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Abstract

In this paper, the regularity of bilinear Fourier integral operators on L2 × L2 are determined in the framework of
Besov spaces. Our result improves the L2 × L2 → L1 boundedness of those operators with symbols in the bilinear
Hörmander classes.
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1 Introduction

The results of this paper extend previous findings on bilinear pseudodifferential operators, which were introduced
and thoroughly researched by Coifman and Meyer [11, 12, 13]. They have the following form

Opa(u1, u2)(x) =
1

(2π)2n

∫
R2n

eix(ξ1+ξ2)a(x, ξ1, ξ2)û1(ξ1)û2(ξ2)dξ1dξ2. (1.1)

The Calderón-Zygmund hypothesis has had an impact on the research of multi-linear operators. Indeed, many
of Coifman-Meyer’s pioneering discoveries [11, 12, 13] are the construction of pseudodifferential operators in terms of
Calderón-Zygmund type singular integrals. Their multi-linear technique has had a huge impact on operator theory
and partial differential equations. For example in [13], the boundedness of a class of translation invariant bilinear
operators on Lebesgue spaces has been proved.

Moreover, Grafakos and Torres [15] treated a bilinear Calderón-Zygmund theory that allowed those conclusions
to be extended to non-translation invariant bilinear pseudodifferential operators whose symbols depend on the space
variable.

A brief examination and discussion of applications to partial differential equations can be found in [5], and a
thorough analysis of bilinear pseudo-differential operators with symbols in bilinear Hörmander classes can be found
in [9].

For a more recent contribution on Triebel-Lizorkin and local Hardy spaces, see [19].
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Another set of results concerns bilinear (and multi-linear) operators with non-smooth symbols. [6] was the first to
notice their continuous features on modulation spaces.

These operators, unlike conventional bilinear pseudodifferential operators studied in, for example, [13], are handled
using time–frequency analysis techniques (see also [2, 3, 7, 8, 9, 14, 20, 21]).

It’s merely a matter of adding an appropriate oscillation component to the bilinear pseudodifferential operator
defined in the form (1.1) to get a bilinear Fourier integral operator.

In this paper, we often use the notation ξ for the pair (ξ1, ξ2) ∈ R2n.

We’re interested in a particular class of bilinear Fourier integral operators having the following form

Iϕ,a(u1, u2)(x) =
1

(2π)2n

∫
R2n

eiϕ(x,ξ)a(x, ξ)û1(ξ1)û2(ξ2)dξ1dξ2.

where a ∈ BSm1,m2

δ,ρ and ϕ ∈ Φ (see the next section for definitions).

The aim of this work is to extend results obtained in [17] for a bilinear Fourier integral operators. We will treat
the global boundedness of Iϕ,a on L2(Rn)× L2(Rn).

Let us now describe the paper’s structure. The crucial notations and preliminaries that will be used throughout
the work are introduced in the second section.

Following that, we’ll go over some basic tools and necessary lemmas which will serve as the starting point for our
research. And the last section is devoted to prove our main goal.

We will conclude this section by stating why bilinear Fourier integral operators are important to examine. We
discuss the problem of confining solutions of certain hyperbolic partial differential equations along half-space subspaces,
which is inspired by some restriction difficulties. We present a typical problem that may arise in the case of the wave
equation on R2n×]0,∞[.

Consider the wave equation on R2n×]0,∞[ with coordinates (x, t), where x = (x1;x2) ∈ R2n and t > 0 ∂2t f(x, t) = ∆xf(x, t),
f(x, 0) = v1(x1)v2(x2),
∂tf(x, 0) = u1(x1)u2(x2).

For each fixed t, the solution f(x, t) can be written as a sum of Fourier integral operators with phase functions
ϕ±(x, ξ) = xξ ± t

√
|ξ1|2 + |ξ2|2, where ξ = (ξ1, ξ2) ∈ R2n is the dual variable of (x1, x2).

