Int. J. Nonlinear Anal. Appl. 13 (2022) 2, 1447-1453 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2022.6535

$H - \mu_e^*$ -essential-supplemented modules

Adnan Saleh Wadi*, Wasan Khalid Hasan

Department of Mathematics, College of Science, Baghdad University, Baghdad, Iraq

(Communicated by Ehsan Kozegar)

Abstract

Let R be a ring and M be a unital left R-module. We define μ^* -essential extension relation on the set of submodules of M and investigate its properties. Moreover, we define H- μ^* -essential-supplemented on M and investigate the relations between M and direct summand of its submodules.

Keywords: μ^* -essential–relation, $H - \mu^*$ -essential–supplemented, completely $H - \mu^*$ -essential–supplemented, μ^* co–essential submodule, μ^* co–closed submodule 2020 MSC: 13C05

1 Introduction

In this research, the rings are with identity and all the modules are unital left *R*-modules, where *R* denoted such a "ring" and *M* denotes such a module. A sub-module *L* of *R*-module *M* is called "small" sub.module of *M*, if M = L + K for any sub.module *K* of *M*, implies that M = K, it is written as $(L \ll M)$, See [2]. *M* is said to be μ^* -essential extension to *L* or *L* is " μ^* -essential" sub.modul of *M* if any non-zero singular submodule *K* of *M*, $L \cap K \neq 0$, denoted by $(L \leq_{\mu_e^*} M)$ [3]. This concept leads as to introduce the " μ^* -essential small" a submodule *L* of *M* is called " μ^* -essential small denoted as $(L \ll_{\mu_e^*} M)$, if whenever M = L + K and *L*. is μ^* -essential –submodule of *M* implies M = K [4]. *M* is called μ^* -essential –lifting module if for every submodule *A* of *M* there exists a direct summand submodule *D* of *M* such that $M = D \bigoplus D'$, $D', \leq M$ and $A \cap D'$, $\ll_{\mu_e} D'$ [6]. For *R*-module *M* we define μ^* -essential relation on the set of submodules of *M* as follows: $A \ \mu^* B$ if $\frac{A+B}{A} \ll_{\mu^*} \frac{M}{A}$ and $\frac{A+B}{B} \ll_{\mu^*} \frac{M}{B}$. Let *X* and *A* be submodules of *M* such that $X \leq A \leq M$, then *X* is called μ^* co-essential sub.module of *A* in *M* (briefly $X \leq_{\mu_{ce}} A$ in *M*) if $\frac{A}{X} \ll_{\mu^*} \frac{M}{X}$, *T* is called μ_e^* - co-closed –essential sub-module of *L* in *M* (denoted by $T \leq_{\mu_{cc}^*} L$ in *M*), if $\frac{L}{M} \ll_{\mu^*} \frac{M}{T}$ implies T = L [6]. We will mentioned the most important characteristic that related to the research. We will use all of these concepts to introduce " $H - \mu^*$ -essential-supplemented modules" and touching to the most important and prominent propositions in this topic, and we set a condition that make μ^* -essential – lifting modules and $H - \mu^*$ -essential – supplemented modules.

2 μ^* -essential -relation

Definition 2.1. Let M be an R-module we define a μ^* -essential relation on the set of submodules of M as follows: $A \ \mu^* \ B$ if $\frac{A+B}{A} \ll_{\mu e}^* \frac{M}{A}$ and $\frac{A+B}{B} \ll_{\mu e}^* \frac{M}{B}$.

