Identifying code number of some Cayley graphs

Somayeh Ahmadia , Ebrahim Vatandoost ${ }^{\text {a,* }}$, Ali Bahraini ${ }^{\text {b }}$
${ }^{a}$ Department of Basic Science, Imam Khomeini International University, P. O. Box 3414896818, Qazvin, Iran
${ }^{b}$ Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran

(Communicated by Sirous Moradi)

Abstract

Let $\Gamma=(V, E)$ be a simple graph. A set C of vertices Γ is an identifying set of Γ if for every two vertices x and y the sets $N_{\Gamma}[x] \cap C$ and $N_{\Gamma}[y] \cap C$ are non-empty and different. Given a graph Γ, the smallest size of an identifying set of Γ is called the identifying code number of Γ and is denoted by $\gamma^{I D}(\Gamma)$. Two vertices x and y are twins when $N_{\Gamma}[x]=N_{\Gamma}[y]$. Graphs with at least two twin vertices are not identifiable graph. In this paper, we study identifying code number of some Cayley graphs.

Keywords: Domination, Identifying code, Cayley graph.
2020 MSC: 5C07

1 Introduction

In this paper, all graphs are assumed to be finite, simple and undirected. We will often use the notation $\Gamma=(V, E)$ to denote the graph with non-empty vertex set $V=V(\Gamma)$ and edge set $E=E(\Gamma)$. An edge of Γ with endpoints u and v is denoted by $u-v$. For every vertex $x \in V(\Gamma)$, the open neighborhood of vertex x is denoted by $N_{\Gamma}(x)$ and defined as $N_{\Gamma}(x)=\{y \in V(\Gamma) \mid x-y\}$. Also the close neighborhood of vertex $x \in V(\Gamma), N_{\Gamma}[x]$, is $N_{\Gamma}[x]=N_{\Gamma}(x) \cup\{x\}$. The degree of a vertex $x \in V(\Gamma)$ is $\operatorname{deg}_{\Gamma}(x)=\left|N_{\Gamma}(x)\right|$.

The complement of graph Γ is denoted by $\bar{\Gamma}$ is a graph with vertex set $V(\Gamma)$ which $e \in E(\bar{\Gamma})$ if and only if $e \notin E(\Gamma)$. For any $\Omega \subseteq V(\Gamma)$, the induced subgraph on Ω, denoted by $\Gamma[\Omega]$. The join of n graphs $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{n}$, denoted by $\Gamma_{1}+\Gamma_{2}+\cdots+\Gamma_{n}$, is a graph obtained from $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{n}$ by joining each vertex of Γ_{i} to all vertices of $\Gamma_{j}(i \neq j$ and $1 \leq i, j \leq n)$.

Let G be a non-trivial group, Ω be an inverse closed subset of G which does not contain the identity element of G, i.e. $\Omega=\Omega^{-1}=\left\{s^{-1} \mid s \in \Omega\right\}$ and $1 \notin \Omega$. The Cayley graph of Γ denoted by $\operatorname{Cay}(G, \Omega)$, is a graph with vertex set G and two vertices a and b are adjacent if and only if $a b^{-1} \in \Omega$.

A set of vertices Γ such as C is a dominating set of graph Γ if for every vertex x of $V(\Gamma)$, is either in C or is adjacent to a vertex in C. It is clear that every isolated vertex is in every dominating set of Γ. Also, a set C is called a separating set of Γ if for each pair u, v of vertices of $\Gamma, N_{\Gamma}[u] \cap C \neq N_{\Gamma}[v] \cap C$ (equivalently, $\left.\left(N_{\Gamma}[u] \Delta N_{\Gamma}[v]\right) \cap C \neq \emptyset\right)$. If a dominating set C in graph Γ is a separating set of Γ, then we said that C is an identifying set of graph Γ and if Γ

[^0]has an identifying set, then we said that Γ is an identifiable graph. Given a graph Γ, the smallest size of an identifying set of Γ is called the identifying code number of Γ and is denoted by $\gamma^{I D}(\Gamma)$. If for two distinct vertices x and y, $N_{\Gamma}[x]=N_{\Gamma}[y]$, then they are called twins. It is noteworthy that a graph Γ is identifiable if and only if Γ is twin free. In recent years much attention drawn to the domination theory which is very interesting branch in graph theory. The concept of domination expanded to other parameters of domination such as 2-rainbow domination, signed domination, Roman domination, total Roman domination number, and identifying code number. For more details, we refer reader to $[2,5,13,15,17$.

The identifying code concept was introduced by Karpovsky et al [12] in 1998. Later, several various families of graphs have been studied; cycles and paths [3, 9, trees [1], triangular and square grids [11] and triangle-free graphs [7]. Camarero et al [4, in 2015, provide a constructive method for finding a wide family of identifying codes over degree four Cayley graphs over finite Abelian groups. Also identifying codes have found applications to various fields. These applications include sensor network monitoring, identifying codes in random networks [8] and the structural analysis of RNA proteins [10].

This paper deals with the study of identifying code number of some Cayley graphs. We show that $C a y(G, \Omega)$ is not an identifiable graph if and only if $\Omega \subseteq N_{C a y(G, \Omega)}[s]$ for some $s \in \Omega$. Also for some finite Abelian group G, with $G=\langle\Omega\rangle, 1 \notin \Omega=\Omega^{-1}$, we determine $\gamma^{I D}(\operatorname{Cay}(G, \Omega))$.

2 Preliminaries

In this section, we give some facts that we are needed in section 3 .
Theorem 2.1. [12] Let Γ be an identifiable graph with n vertices. Then $\gamma^{I D}(\Gamma) \geq\left\lceil\log _{2}(n+1)\right\rceil$.
Lemma 2.2. 16] Let Γ be a graph and C be an identifying set of Γ. If $N_{\Gamma}[x] \triangle N_{\Gamma}[y]=\left\{y_{1}, y_{2}\right\}$, then $y_{1} \in C$ or $y_{2} \in C$.