When we consider the restriction of the solution f(x, t) along the diagonal x1 = x2, we obtain two bilinear Fourier
integral operators with phases ϕ+ and ϕ− acting on the pairs of functions (u1, u2) and (v1, v2). When the initial data
u1, u2, v1, v2 lie in L2(Rn), it is natural to study the boundedness of these bilinear Fourier integral operators.

2 Preliminaries

2.1 Notations and definitions

In this sequel we define the class of amplitudes and phase functions that appear in the definition of operators
treated here. But at first we recall some notations that will be used.

We assume n ∈ N throughout the whole paper unless otherwise noted. In particular n ̸= 0. For all x, ζ ∈ Rn we
denote

xζ :=

n∑
j=0

xjζj and ⟨ζ⟩ := (1 + |ζ|2)1/2.

We set for all R > 0 and L > n

SR(u)(x) = Rn
∫
Rn

|u(y)|
(1 +R|x− y|)L

dy,

and simply write S(u) for R = 1.

In addition, for all u ∈ C∞(Rn) and τ ∈ Rn we define

χτ (u)(x) = u(x− τ)
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Partial derivatives with respect to a variable x ∈ Rn scaled with the factor −i are denoted by

Dα
x := (−i)|α|∂αx := (−i)|α|∂α1

x1
. . . ∂αn

xn
,

where α = (α1, . . . , αn) ∈ Nn is a multi-index and |α| =
∑n
j=1 αj is the length of α. let us denote by B(x, r) the

euclidean ball centered at x with radius r > 0.

The usual inner product of u, v ∈ L2(Rn) is denoted by ⟨u, v⟩, and the notation |u(x)| ≲ |v(x)| means that
|u(x)| ≤ C|v(x)| for some unspecified constant C > 0.

Let S(Rn) be the space of rapidly decreasing smooth functions (Schwarz space), we define the Fourier transform
û and its inverse F−1(u) of u ∈ S(Rn) by

û(ζ) = F(u)(ζ) =

∫
Rn

e−ixζu(x)dx and F−1(u)(x) =
1

(2π)n

∫
Rn

eiζxu(x)dζ

Definition 2.1 (The amplitude). Let m1,m2 ∈ R and 0 ≤ δ, ρ ≤ 1. We denote BSm1,m2

δ,ρ the class of all functions

a(x, ξ1, ξ2) ∈ C∞(R3n) such that for all α, β1, β2 ∈ Nn there exists Cα,β1,β2
> 0 we have∣∣∣∂αx ∂β1

ξ1
∂β2

ξ2
a(x, ξ1, ξ2)

∣∣∣ ≤ Cα,β1,β2
⟨ξ1⟩m1+δ|α|−ρ|β1|⟨ξ2⟩m2+δ|α|−ρ|β2|

Remark 2.2. BSm1,m2

δ,ρ is called the bilinear Hörmander class.

Definition 2.3 (The strong non-degeneracy condition). A real value function ϕ(x, ξ1, ξ2) ∈ C2 (Rn × Rn\{0} × Rn\{0})
satisfies the strong non-degeneracy condition, if there exist c1, c2 > 0 such that∣∣∣∣det∂2ϕ(x, ξ1, ξ2)∂x∂ξ1

∣∣∣∣ ≥ c1 for all (x, ξ1, ξ2) ∈ Rn × Rn\{0} × Rn\{0},

and ∣∣∣∣det∂2ϕ(x, ξ1, ξ2)∂x∂ξ2

∣∣∣∣ ≥ c2 for all (x, ξ1, ξ2) ∈ Rn × Rn\{0} × Rn\{0}.

Definition 2.4 (The phase function). We denote by Φ the space of all real valued function ϕ(x, ξ1, ξ2) ∈ C∞(Rn×
Rn\{0} × Rn\{0}), such that ϕ(x, ξ1, ξ2) is positively homogenous of degree 1 jointly in the variables (ξ1, ξ2), and
satisfies the strong non-degeneracy condition.

