
log (det (A)) (3.5)

+ log

∫
exp

{
−1

2σ2
u

n∑
i=1

(
yi − zT

i β − ui

)2
k

+ aiiu
2
i

}

. exp

 −1

2σ2
u

∑
i ̸=j

aijuiuj

 du.

and let

ξ(u) =
1

2σ2
u

∑n
i=1

(
yi − zT

i β − ui

)2
k

+ aiiu
2
i and τ(u) =

1

2σ2
u

∑
i̸=j aijuiuj , then we can write Eq. (3.5) as follows

l(Θ) = −n log (2πσ2
u)−

n

2
log (k)− 1

2
log (det (A)) (3.6)

+ log

∫
exp {−ξ(u)} . exp {−τ(u)} du.

Now, consider the following divisions

ξi =
dh

dui
=

1

kσ2
u

(
−(yi − zT

i β − ui) + kaiiui

)
,

ξii =
dhi

dui
=

1

kσ2
u

(1 + kaii),

ξij = 0, if i ̸= j,

dethuu =

n∏
i=1

hii =
1

kσ2
u
n

n∏
i=1

1

1 + kaii
,

τi =
dτ

dui
=

1

σ2
u

∑
j ̸=i

aijuj ,

τii =
dτi
dui

= 0,

τij =
dτi
duj

=
aij
σ2
u

, if i ̸= j,
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and the maximum point of the function h at û such that ûi =
yi − zT

i β

1 + kaii
, we can write Eq. (3.6) as follows

l(Θ) = −n log (2πσ2
u)−

n

2
log (k)− 1

2
log (det (A))− ξ̂ − τ̂

− 1

2

(
−n log (kσ2

u)−
n∑

i=1

log (1 + kaii)

)
+

1

2

n∑
i=1

n∑
j=1

(τiτj − τij) ξ
ij + · · ·

= −n log (2π)− n log (σu)−
1

2
log (det (A))− ξ̂ − τ̂

+
1

2

n∑
i=1

log (1 + kaii) +
1

2

n∑
i=1

τi
2ξii + · · · .

The estimates of the variance components parameters can be obtained by differentiating the function l(Θ) with respect
to the σu and k as shown below

dl(Θ)

dσu
= − n

σu
− 2

σ3
u

(σ2
u(−ξ̂ − τ̂ +

1

2

n∑
i=1

τi
2ξii)) = 0,

dl(Θ)

dk
=

d(−ξ̂ − τ̂ +
1

2

∑n
i=1 τi

2ξii)

du

du

dk
+

n∑
i=1

aii
1 + kaii

= 0. (3.7)

4 Simulation

In this Section, we present one simulation study to illustrate the proposed methodology in the animal model and
this method is compared with the REML approach.

For this simulation study, the pedigree file of [27] has been used. This data set consists of the records of 1309 for
animals. It is used to create a relationship matrix of 1084 animals for which the effects set is available, according
to [27]. The codes related to the production of the relationship matrix A are written in Mathematica software and
inverse matrix calculations are also performed. R programming was used for the analyses with the modified Laplace
approximation method. The results are compared with estimated values with the REML method from R package
’MM4LMM”.

In the following, we generate 1084 random samples based on the pedigree. Different values for additive genetic
variance (σ2

u) and environmental (σ2
e) are considered to examine the performance of the modified Laplace approxima-

tion method in various heritability levels (high, medium, and low heritability). First, we generate the random effects
u from the normal distribution u ∼ N1084(0, σ

2
uA).

The environmental random effects (ϵ) are generated from N1084(0, σ
2
eI). Also, the parameters β0 and β1 are

assumed to be the fixed effects coefficients. Then, the observations y are created by the proposed animal model as
yi = zT

i β + ui + ϵi.

Keeping the design fixed, the above data generation scheme are carried out for 100 data sets in each case. Now
we can estimate the averages of mean square error (MSE) and averages of estimates of the parameters by using the
proposed approximate method. Each simulated data set is analyzed by the modified Laplace approximation approach
under the assumptions of the random effects are normal. By maximizing the approximate likelihood function

L(θ) = −n log(σu)− ξ̂ − τ̂ +
1

2

n∑
i=1

log(1 + aii) +
1

2

n∑
i=1

τ2i ξ
ii,

The approximate values are obtained, and the simulation results are reported in table 1. The proposed approximate
maximum likelihood technique is used for 1084×100 simulated datasets with different values for the variance component
parameters. Furthermore, in every approach, the time spent calculating has been measured.