Lemma 2.3. Let $n_{i}>2$ and $\Gamma \cong K_{n_{1}, n_{2}, \ldots, n_{k}}$ be a complete multipartite graph. Then $\gamma^{I D}(\Gamma)=n-k$, where $n=n_{1}+n_{2}+\cdots+n_{k}$.

Proof .Let $X_{i}=\left\{x_{i 1}, \ldots, x_{i n_{i}}\right\}$, induced subgraph on X_{i} be empty graph and $V(\Gamma)=\cup_{i=1}^{k} X_{i}$. Let C be an identifying set of Γ with minimum cardinality such that $\left|C \cap X_{i}\right| \leq n_{i}-2$ and $\left\{x_{i \ell}, x_{i h}\right\} \cap C=\emptyset$ for some $1 \leq i \leq k$. Then $N_{\Gamma}\left[x_{i \ell}\right] \cap C=N_{\Gamma}\left[x_{i h}\right] \cap C$, which is a contradiction. So $\gamma^{I D}(\Gamma)=|C| \geq n-k$. Now let $D=V(\Gamma) \backslash\left\{x_{i 1} \in X_{i} \mid 1 \leq i \leq k\right\}$. Then $N_{\Gamma}\left[x_{i j}\right] \cap D=\left(D \backslash X_{i}\right) \cup\left\{x_{i j}\right\}$ and $N_{\Gamma}\left[x_{i 1}\right] \cap D=D \backslash X_{i}$ for $2 \leq j \leq n_{i}, 1 \leq i \leq k$. This shows that $N_{\Gamma}[a] \cap D \neq \emptyset$ and $N_{\Gamma}[a] \cap D \neq N_{\Gamma}[b] \cap D$, for every a and b in Γ. So, D is an identifying set of Γ. Thus $\gamma^{I D}(\Gamma) \leq|D|=n-k$. Therefore, $\gamma^{I D}(\Gamma)=n-k$.

Theorem 2.4. (9 , [3) Let $n \geq 4$ be a positive integer and $\Gamma \cong C_{n}$. Then

$$
\gamma^{I D}(\Gamma)= \begin{cases}3 & \text { if } n=4,5 \\ \frac{n}{2} & \text { if } n \geq 6 \text { is even } \\ \frac{n+3}{2} & \text { if } n \geq 7 \text { is odd }\end{cases}
$$

Theorem 2.5. 14 Let $n \geq 6$ be a positive integer. If n is even, then

$$
\gamma^{I D}\left(\overline{C_{n}}\right)= \begin{cases}n-n / 3 & \text { if } n \equiv 0 \quad(\bmod 3) \\ n-\lfloor n / 3\rfloor & \text { if } n \equiv 1 \quad(\bmod 3) \\ n-\lceil n / 3\rceil & \text { if } n \equiv 2(\bmod 3)\end{cases}
$$

and if n is odd, then

$$
\gamma^{I D}\left(\overline{C_{n}}\right)= \begin{cases}n-n / 3 & \text { if } n \equiv 0 \quad(\bmod 3) \\ n-\lceil n / 3\rceil & \text { if } n \equiv 1 \quad(\bmod 3) \\ n-\lfloor n / 3\rfloor & \text { if } n \equiv 2(\bmod 3)\end{cases}
$$

Lemma 2.6. Let $G=\langle\Omega\rangle$ be a finite Abelian group, $1 \notin \Omega=\Omega^{-1}$ and $G \backslash(\Omega \cup\{1\})=\Omega_{1} \cup \Omega_{2}$ such that $\Omega_{1} \cap \Omega_{2}=\emptyset$. If $\Omega_{1} \cup\{1\}$ and $\Omega_{2} \cup\{1\}$ are subgroups of G, then $\left|\Omega_{2} \cup\{1\}\right| \mid\left[G: \Omega_{1} \cup\{1\}\right]$.

Proof . Let $\Omega_{1} \cup\{1\}=H$ and $\Omega_{2}=\left\{x_{1}, \ldots, x_{t}\right\}$. For $i \neq j$ and $1 \leq i, j \leq t$, since $x_{i} x_{j}^{-1} \in \Omega_{2}, H x_{i} \neq H x_{j}$ and so cosets $H=H x_{0}, H x_{1}, H x_{2}, \ldots, H x_{t}$ are distinct. If $G=\cup_{i=0}^{t} H x_{i}$, then $(t+1) \mid[G: H]$. Otherwise, we have $G \neq \cup_{i=0}^{t} H x_{i}$. Let $y_{1} \in G \backslash \cup_{i=0}^{t} H x_{i}$. Then for $0 \leq i \leq t$ and $0 \leq j \leq 1$, the cosets $H x_{i} y_{j}$ are distinct, where $y_{0}=1$. If for $0 \leq i \leq t$ and $0 \leq j \leq 1, G=\cup_{i=0}^{t}\left(\cup_{j=0}^{1} H x_{i} y_{j}\right)$, then $|G|=2(t+1)|H|$ and so $(t+1) \mid[G: H]$. Since G is a finite group, there is $\ell \in \mathbb{N}$ such that $H x_{i} y_{j}$ for $0 \leq i \leq t$ and $0 \leq j \leq \ell$ are distinct and $G=\cup_{i=0}^{t}\left(\cup_{j=0}^{\ell} H x_{i} y_{j}\right)$. Hence $|G|=(t+1) \ell|H|$. Therefore, $(t+1) \mid[G: H]$.