Example 2.5. For all k ∈ R the phase function ϕ(x, ξ1, ξ2) = kx(ξ1 + ξ2) is belonging to Φ

2.2 Basic tools

In this section we will use a dyadic partition of unity (ψj)j≥0 ⊂ C∞
0 (Rn) such that∑

j≥0

ψj(ξ) = 1 ∀ξ ∈ Rn,

and
supp ψj ⊆ {ξ ∈ Rn : 2j−1 ≤ |ξ| ≤ 2j+1} ∀j ≥ 1.

The dyadic partition of unity can be constructed such that supp ψ0 ⊂ B(0Rn , 2), ψj(ξ) := ψ1(2
1−jξ) for all j ≥ 1

holds ∣∣∂αξ ψj(ξ)∣∣ ≤ C2−|α|j ∥∥∂αξ ψ1

∥∥
L∞ ∀α ∈ Nn0 , j ≥ 0.

Moreover, we note that

f(x) =
∑
j≥0

ψj(Dx)f(x) ∀f ∈ S(Rn),

where
ψj(Dx)f = F−1[ψj(ξ)f̂(ξ)].
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Definition 2.6. Let s ∈ R, 1 ≤ p, q ≤ ∞. Then the Besov space Bsp,q(Rn) is defined by

Bsp,q(Rn) = {u ∈ S ′(Rn) : ∥u∥Bs
p,q

<∞},

where

if q <∞ ∥u∥Bs
p,q

:=

∑
j≥0

2jsq ∥ψj(Dx)u∥qLp

 1
q

,

and
if q = ∞ ∥u∥Bs

p,∞
:= sup

j≥0
2jsq ∥ψj(Dx)u∥Lp .

Here the exponent s is the order of Bsp,q, p is called integration exponent, and q is called summation exponent.

Remark 2.7. 1. It is well known that the definition of Besov spaces Bsp,q is independent of the choice of (ψj)j≥0 .

2. For all s > 0. Then Bs∞,∞ are called Hölder-Zygmund spaces.

3. Bs2,2 is identical with Sobolev spaces Hs

Lemma 2.8. Let s ∈ R, 1 ≥ p, q1, q2 ≥ ∞, and τ > 0. Then

if q1 ≤ q2 then Bsp,q1 ↪→ Bsp,q2 ,

and
Bs+τp,∞ ↪→ Bsp,1.

Proof . See [1] □

We will investigate the decomposition of a in the rest of this section, assuming m1,m2 ∈ R and a ∈ BSm1,m2

0,0 . Let
(ψj)j≥0 be a dyadic partition of unity and φ ∈ S(Rn) such that

suppφ ⊂ [−1, 1]n,

and ∑
α∈Zn

φ(ξ − α) = 1 ∀ξ ∈ Rn.

We decompose as follows using these functions

a(x, ξ1, ξ2) =
∑
k∈N2

∑
j∈N

aj,k(x, ξ1, ξ2) =
∑
k∈N2

∑
α∈Z2n

∑
j∈N

aj,α,k(x, ξ1, ξ2) (2.1)

where k = (k1, k2), α = (α1, α2) and

aj,k(x, ξ1, ξ2) := [ψj(Dx)a](x, ξ1, ξ2)ψk1(ξ1)ψk2(ξ2),

and
aj,α,k(x, ξ1, ξ2) := aj,k(x, ξ1, ξ2)φ(ξ1 − α1)φ(ξ2 − α2).

In order to prove our main result, we must use the following lemmas.