*Corresponding author

Email addresses: adnanwadi760gmail.com (Adnan Saleh Wadi), wasankhalidhasan2220gmail.com (Wasan Khalid Hasan)

Lemma 2.2. μ^* -essential is an equivalent relation:

Proof. Clearly that μ^* is reflexive and symmetric. To show that μ^* is transitive, let A, B and C be a submodules of M such that $A\mu^*B$, and $B\mu^*C$, then $\frac{A+B}{A} \ll_{\mu e}^* \frac{M}{A}$ and $\frac{A+B}{B} \ll_{\mu e}^* \frac{M}{B}$, also $\frac{B+C}{B} \ll_{\mu e}^* \frac{M}{B}$ and $\frac{B+C}{C} \ll_{\mu e}^* \frac{M}{C}$. Let $\frac{U}{A}$ be a μ^* -essential submodule of M containing A, such that $\frac{M}{A} = \frac{U}{A} + \frac{C+A}{A}$, $\frac{U}{A}$ is μ^* -essential submodule by [6], then M = A + C + U = C + U and hence $\frac{M}{B} = \frac{C+U}{B} = \frac{U+B}{B} + \frac{C+B}{B}, \frac{U+B}{B}$, is μ^* -essential submodule by [6], and $\frac{C+B}{B} \ll_{\mu e}^* \frac{M}{B}$, then $\frac{M}{B} = \frac{U+B}{B}$. Hence $M = U + \text{Band} \frac{M}{A} = \frac{U}{A} + \frac{A+B}{A}$, but $\frac{A+B}{A} \ll_{\mu e}^* \frac{M}{A}$ therefore M = U which mean that $\frac{C+A}{A} \ll_{\mu e}^* \frac{M}{A}$ similarly $\frac{C+A}{C} \ll_{\mu e}^* \frac{M}{C}$, then $A\mu^*B$. \Box

- **Example 2.3.** 1. Let A and B be a submodules of an R-module M such that $A \leq B$, then $A\mu^*B$ if and only if $A \leq_{\mu ce}^* B$ in M, for example Z_8 as a Z-module, it is easy to see that $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}\mu^*\{\{\overline{0}, \overline{4}\}\}$, where $\{\{\overline{0}, \overline{4}\}\} \leq_{\mu ce}^* \{\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}\}$.
 - 2. Z_12 is a Z-module, $\langle \overline{2} \rangle \mu^*$, $\langle \overline{6} \rangle$ and $\langle \overline{6} \rangle \mu^* \langle \overline{2} \rangle$ are Z-modules, but $\langle \overline{3} \rangle$ is not $\mu^* \langle \overline{4} \rangle$, and $\langle \overline{4} \rangle$, is not $\mu^* \langle \overline{3} \rangle$.
 - 3. Consider Z as a Z-module. Let A = 6Z, B = 4Z. One can easily to show that A has a relation with B by μ^* .
 - 4. Let A be a submodule of an R-module M, then A $\mu^* 0$ if and only if $A \ll_{\mu e}^* M$.

The following definition appeared in [6]:

Definition 2.4. Let M be an R-module and let X and A be a submodules of M such that $X \leq A \leq M$, then X is called μ^* co-essential sub.module of A in M (briefly $X \leq_{\mu ce}^* A$ in M) if $\frac{A}{X} \ll_{\mu^* e} \frac{M}{X}$.

The following theorem gives a characterization of the relation μ^* :

Theorem 2.5. Let A, B be a submodule of an *R*-module *M*. The following statements are equivalent:

- 1. $A\mu^*B$.
- 2. $A \leq_{\mu ce}^{*} A + B$, in M and $B \leq_{\mu ce}^{*} A + B$ in M.
- 3. For each submodule X of M such that M = A + B + X, X is μ^* -essential, then M = A + X and M = B + X.
- 4. If M = K + A, for any submodule K of M such that K is μ^* -essential submodule, then M = K + B and if M = B + L, for any submodule L of M such that L is μ^* -essential submodule, then M = A + L.

Proof . $(1 \rightarrow 2)$: Clearly holds.

 $(2 \rightarrow 3)$: Assume that $A \leq_{\mu ce}^{*} A + B$ in M and $B \leq_{\mu ce}^{*} A + B$ in M, let X be a μ^{*} -essential submodule of M such that M = A + B + X, $X \leq M$, then $\frac{M}{A} = \frac{A+B}{A} + \frac{X+B}{A}$, $\frac{X+A}{A}$ is μ^{*} -essential submodule by [3], but $A \leq_{\mu ce}^{*} A + B$ in M, therefore M = A + X. Similarly M = B + X.