3 Main results

In this section, we prove our main results.
Theorem 3.1. Let G be a finite group and $\Omega \subseteq G$ such that $1 \notin \Omega=\Omega^{-1}$. Then $\operatorname{Cay}(G, \Omega)$ is not an identifiable graph if and only if $\Omega \subseteq N_{\operatorname{Cay}(G, \Omega)}[s]$ for some $s \in \Omega$.

Proof . If $\operatorname{Cay}(G, \Omega)$ is not an identifiable graph, then there are two distinct vertices x and y in G such that $N_{C a y(G, \Omega)}[x]=N_{C a y(G, \Omega)}[y]$. Since x is adjacent to y, there is vertex $s \in \Omega$ such that $y=s x$ and s is unique. Also $\Omega x=\Omega y$, because $N_{C a y(G, \Omega)}[x]=N_{C a y(G, \Omega)}[y]$. So, for every $s_{i} \in \Omega \backslash\{s\}$ there is $s_{j} \in \Omega$ such that $s_{i} x=s_{j} y$ or $s_{j}^{-1} s_{i} x=y$. Thus $s_{j}^{-1} s_{i}=s$ and so $s_{i}=s_{j} s$. This shows that s is adjacent to s_{i}. So $\Omega \subseteq N_{C a y(G, \Omega)}[s]$.
Conversely, suppose that $\Omega \subseteq N_{C a y(G, \Omega)}[s]$, for some $s \in \Omega$. Since $\operatorname{Cay}(G, \Omega)$ is $|\Omega|$-regular graph and $1 \in N_{C a y(G, \Omega)}[s]$, we have $N_{C a y(G, \Omega)}[s]=\Omega \cup\{1\}=N_{C a y(G, \Omega)}[1]$. Therefore, $\operatorname{Cay}(G, \Omega)$ is not an identifiable graph.

Corollary 3.2. Let $G=\langle a\rangle$ be a cyclic group of order $2 n$, where n is even. If $\Omega=\left\{a^{2 k+1} \mid 0 \leq k \leq n-1\right\} \cup\left\{a^{n}\right\}$, then $\operatorname{Cay}(G, \Omega)$ is not an identifiable graph.

Proof . We have $N_{\operatorname{Cay}(G, \Omega)}\left[a^{n}\right]=\Omega \cup\{1\}$ By Theorem 3.1, Cay (G, Ω) is not an identifiable graph.
Theorem 3.3. Let G be a finite group of order n and H be a proper subgroup of G. If $G \backslash H=\Omega$, then $C a y(G, \Omega)$ is an identifiable graph and $\gamma^{I D}(C a y(G, \Omega))=[G: H](|H|-1)$.

Proof. Since H is a subgroup of G and $H \neq G, G=\langle\Omega\rangle$. Also we have $\Omega=\Omega^{-1}$ and $1 \notin \Omega$. Let $[G: H]=k$ and $H a_{1}, H a_{2}, \ldots, H a_{k}$ be the distinct cosets of H in G, where $a_{1}=1$. For h_{1} and h_{2} in H, we have $\left(h_{1} a_{j}\right)\left(h_{2} a_{j}\right)^{-1}=$ $h_{1} h_{2}^{-1} \in H(1 \leq j \leq k)$. So induced subgrphs on $H a_{1}, H a_{2}, \ldots, H a_{k}$ in $C a y(G, \Omega)$ are empty graph. Also for $h a_{j} \in H a_{j}$ and $h^{\prime} a_{\ell} \in H a_{\ell}$ we have $\left(h a_{j}\right)\left(h^{\prime} a_{\ell}\right)^{-1} \notin H$. Hence $h a_{j}$ is adjacent to $h^{\prime} a_{\ell}$. Thus $\operatorname{Cay}(G, \Omega)$ is isomorphic to $K_{n_{1}, \ldots, n_{k}}$ and $n_{1}=\cdots=n_{k}=|H|$. By Lemma 2.3, $\gamma^{I D}(\operatorname{Cay}(G, \Omega))=n-k=[G: H](|H|-1)$.

Corollary 3.4. Let G be a finite group of order $n=2 k$. If $a \in G, o(a)=2, \Omega=G \backslash\{1, a\}$, then $\gamma^{I D}(C a y(G, \Omega))=k$.
Proof. It is clear that $G \backslash \Omega=\{1, a\}$ is a subgroup of G. By Theorem 3.3, $\gamma^{I D}(\operatorname{Cay}(G, \Omega))=k$.
Corollary 3.5. Let $G=\langle\Omega\rangle$ be a finite group of order $2 n \geq 6$, where $\Omega=\Omega^{-1}, 1 \notin \Omega$ and $|\Omega|=n$. If the induced subgraph on Ω in $\operatorname{Cay}(G, \Omega)$ is empty graph, then $\gamma^{I D}(\operatorname{Cay}(G, \Omega))=2 n-2$.

Proof . Since $\operatorname{Cay}(G, \Omega)$ is n-regular and induced subgraph on Ω in $\operatorname{Cay}(G, \Omega)$ is empty graph, so for every $x \in \Omega$, we have $N_{\operatorname{Cay}(G, \Omega)}[x]=G \backslash \Omega \cup\{x\}$. By Theorem 3.1, $\operatorname{Cay}(G, \Omega)$ is an identifiable graph. Also, for every $y \in G \backslash \Omega$ we have $N_{C a y(G, \Omega)}[y]=\Omega \cup\{y\}$. Hence, $\operatorname{Cay}(G, \Omega)$ is isomorphic to $K_{n, n}$. By Lemma 2.3. $\gamma^{I D}(\operatorname{Cay}(G, \Omega))=2 n-2$.