Lemma 2.9. Let 2 ≥ r ≥ ∞, and let Λ be a finite subset of Zn. For each N ≥ 0, we have∑
α1∈Λ

∑
α2∈Zn

+
∑
α2∈Λ

∑
α1∈Zn

+
∑
µ∈Λ

∑
α1+α2=µ

∣∣〈Iϕ,aj,α,k
(u1, u2), v

〉∣∣
≲ 2k1m1+k2m2−jN (card(Λ))

1/2 ∥u1∥L2∥u2∥L2∥v∥Lr

for all j ∈ N and k = (k1, k2) ∈ N2.
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Proof . Let φ̃ ∈ C∞
c (Rn) such that

supp φ̃ ⊂ [−2, 2]n and φ̃ |[−1,1]n≡ 1.

For all α1, α2, µ ∈ Zn and j ≥ 0, we set

ui,αi
= φ̃(D − αi)ui, vj,µ = φ̃

(
D − µ

2j+2

)
v.

Then, we have φ̃φ = φ that
Iϕ,aj,α,k

(u1, u2) = Iϕ,aj,α,k
(u1,α1

, u2,α2
). (2.2)

Hence, it follows from (2.2) that

⟨Iϕ,aj,α,k
(u1, u2), v⟩ = ⟨Iϕ,aj,α,k

(u1, u2), vj,α1+α2⟩
= ⟨Iϕ,aj,α,k

(u1,α1 , u2,α2), vj,α1+α2⟩.
(2.3)

By (2.3), [17, Lemma 3.2] with N replaced by ϱ = N + n/r + n/2 and Schwarz’s inequality, we have∑
α1∈Λ

∑
α2∈Zn

|⟨Iϕ,aj,α,k
(u1, u2), v⟩| =

∑
α1∈Λ

∑
α2∈Zn

|⟨Iϕ,aj,α,k
(u1,α1 , u2,α2), vj,α1+α2⟩|

≲ 2k1m1+k2m2−jϱ
∑
α1∈Λ

∑
α2∈Zn

∫
Rn

S(u1,α1)(x)S(u2,α2)(x)|vj,α1+α2(x)|dx

≲ 2k1m1+k2m2−jϱ

×
∑
α1∈Λ

∫
Rn

S(u1,α1)(x)

( ∑
α2∈Zn

(S(u2,α2)(x))
2

)1/2( ∑
α2∈Zn

|vj,α1+α2(x)|2
)1/2

dx

≲ 2k1m1+k2m2−jϱ(card(Λ))1/2

×
∫
Rn

( ∑
α1∈Zn

(S(u1,α1
)(x))

2

)1/2( ∑
α2∈Zn

(S(u2,α2
)(x))

2

)1/2
∑
µ∈Zn

|vj,µ(x)|2
1/2

dx.

It follows from [17, Lemma 3.1] that( ∑
α1∈Zn

(S(u1,α1
)(x))

2

)1/2

≲

( ∑
α1∈Zn

S(|u1,α1
|2)(x)

)1/2

≲
(
S(S(|u1|2))(x)

)1/2
≲
(
S(|u1|2)(x)

)1/2
and ∑

µ∈Zn

|vj,µ(x)|2
1/2

≲ 2n(1+j/2)
(
S2j+2(|v|2)(x)

)1/2
≲ 2jn

(∫
Rn

dy

(1 + 2j |x− y|)q

)1/q (∫
Rn

|v(y)|rdy
)1/r

≲ 2jn(1/2+1/r)∥v∥Lr ,

where we use Holder’s inequality with 1/r + 1/q = 1/2 in the second inequality.
As a result of schwarz’s and Young’s inequalities, we get∑

α1∈Λ

∑
α2∈Zn

|⟨Iϕ,aj,α,k
(u1, u2), v⟩| ≲ 2k1m1+k2m2−jNcard(Λ)

(∫
Rn

(
S(|u1|2)(x)

)1/2 (
S(|u2|2)(x)

)1/2
dx

)
∥v∥Lr

≲ 2k1m1+k2m2−jNcard(Λ)∥
(
S(|u1|2)(x)

)1/2 ∥L2∥
(
S(|u2|2)(x)

)1/2 ∥L2∥v∥Lr

≲ 2k1m1+k2m2−jNcard(Λ)∥u1∥L2∥u2∥L2∥v∥Lr .
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We may also estimate the total
∑
α2∈Λ

∑
α1∈Zn in the same way.