 $(3 \rightarrow 4)$: Let K be a submodule of M such that M = A + K, K is a μ^* -essential submodule, then M = A + B + K, by (3) M = B + K, similarly one can easily prove that the second part.

 $(4 \rightarrow 1)$: To show that $\frac{A+B}{B} \ll_{\mu e}^{*} \frac{M}{B}$ and $\frac{A+B}{A} \ll_{\mu e}^{*} \frac{M}{A}$. Let U be a submodule of M containing A such that $\frac{M}{A} = \frac{A+B}{B} + \frac{U}{A}$, and $\frac{U}{A}$ is a μ^{*} -essential submodule, then U is μ^{*} -essential submodule of M by [3], so M = A+B+U = B+U by (4) M = A + U = U, hence $\frac{A+B}{A} \ll_{\mu e}^{*} \frac{M}{A}$ similarly $\frac{A+B}{B} \ll_{\mu e}^{*} \frac{M}{B}$. \Box

Corollary 2.6. Let A and B be a submodules of an R-module M such that $A \leq B + K$, and $B \leq A + L$, where K, X are μ^* -essential small submodules of M, then $A \mu^* B$.

Proof. Let M = A + B + X, X be a μ^* -essential, for some submodule X of M, then M = B + K + X and $\frac{M}{B+X}$ a μ^* -essential. Since $K \leq_{uce}^* M$, M = B + X, similarly M = A + X. Thus by (3) $A \ \mu^* B$. \Box

Let A, B and K be submodules of M such that M = A + K = B + K, but A is not related with B, by μ^* -essential for example; consider Z as a Z module and let K = 3K, A = 2Z, B = 5Z. Clearly Z = 2Z + 3Z = 5Z + 3Z, but 2Z is not related to 5Z.

Proposition 2.7. Let M be an R-module and let A, B and C be submodules of M then:

1. If $A \mu^* B$, then $A \ll_{\mu e}^* M$ if and only if $B \ll_{\mu e}^* M$.

2. If $C \ll_{\mu e}^{*} M$ and $A \leq B + C$, then $A \mu^{*}B$.

Proof.

- 1. Assume that $A \ \mu^* B$ and $A \ll_{\mu e}^* M$. Let U be a submodule of M such that M = B + U, U is $a\mu^*$ -essential submodule of M, since $A \ \mu^* B$, M = A + U by (theorem 2.5), but $A \ll_{\mu e}^* M$, therefore M = U. Hence $B \ll_{\mu e}^* M$. The converse is clear.
- 2. Let M = A + X, X is μ^* -essential submodule of M, then M = A + B + C + X = B + C + X, but $C \ll_{\mu e}^* M$, and B + X is μ^* -essential, therefore M = B + X, similarly if M = B + L, for some submodule L of M, L is μ^* -essential, then M = A + L. Thus $A \ \mu^* B$.

Proposition 2.8. Let $M = D \bigoplus D'$, and let A, B be a submodule of D, then $A \mu^* B$ in M if and only if $A \mu^* B$ in D.

Proof. Suppose that $A \mu^* B$ in M and let D = A + B + X, X is μ^* -essential submodule of M, then $M = D \bigoplus D'$, $A + B + X \bigoplus D'$, X + D' is μ^* -essential, but $A \mu^* B$ in M, then M = A + X + D = B + X + D. Note that $D = D \cap M = D \cap (A + X + D) = A + X$, similarly D = B + X. Thus $A \mu^* B$ in D. For the converse assume that $A \mu^* B$ in D, then $\frac{A+B}{A} \ll_{\mu e} \frac{D}{A}$ and $\frac{A+B}{B} \ll_{\mu e} \frac{M}{A}$ and $\frac{A+B}{B} \ll_{\mu e} \frac{M}{B}$ by [7]. \Box

Proposition 2.9. Let M be an R-module, and let A, B be a submodules of M, then $A \ \mu^* B$ if and only if $\frac{A}{L} \mu^* \frac{B}{L}$, for every submodules L of M contained in A and B.