Theorem 3.6. Let G be a finite Abelian group of order n and $\Omega=G \backslash\{1, a, b\}$, where $G=\langle\Omega\rangle, \Omega=\Omega^{-1}$.
i) Let $o(a) \in\{2,4\}$. Then $\operatorname{Cay}(G, \Omega)$ is not an identifiable graph.
ii) Let $o(a)=3$. Then $\gamma^{I D}\left((\operatorname{Cay}(G, \Omega))=\frac{2 n}{3}\right.$.
iii) Let $o(a)=k$ and $k \geq 5$. Then if $k=5$, then $\gamma^{I D}(\operatorname{Cay}(G, \Omega))=\frac{3 n}{5}$, if k is even, then

$$
\gamma^{I D}(\operatorname{Cay}(G, \Omega))= \begin{cases}t(k-k / 3) & \text { if } k \equiv 0(\bmod 3) \\ t(k-\lfloor k / 3\rfloor) & \text { if } k \equiv 1(\bmod 3) \\ t(k-\lceil k / 3\rceil) & \text { if } k \equiv 2(\bmod 3),\end{cases}
$$

and if $k \neq 5$ is odd, then

$$
\gamma^{I D}(\operatorname{Cay}(G, \Omega))= \begin{cases}t(k-k / 3) & \text { if } k \equiv 0(\bmod 3) \\ t(k-\lceil k / 3\rceil) & \text { if } k \equiv 1 \quad(\bmod 3) \\ t(k-\lfloor k / 3\rfloor) & \text { if } k \equiv 2(\bmod 3) .\end{cases}
$$

Proof .

i) If $o(a)=2$, then $o(b)=2$. It is clear that $N_{C a y(G, \Omega)}[a b]=\Omega \cup\{1\}$. If $o(a)=4$, then $b=a^{3}$. We have $N_{C a y(G, \Omega)}\left[a^{2}\right]=\Omega \cup\{1\}$. By Theorem 3.1. $\operatorname{Cay}(G, \Omega)$ is not an identifiable graph.
ii) Let $o(a)=3$. Then $b=a^{-1}=a^{2}$ and so $G \backslash \Omega$ is a subgroup of G. By Theorem 3.3, $\gamma^{I D}(\operatorname{Cay}(G, \Omega))=\frac{2 n}{3}$.
iii) Let $o(a)=k$ and $H=\langle a\rangle$. For every $x \in G \backslash H$, induced subgraph on $H x$ in $C a y(G, \Omega)$ is isomorphic to \bar{C}_{k}. If $t=[G: H]$ and $H=H x_{1}, H x_{2}, \ldots, H x_{t}$ are distinct cosets of H in G, then by definition of Cayley graph, we have

$$
\operatorname{Cay}(G, \Omega)=\operatorname{Cay}(G, \Omega)\left[H x_{1}\right]+\operatorname{Cay}(G, \Omega)\left[H x_{2}\right]+\cdots+\operatorname{Cay}(G, \Omega)\left[H x_{t}\right]
$$

Let $\operatorname{Cay}(G, \Omega)=\Gamma$ and $\operatorname{Cay}(G, \Omega)\left[H x_{i}\right]=\Gamma_{i}$ for $1 \leq i \leq t$. Also let C be an identifying set of $\operatorname{Cay}(G, \Omega)$ and $C \cap H x_{i}=C_{i}$ for $1 \leq i \leq t$. If $1 \leq j \leq k$ and $N_{\Gamma_{i}}\left[a^{j} x_{i}\right] \cap C_{i}=\emptyset$, then $C_{i}=\left\{a^{j-1} x_{i}, a^{j+1} x_{i}\right\}$ and so $N_{\Gamma}\left[a^{j-1} x_{i}\right] \cap C=N_{\Gamma}\left[a^{j+1} x_{i}\right] \cap C$. It is impossible.
Also if $N_{\Gamma_{i}}\left[a^{j} x_{i}\right] \cap C_{i}=N_{\Gamma_{i}}\left[a^{\ell} x_{i}\right] \cap C_{i}$, then $N_{\Gamma}\left[a^{j} x_{i}\right] \cap C=N_{\Gamma}\left[a^{\ell} x_{i}\right] \cap C$, which is a contradiction. So C_{i} is an identifying set of Γ_{i}. Hence $\gamma^{I D}\left(\Gamma_{i}\right) \leq\left|C_{i}\right|$. Thus $\gamma^{I D}(\Gamma) \geq \gamma^{I D}\left(\Gamma_{1}\right)+\cdots+\gamma^{I D}\left(\Gamma_{t}\right)$. Now let D_{i} be an identifying set of Γ_{i} with minimum cardinality, for $1 \leq i \leq t$. It is easy to see that $D=\cup_{i=1}^{t} D_{i}$ is an identifying set of Γ. So $\gamma^{I D}(\Gamma) \leq|D|=\sum_{i=1}^{t}\left|D_{i}\right|=\sum_{i=1}^{t} \gamma^{I D}\left(\Gamma_{i}\right)$. Therefore

$$
\gamma^{I D}(\Gamma)=\sum_{i=1}^{t} \gamma^{I D}\left(\Gamma_{i}\right)=t \gamma^{I D}\left(\overline{C_{k}}\right)
$$

If $k=5$, then $\gamma^{I D}(\Gamma)=\frac{n}{5} \gamma^{I D}\left(\overline{C_{5}}\right)=\frac{n}{5} \gamma^{I D}\left(C_{5}\right)=\frac{3 n}{5}$.
Let $k \geq 6$. Then by Theorem 2.5, if k is even, then

$$
\gamma^{I D}(\Gamma)= \begin{cases}t(k-k / 3) & \text { if } k \equiv 0(\bmod 3) \\ t(k-\lfloor k / 3\rfloor) & \text { if } k \equiv 1 \quad(\bmod 3) \\ t(k-\lceil k / 3\rceil) & \text { if } k \equiv 2(\bmod 3),\end{cases}
$$

and if k is odd, then

$$
\gamma^{I D}(\Gamma)= \begin{cases}t(k-k / 3) & \text { if } k \equiv 0(\bmod 3) \\ t(k-\lceil k / 3\rceil) & \text { if } k \equiv 1 \quad(\bmod 3) \\ t(k-\lfloor k / 3\rfloor) & \text { if } k \equiv 2(\bmod 3)\end{cases}
$$

Theorem 3.7. Let $G=\langle\Omega\rangle$ be a group of order $n, x \in \Omega$ and $o(x)=2$. If $H=(\Omega \backslash\{x\}) \cup\{1\}$ is a subgroup of G, then $\gamma^{I D}(\operatorname{Cay}(G, \Omega))=n-2$.