Next, we consider the sum
∑
µ∈Λ

∑
α1+α2=µ

. By (2.3), [17, Lemma 3.2] and Schwarz’s inequality,∑
µ∈Λ

∑
α1+α2=µ

|⟨Iϕ,aj,α,k
(u1, u2), v⟩| =

∑
µ∈Λ

∑
α1+α2=µ

|⟨Iϕ,aj,α,k
(u1,α1 , u2,α2), vj,α1,α2⟩|

≲ 2k1m1+k2m2−jϱ
∑
µ∈Λ

∑
α1∈Zn

∫
Rn

S(u1,α1)(x)S(u2,µ−α1)(x)|vj,µ(x)|dx

≲ 2k1m1+k2m2−jϱ
∑
µ∈Λ

∫
Rn

( ∑
α1∈Zn

S2(u1,α1)(x)

)1/2( ∑
α1∈Zn

S2(u2,µ−α1)(x)

)1/2

|vj,µ(x)|dx

≲ 2k1m1+k2m2−jϱcard(Λ)

∫
Rn

( ∑
α1∈Zn

S2(u1,α1
)(x)

)1/2( ∑
α2∈Zn

S2(u2,α2
)(x)

)1/2
∑
µ∈Zn

|vj,µ(x)|2
1/2

dx.

The rest of the proof is the same as before. The proof has been established. □

We’ll end this section by quoting Schur’s lemma.

Lemma 2.10 (Schur’s lemma). Let (Uk,l)k,l≥0 be a sequence of positive numbers satisfying

sup
k≥0

∑
l≥0

Uk,l <∞ and sup
l≥0

∑
k≥0

Uk,l <∞,

then ∑
k≥0

∑
l≥0

Uk,lVkWl

2

≲
∑
k≥0

V 2
k

∑
l≥0

W 2
l ,

for all positive sequences (Vk)k≥0 and (Wl)l≥0.

3 The boundedness of Iϕ,a on L2 × L2

We have the following result concerning the boundedness on L2(Rn) × L2(Rn) of the bilinear Fourier integral
operator.

Theorem 3.1. Let Iϕ,a be the bilinear Fourier integral operator defined by

Iϕ,a(u1, u2)(x) =
1

(2π)2n

∫
R2n

eiϕ(x,ξ)a(x, ξ)û1(ξ1)û2(ξ2)dξ1dξ2, (3.1)

where ξ = (ξ1, ξ2) ∈ R2n, ϕ ∈ Φ(R3n) and a ∈ BSm1,m2

0,0 .

For all m1,m2 < 0, m1 +m2 = −n
2 and q ∈ [1, 2], then Iϕ,a can be extended as a bounded bilinear operator from

L2(Rn)× L2(Rn) to B0
q,1(Rn).

Proof . From (2.1), we can write

⟨Iϕ,a(u1, u2), v⟩ =
∑
k∈N2

∑
j≥0

∑
α∈Z2n

〈
Iϕ,aj,α,k

(u1, u2), v
〉

=

 ∑
k1<k2

+
∑
k1≥k2

∑
j≥0

∑
α∈Z2n

〈
Iϕ,aj,α,k

(u1, u2), v
〉

We only consider the first sum in the last line due to symmetry, because the argument below works for the second.

Let (ψk)k≥0 be a dyadic partition of unity and (ψ̃k)k≥0 ⊂ S(Rn), such that
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supp ψ̃0 ⊂ B(0Rn , 4),

supp ψ̃k ⊂
{
ζ ∈ Rn : 2k−2 ≤ |ζ| ≤ 2k+2

}
∀k ≥ 1,

ψ̃k|supp ψk
≡ 1 ∀k ≥ 0. since for all i ∈ {1, 2}

ψki ψ̃ki ≡ ψki ,

and it holds that 〈
Iϕ,aj,α,k

(u1, u2), v
〉
=
〈
Iϕ,aj,α,k

(u1,k1 , u2,k2), v
〉
,

with for all i ∈ {1, 2}
ui,ki(x) = ψ̃ki(Dx)ui(x) ∀x ∈ Rn.