The results are summarized in Table 1 for a low heritability level. In this situation, although the estimation of σ2
u

in REML seems good, but significant bias for σ2
e caused a wrong estimation for heritability (h2). However, the results

for the variance components seems not good, but the heritability (h2) estimation has more appropriate performance
in modified high Laplace approximation (Table1). The fitted values of responses are calculated, and the Mean Square
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Table 1: Simulation study based on 100 data set for low heritability (h2 = 0.138)

Modified Laplace Approximation Method REML Method
Parameter Real Value Ave. Est. Ave. MSE Ave. Bias Ave. Est. Ave. MSE Ave. Bias

σ2
u 0.8 0.149 0.425 0.651 0.924 0.026 -0.124

σ2
e 5 0.828 17.406 4.172 0.059 24.421 4.941

β0 1 0.989 0.015 0.011 0.989 0.009 0.011
β1 1 0.999 0.003 0.001 1.002 0.002 -0.002
h2 0.138 0.153 0.001 -0.009 0.938 0.644 -0.800

MSEP 1.731 3.671

Time 66” 394”

Figure 1: The high Laplace approximation and the REML results for the maximum likelihood (σ2
u = 0.8 and σ2

u = 5)
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Table 2: Simulation study based on 100 data set for medium heritability (h2 = 0.231)

Modified Laplace Approximation Method REML Method
Parameter Real Value Ave. Est. Ave. MSE Ave. Bias Ave. Est. Ave. MSE Ave. Bias

σ2
u 0.9 0.231 0.451 0.0.679 0.976 0.032 -0.076

σ2
e 3 1.021 3.923 1.979 0.0226 7.706 2.774

β0 1 1.006 0.025 -0.006 1.004 0.016 -0.004
β1 1 0.991 0.007 0.009 0.993 0.004 0.007
h2 0.231 0.185 0.004 0.046 0.808 0.342 -0.577

MSEP 0.478 4.030

Time 63” 394”

Table 3: Simulation study based on 100 data set for medium heritability (h2 = 0.4)

Modified Laplace Approximation Method REML Method
Parameter Real Value Ave. Est. Ave. MSE Ave. Bias Ave. Est. Ave. MSE Ave. Bias

σ2
u 4 2.0722 3.866 1.928 3.970 0.284 0.134

σ2
e 6 5.266 0.738 0.734 2.702 11.021 3.298

β0 1 1.016 0.101 -0.016 0.995 0.080 0.005
β1 0.8 0.794 0.027 0.006 0.802 0.023 -0.002
h2 0.4 0.282 0.016 0.118 0.594 0.041 -0.194

MSEP 8.683 10.572

Time 39” 396”

Error of Predictions ( MSEPs) are obtained from MSEP = n−1
∑

(y − ŷ)2 and reported in table 1. These results
show that the averages of the MSE and the bias are small and the accuracy of results is good. The results of the
modified high Laplace and REML methods can be seen in Figure 1. Genetic variance and environmental variance are
the axes of the shape. Heritability is also indicated by a line with a positive slope.
In medium heritability (0.15 < h2 < 0.4) again, the modified the high Laplace approximation method works better than
the REML to estimate h2(Table 2 and 3). Figures 2 and 3 show how the results are positioned for variance components.
In high heritability situation (h2 > 0.4), REML method performs better than high Laplace approximation (Table 4
and Figure 4).

Computing the running time of the modified Laplace approximation approach for 1084 × 100 iterations took less
than 180 seconds, and the computation time is significantly reduced by this method.

Figure 2: The high Laplace approximation and the REML results for the maximum likelihood (σ2
u = 0.9 and σ2

e = 3)

5 Discussion and Conclusions

In animal models and genetic studies, heritability is the most important consideration in determining appropriate
animal evaluation methods, selection methods, and mating systems. The estimates of heritability for most traits is
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Figure 3: The high Laplace approximation and the REML results for the maximum likelihood (σ2
u = 4 and σ2

u = 6)

Table 4: Simulation study based on 100 data set for high heritability (h2 = 0.556)

Modified Laplace Approximation Method REML Method
Parameter Real Value Ave. Est. Ave. MSE Ave. Bias Ave. Est. Ave. MSE Ave. Bias

σ2
u 5 4.564 0.606 0.436 5.057 0.795 -0.057

σ2
e 4 8.140 17.644 -4.140 6.178 5.280 -2.178

β0 1 1.038 0.209 -0.038 0.983 0.161 0.017
β1 1 0.992 0.050 0.008 1.017 0.043 -0.017
h2 0.556 0.359 0.041 0.197 0.449 0.016 0.107

MSEP 17.806 15.555

Time 27” 394”

Figure 4: The high Laplace approximation and the REML results for the maximum likelihood (σ2
u = 5 and σ2

e = 4)



2906 Pakbaz, Nematollahi, Hosseini

low (h2 < 0.15) or moderate (0.15 < h2 < 0.4). We show in a simulation study that the modified high Laplace
approximation methods can perform better than REML in these cases.

Also, in the animal study the data size is usually too large and reducing the computation time is an important issue
in these models. In this paper, we proposed a modified Laplace approximation for estimating the variance component
parameters and heritability with the maximum likelihood method. The implementation and evaluation of the new
proposed Laplace approximate method are examined by a simulation study. The calculated results showed that our
proposed approximate likelihood method is an accurate and fast method for analyzing the animal model.

The multivariate normal distribution is usually assumed for the genetic random effects. [19] showed that misspec-
ification of distribution of genetic random effects in an animal model affects the estimation of the parameters and
used the closed skew normal distribution for modelling the genetic random effects. The family of closed skew normal
includes the normal distribution and is more flexible than the normal distribution. In mixed models [6] showed wrong
normal assumptions cause bias in the parameter estimates and affect the accuracy of spatial predictions, see e.g. [7],
[9], [12], [13] and [14]. Therefore, as future work, we try to improve our approximate likelihood approach to the animal
models with non-normal genetic random effects.
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