Proof. Since $o(x)=2, n$ is even. Let $H=\left\{1=h_{1}, h_{2}, \ldots, h_{t}\right\}$. Then for $1 \leq i, j \leq t, h_{i} h_{j}^{-1} \in H$ and $\left(h_{i} x\right)\left(h_{j} x\right)^{-1} \in$ H. So induced subgraphs on H and $H x$ in $\operatorname{Cay}(G, \Omega)$ are isomorphic to complete graph K_{t}. Also for $1 \leq i \leq t$, we have $N_{C a y(G, \Omega)}\left[h_{i}\right]=H \cup\left\{h_{i} x\right\}$ and $N_{C a y(G, \Omega)}\left[h_{i} x\right]=\left\{h_{i}\right\} \cup H x$. By Theorem 3.1, Cay (G, Ω) is an identifiable graph. Since
$\operatorname{Cay}(G, \Omega)$ is a t-regular connected graph, $G=H \cup H x$. Hence $n=2 t$. Let $D=G \backslash\{1, x\}$. Then $N_{C a y(G, \Omega)}\left[h_{i}\right] \cap D=$ $H \backslash\{1\} \cup\left\{h_{i} x\right\}$ and $N_{C a y(G, \Omega)}\left[h_{i} x\right] \cap D=H x \backslash\{x\} \cup\left\{h_{i}\right\}$ for $2 \leq i \leq t$. Also $N_{C a y(G, \Omega)}[1] \cap D=H \backslash\{1\}$ and $N_{C a y(G, \Omega)}[x] \cap D=H x \backslash\{x\}$. Hence D is an identifying set of $\operatorname{Cay}(G, \Omega)$ and so $\gamma^{I D}(\operatorname{Cay}(G, \Omega)) \leq|D|=n-2$. Now let C be an identifying set of $\operatorname{Cay}(G, \Omega)$ with minimum cardinality. Since $\operatorname{Cay}(G, \Omega)$ is a transitive graph, we can assume that $1 \notin C$. We have $N_{C a y(G, \Omega)}[x] \triangle N_{C a y(G, \Omega)}\left[h_{i} x\right]=\left\{1, h_{i}\right\}$ for $2 \leq i \leq t$, By Lemma $2.2, h_{i} \in C$. Also we have $N_{C a y(G, \Omega)}[1] \triangle N_{C a y(G, \Omega)}\left[h_{i}\right]=\left\{x, h_{i} x\right\}$. By Lemma $2.2, x \in C$ or $h_{i} x \in C$. Without loss of generality, we may assume that $x \notin C$. So $h_{i} x \in C$. Hence $H \backslash\{1\} \cup H x \backslash\{x\} \subseteq C$ and so $|C| \geq n-2$.
Therefore, $\gamma^{I D}(\operatorname{Cay}(G, \Omega))=n-2$.
Theorem 3.8. Let G be an Abelian group of order n and H be a proper subgroup of G such that $[G: H]=t$. Also let $x \in G \backslash H, o(x)=2, G \backslash(H \cup\{x\})=\Omega$ and $G=\langle\Omega\rangle$. Then

$$
\gamma^{I D}(\operatorname{Cay}(G, \Omega))= \begin{cases}\frac{3 t}{2} & |H|=3, t \geq 2 \\ 4 & |H|=4, t=2 \\ 2 t-1 & |H|=4, t \geq 3 \\ \frac{t}{2}(|H|-1) & |H| \geq 5, t \geq 2\end{cases}
$$

