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Abstract

The scenario of this article is to introduce the space Rt
s(p,∆) based on a general Riesz sequence space. Its completeness

property is derived and its linear isomorphism property with ℓ(p) is proved. The Köthe-dual property of the space
Rt

s(p,∆) is also derived. Furthermore, its basis is constructed and some characterization of infinite matrices are given.

Keywords: Sequence spaces, Köthe-duals, Infinite matrix
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1 Introduction, background

By S we mean the set of all real and any linear subspace of S is called as sequence space. Let N = {0, 1, 2, · · · };
by R we represent the set of all real numbers. The Banach space ℓp is the set of all sequences v = (vi) ∈ S such that

∥v∥p =

( ∞∑
j=0

|vj |p
) 1

p

< ∞,

for 1 ≤ p < ∞.

By ℓ∞ we mean the set of all bounded sequence; c represents set of all convergent sequences and are Banach spaces
with the norm ∥v∥ = sup

j
|vj |.

It is important to note that the infinite matrix is consider as a linear operator one a sequence space to another
one. We call a space Y to be FK space if it is a complete metric space with continuous coordinated pm : Y → C
where pm(v) = vm for all v ∈ Y andm ∈ N. A normed FK space is called a BK space as defined in [20], [10] and others.

Let θ = (tj) be increasing integer sequence. Then, as in [11], it will be called lacunary sequence if t0 = 0 and
tj = tj − tj−1 → ∞. By θ we will denote the intervals of the form Ij = (tj−1, tj ] and with qj we will denote the ratio
tj

tj−1
.

It has been further studied by various authors as in [4], [8], [26], [27] and many others.

We now give a brief description of Cesàro convergence.

Consider the geometric series of the form
∑∞

o vj = 1
1−v which is valid only for values of −1 < v < 1, here −1, 1

are excluded. It is important to note that at v = 1, there is a singularity. In geometric series, the sequence of partial
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sums converges to a real number. As an illustration, consider v = −1, Then, the series

Q = 1 +
1

2
+

1

4
+

1

8
+ · · · =

∞∑
j=0

Qj =

∞∑
j=0

(
−1

)j

,

known as Grandi’s series. It is obvious that the sequence of partial sums gives

P0 = Q0 = 1,P1 = Q0 +Q1 = 0,P2 = Q0 +Q1 +Q2 = 1,P3 = Q0 +Q1 +Q2 +Q3 = 0, · · · .

Consequently, the sequence of partial sums does not converge to a real number. However, the sum of the geometric
series

∑∞
0 (−1)j = 1

1−(−1) = 1
2 , which is a real number. Thus, clearly, right hand side converges while the left hand

side diverges, hence for consistency, we consider the averages of partial sums, that is,

P0

1
= 1,

P0 + P1

2
=

1

2
,
P0 + P1 + P2

3
=

2

3
,
P0 + P1 + P2 + P3

4
=

2

4
, · · · .

Thus, the sequence of average of partial sums gives

Pj =
1

j + 1

j∑
i=0

Qj =
1

1
,
1

2
,
2

3
,
2

4
,
3

5
,
3

6
, · · · .

It can be easily seen that

Pj =

{
1
2 , for j = odd,
1
2 + 1

2j+2 , for j = even,

and hence as j → ∞ it converges to 1
2 and this kind of convergence is known as Cesàro convergence.

For 1 ≤ p ≤ ∞, the author in [25] has defined the Cesàro sequence space cesp is defined as

cesp =

v = (vk) :

∞∑
i=1

1

i

i∑
j=1

|vj |

p

< ∞

 ,

and proved that it is a Banach space with the norm

||v||cesp =

 ∞∑
i=1

1

i

i∑
j=1

|vj |

p
1
p

,

where p is a fixed parameter greater or equal to 1; in fact, Jagers [16] and Leibowitz [18] showed that ces1 = {0}, cesp
are separable reflexive Banach spaces for 1 < p < ∞.