We also use the decomposition

v(x) =
∑
l≥0

vl(x) ∀x ∈ Rn,

where vl(x) := ψl(Dx)v(x) = F−1[ψl(ζ)v̂(ζ)]. Then, we can write

⟨Iϕ,a(u1, u2), v⟩ =
∑
k1<k2

∑
j≥0

∑
α∈Z2n

∑
l≥0

〈
Iϕ,aj,α,k

(u1,k1 , u2,k2), vl
〉
.

We also split the sum in the following manner.∑
k1<k2

∑
j≥0

∑
α∈Z2n

∑
l≥0

〈
Iϕ,aj,α,k

(u1,k1 , u2,k2), vl
〉
= A1 +A2,

where
A1 :=

∑
k2−3≤j

∑
k1<k2

∑
j≥0

∑
α∈Z2n

∑
l≥0

〈
Iϕ,aj,α,k

(u1,k1 , u2,k2), vl
〉
,

and
A2 :=

∑
k2−3>j

∑
k1<k2

∑
j≥0

∑
α∈Z2n

∑
l≥0

〈
Iϕ,aj,α,k

(u1,k1 , u2,k2), vl
〉
.

Now we will estimate A1. We have for all l ≥ 1

supp v̂l ⊂
{
ζ ∈ Rn : 2l−1 ≤ |ζ| ≤ 2l+1

}
,

and for all j ≥ k2 − 3, k2 > k1 we have

supp F
[
Iϕ,aj,α,k

(u1,k1 , u2,k2)
]
⊂ B(0Rn , 2j+6),

it follows that
〈
Iϕ,aj,α,k

(u1,k1 , u2,k2), vl
〉
= 0 if l ≥ j + 7. Furthermore, we see that if supp χα2

(φ) ∩ supp ψk2 = ∅,
then aj,α,k = 0, and consequently 〈

Iϕ,aj,α,k
(u1,k1 , u2,k2), vl

〉
= 0.

So, from these observation, A1 can be written as

A1 =
∑
l<j+7

∑
j≥k2−3

∑
k1<k2

∑
α1∈Zn

∑
α2∈Λ2

〈
Iϕ,aj,α,k

(u1,k1 , u2,k2), vl
〉
.

with
Λ2 := {α ∈ Zn : supp χα2(φ) ∩ supp ψk2 ̸= ∅}.
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Note that the number of elements of Λ2 satisfies card (Λ2) ≲ 2k2n. Using lemma 2.9 with r = p and N > 0, we have

|A1| ≤
∑
l<j+7

∑
j≥k2−3

∑
k1<k2

∑
α1∈Zn

∑
α2∈Λ2

|
〈
Iϕ,aj,α,k

(u1,k1 , u2,k2), vl
〉
|

≲
∑
l<j+7

∑
j≥k2−3

∑
k1<k2

2k1m1+k2m2−jN [card (Λ2)]
1
2 ∥u1,k1∥L2(Rn)∥u2,k2∥L2(Rn)∥vl∥Lp(Rn)

≲
∑
l<j+7

∑
j≥k2−3

∑
k1<k2

2−jN∥u1,k1∥L2(Rn)∥u2,k2∥L2(Rn)∥vl∥Lp(Rn)

≲
∑

j≥k2−3

∑
k1<k2

2−jN∥u1,k1∥L2(Rn)∥u2,k2∥L2(Rn)

 ∑
l<j+7

∥vl∥Lp(Rn)