Proof. Since H is a subgroup of G and $o(x)=2, \Omega=\Omega^{-1}$ and $1 \notin \Omega$. So $C a y(G, \Omega)$ is connected graph. Let $g \in G \backslash H$. Then $H g \subseteq \Omega \cup\{x\}$ and induced subgraph on Hg in $\operatorname{Cay}(G, \Omega)$ is empty graph. By Theorem 3.1, Cay (G, Ω) is an identifiable graph. By Lemma $2.6 t=2 k$, for some $k \in \mathbb{N}$. Let $H=\left\{1=h_{1}, h_{2}, \ldots, h_{\alpha}\right\}, G=\cup_{j=1}^{k} H x y_{j} \cup_{j=1}^{k} H y_{j}$, and C be an identifying set of $\operatorname{Cay}(G, \Omega)$ with minimum cardinality, where $y_{1}=1$. If $\left\{h_{i} y_{j}, h_{\ell} y_{j}, h_{i} y_{j} x, h_{\ell} y_{j} x\right\} \cap C=\emptyset$, for $1 \leq i, \ell \leq \alpha$ and $1 \leq j \leq k$, then $N_{\operatorname{Cay}(G, \Omega)}\left[h_{i} y_{j}\right] \cap C=N_{C a y(G, \Omega)}\left[h_{\ell} y_{j}\right] \cap C$. This is a contradiction. So $\left|C \cap\left(H y_{j} \cup H y_{j} x\right)\right| \geq \alpha-1$. Hence $|C| \geq(\alpha-1) k$ and so $\gamma^{I D}(\operatorname{Cay}(G, \Omega)) \geq(\alpha-1) k$.
Case 1: Let $\alpha=3$ and $\left|C \cap\left(H y_{j} \cup H y_{j} x\right)\right|=2$ for some $1 \leq j \leq k$.
If $C \cap\left(H y_{j} \cup H y_{j} x\right)=\left\{h_{i} y_{j}, h_{\ell} y_{j} x\right\}$, then $N_{C a y(G, \Omega)}\left[h_{i} y_{j}\right] \cap C=N_{C a y(G, \Omega)}\left[h_{\ell} y_{j} x\right] \cap C$, which is false.
If $C \cap\left(H y_{j} \cup H y_{j} x\right)=\left\{h_{i} y_{j}, h_{\ell} y_{j}\right\}$ or $C \cap\left(H y_{j} \cup H y_{j} x\right)=\left\{h_{i} y_{j} x, h_{\ell} y_{j} x\right\}$, then we have $N_{C a y(G, \Omega)}\left[h_{i} y_{j}\right] \cap C=$ $N_{C a y(G, \Omega)}\left[h_{\ell} y_{j} x\right] \cap C$, which is not true. Hence, for every $1 \leq j \leq k,\left|C \cap\left(H y_{j} \cup H y_{j} x\right)\right|=3$ and so $|C| \geq 3 k$. It is easy to see that $D=\cup_{j=1}^{k} H y_{j}$ is an identifying set of $\operatorname{Cay}(G, \Omega)$ and so $\gamma^{I D}(\operatorname{Cay}(G, \Omega)) \leq|D|=3 k$. Therefore, $\gamma^{I D}(\operatorname{Cay}(G, \Omega))=3 k$.
Case 2: Let $\alpha=4$. If $t=2$, then by Theorem 2.1. $\gamma^{I D}(G) \geq\left\lceil\log _{2}(n+1)\right\rceil$, we have $\gamma^{I D}(\operatorname{Cay}(G, \Omega)) \geq 4$. It is easy to see that H is an identifying set of $\operatorname{Cay}(G, \Omega)$ and so $\gamma^{I D}(\operatorname{Cay}(G, \Omega)) \leq 4$. Therefore, $\gamma^{I D}(\operatorname{Cay}(G, \Omega))=4$.
Let $\alpha=4$ and $t \geq 3$. Then $\left|C \cap\left(H y_{j} \cup H y_{j} x\right)\right| \geq 3$ for $1 \leq j \leq k$.
Now let $\left|C \cap\left(H y_{j} \cup H y_{j} x\right)\right|=3$ for $j \in\{i, \ell\}$. Then there are two elements g_{1} and g_{2} in G such that $N_{C a y(G, \Omega)}\left[g_{1}\right] \cap C=$ $N_{C a y(G, \Omega)}\left[g_{2}\right] \cap C$. It is impossible. So $|C| \geq 4(k-1)+3=4 k-1$.
Now let $D=\left(\cup_{j=1}^{k} H y_{j}\right) \backslash\left\{h_{4} y_{k}\right\}$. Then $N_{C a y(G, \Omega)}\left[h_{i} y_{j}\right] \cap D=\left\{h_{i} y_{j}\right\} \cup\left(D \backslash H y_{j}\right)$ and $N_{C a y(G, \Omega)}\left[h_{i} y_{j} x\right] \cap D=D \backslash\left\{h_{i} y_{j}\right\}$ for $1 \leq i \leq \alpha$ and $1 \leq j \leq k-1$. Also we have

$$
\begin{gathered}
N_{C a y(G, \Omega)}\left[h_{i} y_{k}\right] \cap D=\left\{h_{i} y_{k}\right\} \cup\left(D \backslash H y_{k}\right) \\
N_{C a y(G, \Omega)}\left[h_{i} y_{k} x\right] \cap D=D \backslash\left\{h_{i} y_{k}\right\} \\
N_{C a y(G, \Omega)}\left[h_{4} y_{k}\right] \cap D=D \backslash H y_{k} \\
N_{C a y(G, \Omega)}\left[h_{4} y_{k} x\right] \cap D=D,
\end{gathered}
$$

where $1 \leq i \leq 3$. Hence D is an identifying set of $\operatorname{Cay}(G, \Omega)$ and so $\gamma^{I D}(\operatorname{Cay}(G, \Omega)) \leq|D|=4 k-1$. Therefore, $\gamma^{I D}(\operatorname{Cay}(G, \Omega))=4 k-1$.
Case 3: Let $\alpha \geq 5$. Then $\gamma^{I D}(\operatorname{Cay}(G, \Omega)) \geq k(\alpha-1)$.
Now let $D=\left\{h_{i} y_{j} \mid 1 \leq i \leq \alpha-3,1 \leq j \leq k\right\} \cup\left\{h_{\alpha-2} y_{j}, h_{\alpha-1} y_{j} \mid 1 \leq j \leq k\right\}$. Then $N_{\operatorname{Cay}(G, \Omega)}\left[h_{i} y_{j}\right] \cap D=$ $\left\{h_{i} y_{j}\right\} \cup\left(D \backslash H y_{j}\right)$ and $N_{C a y(G, \Omega)}\left[h_{i} y_{j} x\right] \cap D=D \backslash\left\{h_{i} y_{j}, h_{\alpha-2} y_{j}, h_{\alpha-1} y_{j}\right\}$ for $1 \leq i \leq \alpha-3,1 \leq j \leq k$. Also for $1 \leq j \leq k$, we have

$$
\begin{gathered}
N_{C a y(G, \Omega)}\left[h_{\alpha-2} y_{j}\right] \cap D=D \backslash\left(\left\{h_{\alpha-2} y_{j} x\right\} \cup H y_{j}\right) \\
N_{\text {Cay }(G, \Omega)}\left[h_{\alpha} y_{j} x\right] \cap D=D \backslash\left\{h_{\alpha-2} y_{j} x, h_{\alpha-1} y_{j} x\right\} \\
N_{C a y(G, \Omega)}\left[h_{\alpha-1} y_{j}\right] \cap D=D \backslash\left(\left\{h_{\alpha-1} y_{j} x\right\} \cup H y_{j}\right) \\
N_{C a y(G, \Omega)}\left[h_{\alpha-1} y_{j} x\right] \cap D=D \backslash\left\{h_{\alpha-2} y_{j} x\right\}
\end{gathered}
$$

$$
\begin{gathered}
N_{C a y(G, \Omega)}\left[h_{\alpha-2} y_{j} x\right] \cap D=D \backslash\left\{h_{\alpha-1} y_{j} x\right\} \\
N_{C a y(G, \Omega)}\left[h_{\alpha} y_{j}\right] \cap D=D \backslash H y_{j} .
\end{gathered}
$$