It was further studied by several authors like in [9], [24]. The author in [21] has introduced the Cesàro sequence
spaces Xp and X∞ of non-absolute type and has shown that cesp ⊂ Xp is strict for 1 ≤ p ≤ ∞.

The infinite Cesàro matrix C, which we mentioned above has the entries of the form:

C =


1 0 0 · · ·
1
2

1
2 0 · · ·

1
3

1
3

1
3 · · ·

...
...

...
. . .


and defined by Ernesto Cesàro (1859-1906) who was an Italian mathematician and worked in the field of differential
geometry. He is known also for his ’averaging’ method for the ‘Cesàro summation’ of divergent series, known as the
Cesàro mean.

For fixed j ∈ N, the sequence ej = {ej(i)} defined by

ej(i) =

{
1, for i = j

0, else where,
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is an element of cesp and in this case, we see

∥ej∥pcesp =

∞∑
i=j

1

ip
.

Consequently, we see ∥cesp∥cesp → 0 as j → ∞. Furthermore, the sequence of canonical vectors (ej) is an unconditional,
boundedly complete, and shrinking Schauder basis for cesp as in [7]. Also, it is important to remark the following
property which tell us that cesp is a solid space. More precisely, if v = {v(i)} and w = {w(i)} are real sequences such
that v ∈ cesp with 1 < p < ∞ and |v(i)| ≤ |w(i)| for all i ∈ N, then ∥v∥cesp ≤ ∥w∥cesp .

In 1968 the Dutch Mathematical Society posted a problem to find the Köthe dual of Cesàro sequence spaces cesp
and Cesàro function spaces Cesp[0,∞). Before, it was also known a result of Luxemburg and Zaanen [19] who have
found the Köthe dual of Ces[0, 1] space. Also, in 1957 Alexiewicz, in his overlooked paper [2], found implicitly the
Köthe dual of the weighted ces∞-spaces. In 1974 problem was solved (isometrically) by Jagers [16] even for weighted
Cesàro sequence spaces, but the proof is far from being easy and elementary. Later on some amount of papers appeared
in the case of sequence spaces as well as for function spaces. Bennett [18] proved representation of the dual (cesp)

∗

for 1 < p < ∞ as the corollary from factorization theorems for Cesàro and ℓp spaces.

Recall [23] that a modulus f is a function from R+ → R+ such that (i) M(v) = 0 if and only if v = 0, (ii)
M(v + w) ≤ M(v) +M(w) for v ≥ 0, w ≥ 0, (iii) M is increasing, (iv) M is continuous from the right at origin.

A modulus function may be bounded or unbounded. For example the function M(ς) = ς
ς+1 is bounded but the

function M(ς) = ςp for 0 < p ≤ 1 is unbounded. Ruckle, used this notion to define the space

L(M) = {u = (ui) ∈ S :

∞∑
i=1

M(|ui|) < ∞}.

For M(u) = up, then L(M) reduces to the well known space ℓp and is given by

ℓp = {u = (ui) ∈ S :

∞∑
i=1

(|ui|p < ∞}.

Also, for M(u) = u, then L(M) reduces to the space ℓ1 and is given by

ℓ1 = {u = (ui) ∈ S :

∞∑
i=1

(|ui| < ∞}.

Several authors as can be found in [12], [15], [20], and some others have used a modulus function to construct some
sequence spaces.

Let X be a sequence space. Then the sequence space X(M) is defined by

X(M) = {u = (uj) ∈ S :

∞∑
j=1

M(|uj |) ∈ X}.

The author in [17] gave an extension of X(f) by considering a sequence of modulus functions M = (Mj) and defined
the space

X(M) = {w = (wm) ∈ S :

∞∑
m=1

Mj(|wm|) ∈ X}.

As in [5], for a vector space Y, a paranorm g : Y → [0,∞) is a function on Y such that (i) g(θ) = 0, (ii) g(v) = g(−v)
and (iii) if {aj} is a sequence of scalars with aj → a and {vj} ⊂ Y with g(vj−v) → 0, then g(ajvj−av) → 0 (continuity
of multiplication), where θ is the zero vector in the linear space Y.