≲

∑
j≥k2−3

∑
k1<k2

2−jN (j + 7)∥u1,k1∥L2(Rn)∥u2,k2∥L2(Rn)

(
sup
l≥0

∥vl∥Lp(Rn)

)

≲
∑
j≥0

2−jN (j + 7)(j + 4)

∑
k1≥0

∥u1,k1∥2L2(Rn)

 1
2
∑
k2≥0

∥u2,k2∥2L2(Rn)

 1
2

∥v∥B0
p,∞(Rn)

≲ ∥u1∥L2(Rn)∥u2∥L2(Rn)∥v∥B0
p,∞(Rn),

which implies the intended estimate.

For estimating A2, we divide it as follows
A2 = Q1 +Q2

where
Q1 :=

∑
k2−3≤k1<k2

∑
j≤k2−2

∑
α∈Z2n

∑
l≥0

〈
Iϕ,aj,α,k

(u1,k1 , u2,k2), vl
〉
,

and
Q2 :=

∑
k1<k2−3

∑
j≤k2−2

∑
α∈Z2n

∑
l≥0

〈
Iϕ,aj,α,k

(u1,k1 , u2,k2), vl
〉
.

Firs, we consider the estimate for Q1. For all k1 < k2, j ≤ k2 − 2 we have

supp
(
F [Iϕ,aj,α,k

(u1,k1 , u2,k2)]
)
⊂ B(0Rn , 2k2+3),

consequently, for all l > k2 + 3 we have 〈
Iϕ,aj,α,k

(u1,k1 , u2,k2), vl
〉
= 0.

In addition, by the fact supp (v̂l) ⊂ supp (ψl), we see that if
(
α1 + α2 + [−2j+2, 2j+2]n

)
∩ supp (ψl) = ∅, then〈

Iϕ,aj,α,k
(u1,k1 , u2,k2), vl

〉
= 0.

We can write Q1 as a result of combining these observations by

Q1 =
∑

k2−3≤k1≤k2

∑
j<k2+3

∑
l≤k2+3

∑
ν∈Λj,l

∑
α1+α2=ν

〈
Iϕ,aj,α,k

(u1,k1 , u2,k2), vl
〉
,

where
Λj,l =

{
ν ∈ Zn :

(
ν + [−2j+2, 2j+2]n

)
∩ supp (ψl) ̸= ∅

}
,
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with card (Λj,l) ≲ 2n(j+l). Hence, it follows from lemma 2.9 with r = p and N > n
2 such that

|Q1| ≤
∑

l<k2+3

∑
j≥k2−3

∑
k2−3≤k1<k2

∑
α1+α2=ν

∑
ν∈Λj,l

|
〈
Iϕ,aj,α,k

(u1,k1 , u2,k2), vl
〉
|

≲
∑

l<k2+3

∑
j≥k2−3

∑
k2−3≤k1<k2

2k1m1+k2m2−jN [card (Λj,l)]
1
2 ∥u1,k1∥L2(Rn)∥u2,k2∥L2(Rn)∥vl∥Lp(Rn)

≲
∑

j<k2−3

∑
l≤k2+3

∑
k2−3≤k1<k2

2k1m1+k2m2−jN2n(j+l)/2∥u1,k1∥L2(Rn)∥u2,k2∥L2(Rn)∥v∥B0
p,∞(Rn)

≲
∑

k2−3≤k1<k2

2k1m1+k2m22k2n/2∥u1,k1∥L2(Rn)∥u2,k2∥L2(Rn)∥v∥B0
p,∞(Rn)

≲
∑

k2−3≤k1<k2

2k1m1−k2m2∥u1,k1∥L2(Rn)∥u2,k2∥L2(Rn)∥v∥B0
p,∞(Rn).

We put k1 = k2 − k′ with k′ ∈ {0, 1, 2, 3}, so for all k2 − 3 ≤ k1 < k2 we have

|Q1| ≲
∑
k2≥0

3∑
k′=0

2−m1k
′
∥u1,k2−k′∥L2(Rn)∥u2,k2∥L2(Rn).