Hence, D is an identifying set of $\operatorname{Cay}(G, \Omega)$ and so $\gamma^{I D}(\operatorname{Cay}(G, \Omega)) \leq|D|=k(\alpha-1)$. Therefore, $\gamma^{I D}(\operatorname{Cay}(G, \Omega))=$ $k(\alpha-1)=\frac{t}{2}(|H|-1)$.

Corollary 3.9. Let $G=\langle a\rangle$ be a cyclic group of order $2 n$, where n is odd. If $\Omega=\left\{a^{2 i+1} \mid 0 \leq i \leq n-1\right\} \backslash\left\{a^{n}\right\}$, then

$$
\gamma^{I D}(\operatorname{Cay}(G, \Omega))= \begin{cases}3 & n=3 \\ n-1 & n \neq 3\end{cases}
$$

Proof. It is easy to see that if $H=\left\langle a^{2}\right\rangle$, then $G \backslash \Omega=H \cup\left\{a^{n}\right\}$. By Theorem 3.8

$$
\gamma^{I D}(\operatorname{Cay}(G, \Omega))= \begin{cases}3 & n=3 \\ n-1 & n \neq 3\end{cases}
$$

Theorem 3.10. Let $G_{1}=\left\langle\Omega_{1}\right\rangle, G_{2}=\left\langle\Omega_{2}\right\rangle, \operatorname{Cay}\left(G_{1} \times G_{2}, \Omega_{1} \times \Omega_{2}\right)=\Gamma, \operatorname{Cay}\left(G_{1}, \Omega_{1}\right)=\Gamma_{1}$ and $\operatorname{Cay}\left(G_{2}, \Omega_{2}\right)=\Gamma_{2}$, where $1 \notin \Omega_{i}=\Omega_{i}^{-1}$ and $1 \leq i \leq 2$. If Γ_{1} and Γ_{2} are identifiable graphs, then Γ is an identifiable graph and $\gamma^{I D}(\Gamma) \leq \gamma^{I D}\left(\Gamma_{1}\right) \cdot \gamma^{I D}\left(\Gamma_{2}\right)$.

Proof . Let $\Omega_{1}=\left\{s_{1 i} \mid 1 \leq i \leq \alpha\right\}, \Omega_{2}=\left\{s_{2 j} \mid 1 \leq j \leq \beta\right\}$ and $\Omega_{1} \times \Omega_{2} \subseteq N_{\Gamma}\left[\left(s_{1 \ell}, s_{2 k}\right)\right]$ for some $\left(s_{1 \ell}, s_{2 k}\right) \in \Omega_{1} \times \Omega_{2}$. Then for every $1 \leq i \leq \alpha$ and $1 \leq j \leq \beta$ with $(i \neq \ell, j \neq k),\left(s_{1 i}, s_{2 j}\right)\left(s_{1 \ell}, s_{2 k}\right) \in \Omega_{1} \times \Omega_{2}$.
So there are $s_{1 h} \in \Omega_{1}$ and $s_{2 f} \in \Omega_{2}$ such that $\left(s_{1 i}, s_{2 j}\right)\left(s_{1 \ell}, s_{2 k}\right)=\left(s_{1 h}, s_{2 f}\right)$. Hence $s_{1 i} s_{1 \ell}=s_{1 h}$ and $s_{2 j} s_{2 k}=s_{2 f}$. Thus $N_{\Gamma_{1}}\left[s_{1 \ell}\right]=\Omega_{1} \cup\{1\}$. By Theorem 3.1, $\operatorname{Cay}\left(G_{1}, \Omega_{1}\right)$ is not identifiable graph, which is a contradiction. Hence Γ is an identifiable graph. Let C_{i} be an identifying set of Γ_{i} with minimum cardinality, for $i \in\{1,2\}$ and $C=C_{1} \times C_{2}$. For every $y_{1} \in G_{1}$ and $y_{2} \in G_{2}$, we have $N_{\Gamma_{1}}\left[y_{1}\right] \cap C_{1} \neq \emptyset$ and $N_{\Gamma_{2}}\left[y_{2}\right] \cap C_{2} \neq \emptyset$. So $N_{\Gamma}\left[\left(y_{1}, y_{2}\right)\right] \cap C \neq \emptyset$. This shows that C is a dominating set of Γ. Let $\left(y_{1}, y_{2}\right)$ and $\left(y_{1}^{\prime}, y_{2}^{\prime}\right)$ be two distinct vertices in $G_{1} \times G_{2}$. Since $N_{\Gamma_{1}}\left[y_{1}\right] \cap C_{1} \neq N_{\Gamma_{1}}\left[y_{1}^{\prime}\right] \cap C_{1}$ and $N_{\Gamma_{2}}\left[y_{2}\right] \cap C_{2} \neq N_{\Gamma_{2}}\left[y_{2}^{\prime}\right] \cap C_{2}$, there are two elements $x \in C_{1}$ and $y \in C_{2}$ such that $y_{1}-x+y_{1}^{\prime}$ and $y_{2}-y+y_{2}^{\prime}$. Hence $(x, y) \in C \cap N_{\Gamma}\left[\left(y_{1}, y_{2}\right)\right]$ and $(x, y) \notin C \cap N_{\Gamma}\left[\left(y_{1}^{\prime}, y_{2}^{\prime}\right)\right]$. So $N_{\Gamma}\left[\left(y_{1}, y_{2}\right)\right] \cap C \neq N_{\Gamma}\left[\left(y_{1}^{\prime}, y_{2}^{\prime}\right)\right] \cap C$. Hence C is an identifying set of Γ. Therefore, $\gamma^{I D}(\Gamma) \leq|C|=\left|C_{1}\right| \cdot\left|C_{2}\right|=\gamma^{I D}\left(\Gamma_{1}\right) \cdot \gamma^{I D}\left(\Gamma_{2}\right)$.