The pair (Y, g) is called a paranormed space if g is a paranorm on Y as can be seen in [3].

We call a space Y to be a Fréchet space if every point in the closure of a subset A of Y is a limit of a sequence of
points of A or in simple language , we call a space to be a Frèchet space if it is a complete linear space.

Here as in [20], we have

ℓ(p) =

{
v = (vi) ∈ S :

∑
i

|vi|pi < ∞
}
,
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where 0 < pi ≤ H < ∞ with H = sup pi < ∞ and G = max(1,H). It is complete with the paranorm

g(v) =

(∑
i

|vi|pi

) 1
G

.

The author in [4] constructed the following space:

C(p) [M, p] =

{
v = (ςk) ∈ S :

∞∑
i=1

(
M

[
1

f

i∑
k=1

|ςi|

])pi

< ∞

}
,

and proved some good results concerning about it.

This whole procedure gave the author the idea to work on and the author is able to introduce the space C(p) (M,Ω, θ)
and construct its various properties.

2 Main results

In this section of text, we introduce the space CΩ
(p) (M, θ), and show it is a Fréchet space.

Following Başarir [5], Et. [9], Freedman [11], Ganie [13]-[14], Jagers [16], Ruckle [23], Savaş [24], we introduce the
following spaces:

C(p) [M,Ω, θ] =

{
v = (ςk) :

∞∑
i=1

(
M

[
1

hi

∑
k∈Ii

|Ωkςk|

])pi

< ∞

}
,

where p = (pi) is a bounded sequence of positive real numbers with H = sup pi < ∞ and G = max(1,H) and Ω = (Ωk)
is a sequence such that Ωk ̸= 0 for all k ∈ N. Also, for any complex η,
eta|pk ≤ max(1, |η|H.

We now begin with the following theorem.

Theorem 2.1. The space CΩ
(p) (M, θ) is linear spaces over C.

Proof . Let ς, τ ∈ CΩ
(p) (M, θ), then

∞∑
i=1

(
M

[
1

hi

∑
k∈Ii

|Ωkςk|

])pi

< ∞ and

∞∑
i=1

(
M

[
1

hi

∑
k∈Ii

|Ωkτk|

])pi

< ∞.

Now, a, b ∈ C, we have

∞∑
i=1

(
M

[
1

hi

∑
k∈Ii

|a(Ωkςk) + b(Ωkτk)|

])pi

≤ max(1, 2H−1)

[ ∞∑
i=1

(
M

[
1

hi

∑
k∈Ii

|Ωkςk|

])pi

+

∞∑
i=1

(
M

[
1

hi

∑
k∈Ii

|Ωkτk|

])pi
]
< ∞.

Consequently, aςk + bτk ∈ CΩ
(p) (M, θ) and hence is linear spaces over C. □

Theorem 2.2. For 1 ≤ pi < ∞, the space CΩ
(p) (M, θ) is a Fréchet space paranormed by

g(ς) =

[ ∞∑
i=1

(
M

[
1

hi

∑
k∈Ii

|Ωkςk|

])pi
] 1

G

, (2.1)

where H = sup pi < ∞ and G = max(1,H).
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Proof . To establish the result, we must show the completeness property of CΩ
(p) (M, θ), as paranormed property is

easy to prove. So, let ς(j) = (ς
(j)
i )i be any Cauchy sequence in CΩ

(p) (M, θ) for each j ∈ N. Therefore, we have

g
(
ς(i) − ς(j)

)
→ 0 as i, j → ∞.

This shows by using (2.1) that

∞∑
n=1

(
M

[
1

hn

∑
k∈In

|Ωk(ς
(i)
k − ς

(j)
k )|

])pn

→ 0 as i, j → ∞ (2.2)

so that for each fixed k, |ς(i)k − ς
(j)
k | → 0 as i, j → ∞.

Hence for each fixed k, ς
(i)
k is a Cauchy sequence in C. But C being complete, it converges, say, ς

(j)
k → ςk for j → ∞.