By Schwarz’s inequality, the right hand side of the last sum is estimated as

3∑
k′=0

2−m1k
′

∑
k2≥0

∥u1,k2−k′∥2L2

1/2∑
k2≥0

∥u2,k2∥2L2

1/2

≲ ∥u1∥L2∥u2∥L2

which gives the desired result.

Next, we gave a estimate for Q2. For all j < k2 − 3, k1 < k2 − 3 we have

supp
(
F [Iϕ,aj,α,k

(u1,k1 , u2,k2)]
)
⊂ {ζ ∈ Rn : 2k2−2 ≤ |ζ|2k2+2},

it follows that for all l ≤ k2 − 3 or k2 + 3 ≤ l we have〈
Iϕ,aj,α,k

(u1,k1 , u2,k2), vl
〉
= 0.

As before, if supp χα2(φ) ∩ supp ψk1 = ∅, then〈
Iϕ,aj,α,k

(u1,k1 , u2,k2), vl
〉
= 0.

Moreover, we obtain

Q2 =
∑

j<k2−3

∑
k1<k2−3

k2+2∑
l=k2−2

∑
α1∈Zn

∑
α2∈Λ2

〈
Iϕ,aj,α,k

(u1,k1 , u2,k2), vl
〉
.

By lemma 2.9, we have

|Q2| ≤
k2+2∑
l=k2−2

∑
j<k2−3

∑
k1<k2−3

∑
α∈Zn

∑
α2∈Λ2

∣∣〈Iϕ,aj,α,k
(u1,k1 , u2,k2), vl

〉∣∣
≲

k2+2∑
l=k2−2

∑
j<k2−3

∑
k1<k2−3

2k1m1+k2m2−jN2k1n/2∥u1,k1∥L2(Rn)∥u2,k2∥L2(Rn)∥vl∥Lp(Rn)

≲
∑

k1<k2−3

2(k2−k1)m1∥u1,k1∥L2(Rn)∥u2,k2∥L2(Rn)∥v∥B0
p,∞(Rn)

≲
∑
k1≥0

∑
k2≥0

2|k1−k2|m1∥u1,k1∥L2(Rn)∥u2,k2∥L2(Rn)∥v∥B0
p,∞(Rn).
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Since m1 < 0 we have

sup
k1≥0

∑
k2≥0

2|k1−k2|m1 <∞ ,

and
sup
k2≥0

∑
k1≥0

2|k1−k2|m1 <∞ .

So, by Schur’s lemma we have∑
k1≥0

∥u1,k1∥2L2

1/2∑
k2≥0

∥u2,k2∥2L2

1/2

∥v∥B0
p,∞

≲ ∥u1∥L2∥u2∥L2∥v∥B0
p,∞

.

So, by duality we proved that Iϕ,a is bounded from L2(Rn)× L2(Rn) to B0
q,1, where

1
q +

1
p = 1. □

Corollary 3.2. Let Iϕ,a be a class of bilinear Fourier integral operators defined as (3.1), then for all m1,m2 < 0 and
m1 +m2 = −n

2 we have

Iϕ,a : L2(Rn)× L2(Rn) → L1(Rn) are bounded.

Proof . By B0
1,1 ↪→ L1 and theorem 3.1 we get our desired result. □
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[9] Á. Bényi, D. Maldonado, V. Naibo and R.H. Torres, On the Hörmander classes of bilinear pseudodifferential
operators, Integr. Equ. Oper. Theory 67 (2010), 341–364.

[10] M. Cappiello and J. Toft, Pseudo-differential operators in a Gelfand–Shilov setting, Math. Nachr. 290 (2017),
738–755.

[11] R.R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer.
Math. Soc. 212 (1975), 315–331.



The boundedness of bilinear Fourier integral operators on L2 × L2 1575
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