For an integer $k \geq 1$, let $A_{k}=\left(V_{k}, E_{k}\right)$ be the graph with vertex set $V_{k}=\left\{x_{1}, \ldots, x_{2 k}\right\}$ and edge set $E_{k}=\left\{x_{i}-\right.$ $\left.x_{j}| | i-j \mid \leq k-1\right\}$.

Also, let \mathscr{A} be the closure of $\left\{A_{i} \mid i=1,2, \ldots\right\}$ with respect to operation \bowtie. In the next theorem, Foucaud et al. showed that for any twin free graph $\Gamma \notin\left\{K_{1, n-1}\right\} \cup(\mathscr{A}, \bowtie) \cup(\mathscr{A}, \bowtie) \bowtie K_{1}, \gamma^{I D}(\Gamma) \leq|V(\Gamma)|-2$.

Theorem 3.11. 6 Let Γ be an identifiable graph of order n. Then $\gamma^{I D}(\Gamma)=n-1$ if and only if $\Gamma \not \approx \overline{K_{2}}$ and $\Gamma \in\left\{K_{1, n-1}\right\} \cup(\mathscr{A}, \bowtie) \cup(\mathscr{A}, \bowtie) \bowtie K_{1}$.

Note: Foucaud et al [6, classify all graphs of order n with identifying code number $n-1$. In Theorem 3.7 and Corollary 3.5 we obtain graphs of order n with identifying code number of $n-2$.

Question: Which graphs of order n have identifying code number of $n-2$?

Acknowledgments

The authors are very grateful to the referee for his/her useful comments.

References

[1] D. Auger, Minimal identifying codes in trees and planar graphs with large girth, Eur. J. Combin. 31 (2010), 1372-1384.
[2] J. Amjadi, S. Nazari-Moghaddam, S. M. Sheikholeslami and L. Volkmann, Total roman domination number of trees, Aust. J. Combin. 69 (2017), 271-285.
[3] C. Chen, C. Lu and Z. Miao, Identifying codes and locating-dominating sets on paths and cycles, Discrete Appl. Math. 159 (2011), 1540-1547.
[4] C. Camarero, C. Martínez and R. Beivide, Identifying codes of degree 4 Cayley graphs over Abelian groups, Adv. Math. Commun. 9 (2015), 129.
[5] M. Dettlaff, M. Lemanska, M. Miotk, J. Topp, R. Ziemann and P. Zylinski, Graphs with equal domination and certified domination numbers, Opuscula Math. 39 (2019), 815-827.
[6] F. Foucaud, E. Guerrini, M. Kovse, R. Naserasr, A. Parreau and P. Valicov, Extremal graphs for the identifying code problem, Eur. J. Combin. 32 (2011), 628-638.
[7] F. Foucaud, R. Klasing, A. Kosowski and A. Raspaud, On the size of identifying codes in triangle-free graphs, Discrete Appl. Math. 160 (2010), 1532-1546.
[8] A. Frieze, R. Martin, J. Moncel, M. Ruszinko and C. Smyth, Codes identifying sets of vertices in random networks, Discrete Math. 307 (2007), 1094-1107.
[9] S. Gravier, J. Moncel and A. Semri, Identifying codes of cycles, Eur. J. Combin. 27 (2006), 767-776.
[10] T. Haynes, D. Knisley, E. Seier and Y. Zou, A quantitative analysis of secondary RNA structure using domination based parameters on trees, BMC Bioinf. 7 (2006), 108.
[11] I. Honkala and T. Laihonen, On identifying codes in the triangular and square grids, SIAM J. Comput. 33 (2004), 304-312.
[12] M.G. Karpovsky, K. Chakrabarty and L.B. Levitin, On a new class of codes for identifying vertices in graphs, IEEE Trans. Inf. Theory 44 (1998), 599-611.
[13] Z. Mansouri and D.A. Mojdeh, Outer independent rainbow dominating functions in graphs, Opuscula Math. 40 (2020), 599-615.
[14] R. Nikandish, O. Khani Nasab and E. Dodonge, Minimum identifying codes in some graphs differing by matchings, Discrete Math. Algorithms Appl. 12 (2020), 2050046.
[15] A. Shaminezhad and E. Vatandoost , On 2-rainbow domination number of functigraph and its complement, Opuscula Math. 40 (2020), 617-627.
[16] A. Shaminezhad, E. Vatandoost and K. Mirasheh, The identifying code number and mycielski's construction of graphs, Trans. Combin. Articles in press, doi.org/10.22108/TOC.2021.126368.1794.
[17] E. Vatandoost and F. Ramezani, On the domination and signed domination numbers of zero-divisor graph, Electron. J. Graph Theory Appl. 4 (2016), 148-156.

[^0]: *Corresponding author
 Email addresses: somaiya.ahmadi@edu.ikiu.ac.ir (Somayeh Ahmadi), vatandoost@sci.ikiu.ac.ir (Ebrahim Vatandoost), a.bahraini@iauctb.ac.ir (Ali Bahraini)