Thus, for a given ε > 0, we can find a positive integer n0 > 1 such that

n0∑
n=1

(
M

[
1

hn

∑
k∈In

|(Ωk(ς
(i)
k − ς

(j)
k )|

])pn

< εG for i, j > n0. (2.3)

We now let j → ∞ in (2.3), we have

n0∑
n=1

(
M

[
1

hn

∑
k∈In

|Ωk(ς
(i)
k − ςk)|

])pn

< εG for i > n0. (2.4)

Now n0 being arbitrary, so letting n0 → ∞ in (2.4), we have

∞∑
n=1

(
M

[
1

hn

∑
k∈In

|Ωk(ς
(i)
k − ςk)|

])pn

< εG for i > n0.

showing that g
(
ς(i) − ς

)
< ε for all i ≥ n0 and ε as small as we please but positive. This, shows that (ς(i)) converges

to ς in the paranorm of C(p) (M, θ) . But, (ς(i)) ∈ CΩ
(p) (M, θ) and M is continuous, it follows that ς ∈ CΩ

(p) (M, θ) . □

3 Inclusion relations on CΩ
(p) (M, θ)

In this section, we investigate some inclusion relations concerning CΩ
(p) (M, θ).

We first consider the following definitions:

Definition 3.1. For any set D of sequences, the space of multipliers of D, denoted by S(D), is given by

S(D) = {u ∈ S : uς ∈ D for all ς ∈ D}.

Definition 3.2. We say that g satisfies a ∆2-condition, or that g ∈ ∆2, if there is a constant K ≥ 2 such that
g(2t) ≤ Kg(t) for all t ≥ 0.

Theorem 3.3. If p = (pj) and s = (sj) are bounded sequences of positive real numbers with 0 < pj ≤ sj < ∞ for
each j, then CΩ

(p) (M, θ) ⊆ CΩ
(s) (M, θ), for any modulus function M.

Proof . Let ς ∈ CΩ
(p) (M, θ) , then

∞∑
j=1

(
M

[
1

hj

∑
k∈Ii

|Ωkςk|

])pj

< ∞.
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Thus, for sufficiently large j, say j ≥ j0, we have for ε small and positive that

M

[
1

hi

∑
k∈Ii

|Ωkςk|

]
< ε,

for fixed j0 ∈ N. But M being increasing with pj ≤ sj , we conclude that

∞∑
j≥j0

(
M

[
1

hj

∑
k∈Ii

|Ωkςk|

])sj

≤
∞∑

j≥j0

(
M

[
1

hj

∑
k∈Ii

|Ωkςk|

])pj

< ∞.

Consequently, ς ∈ CΩ
(s) (M, θ) , as desired. □

Theorem 3.4. If ∆2-condition is satisfied by the modulus function M, then

ℓ∞ ⊂ S(CΩ
(p) (M, θ) .

Proof . Let ν ∈ ℓ∞ with T = sup
j

|νj | and ς ∈ CΩ
(p) (M, θ) , implies

∞∑
j=1

(
M

[
1

hi

∑
k∈Ii

|Ωkςk|

])pj

< ∞,

and as M satisfies the ∆2-condition, there exists a constant B such that

∞∑
j=1

(
M

[
1

hi

∑
k∈Ii

|Ωk(νkςk)|

])pj

≤
∞∑
j=1

(
M

[
1

hj

∑
k∈Ii

|νk||Ωkςk|

])pj

≤ (B(1 + [T ]))H
∞∑
j=1

(
M

[
1

hi

∑
k∈Ii

|Ωkςk|

])pj

< ∞,

where [T ] represents the integer part of T . Consequently, ν ∈ CΩ
(p) (M, θ) . □

Conclusion: In this paper, Cesàro spaces have been described in details with examples, and we have introduced
the space CΩ

(p) (F , θ) by employing lacunary sequences and sequences of strictly positive real numbers with Ω as
defined in the text. Some basic properties and inclusions relations have been determined. The consequence of the
results obtained in this paper are more general and extensive than the pre-existing known results.

Acknowledgement: The author wish to thank the positive and useful comments of the reviewers that improved
the presentation of the paper.
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