Proof .(\Leftarrow) Suppose that $\frac{A}{L}\mu^*B\frac{B}{L}$, for every L of M contained in A and B, then $\frac{A}{L} \leq_{\mu ce}^* \frac{A}{L} + \frac{B}{L} = \frac{A+B}{L}$ in $\frac{M}{L}$ and $\frac{B}{L} \leq_{\mu ce}^* \frac{A}{L} + \frac{B}{L} = \frac{A+B}{L}$ in $\frac{M}{L}$ by [6] $A \leq_{\mu ce}^* A + B$ in M $B \leq_{\mu ce}^* A + B$ in M. Thus $A \ \mu^*B$ by (theorem 2.5). \Box

Proof .(\Longrightarrow) Suppose that $A \ \mu^* B$, and let L be a submodule of M contained in A and B, then by 2.5 $A \leq_{\mu ce}^* A + B$ in M and $B \leq_{\mu ce}^* A + B$ in M. By [6] $\frac{A}{L} \leq_{\mu ce}^* \frac{A}{L} + \frac{B}{L} = \frac{A+B}{L}$ in $\frac{M}{L}$ and $\frac{B}{L} \leq_{\mu ce}^* \frac{A}{L} + \frac{B}{L} = \frac{A+B}{L}$ in $\frac{M}{L}$. Thus $\frac{A}{L} \mu^* \frac{B}{L}$. \Box

Proposition 2.10. Let A_1 , A_2B_1 and B_2 be a submodules of an *R*-module *M* such that $A_1\mu^*B_1$ and $A_2\mu^*B_2$, then $(A_1 + A_2)\mu^*(B_1 + B_2)$.

Proof. Assume that $A_1\mu^*B_1$ and $A_2\mu^*B_2$. Then $A_1 \leq_{\mu ce}^* A_1 + B_1$ in M, $A_2 \leq_{\mu ce}^* A_2 + B_2$ in M, $B_1 \leq_{\mu ce}^* A_1 + B_1$ in M and $B_2 \leq_{\mu ce}^* A_2 + B_2$ in M. So $(A_1 + A_2) \leq_{\mu ce}^* (A_1 + A_2) + (B_1 + B_2)$ in M and $(B_1 + B_2) \leq_{\mu ce}^* (A_1 + A_2) + (B_1 + B_2)$ in M, by theorem 2.5. Thus $(A_1 + A_2)\mu^*(B_1 + B_2)$. \Box

By induction, one can easily prove the following corollary.

Corollary 2.11. Let A, B_1 , B_2 , B_3 , ..., B_n be submodules of a module M if A $\mu^* B_i$, for all i = 1, 2, ..., n. Then $A \mu^* B$, where $B = \sum_{i=1}^n B_i$.

Corollary 2.12. Let *M* be an *R*-module, if *A* μ^*B and *C* is any submodule of *M*, then $(A + C)\mu^*(B + C)$. The converse is true when $C \ll_{\mu e}^* M$.

Proof. Assume that $A \mu^* B$, since $C\mu^* C$, by proposition 2.10, we have $(A + C)\mu^*(B + C)$. Conversely assume that $C \ll_{\mu e}^* M$, and $(A + C)\mu^*(B + C)$, then $A + C \leq_{\mu c e}^* A + B + C$ in M, and $B + C \leq_{\mu c e}^* A + B + C$ in M by (theorem 2.5), since $C \ll_{\mu e}^* M$, $A \leq_{\mu c e}^* A + B$ in M and $B \leq_{\mu c e}^* A + B$ in M. By [6]. Thus, by theorem 2.5, we have $A \mu^* B$. \Box

Proposition 2.13. Let $f: M \longrightarrow M'$ be an *R*-epimorphism module, If *A*, *B* are submodules of *M* such that $A \mu^* B$, then $f(A)\mu^*f(B)$.

Proof. Suppose that $f(A)\mu^*f(B)$, then $A \leq_{\mu ce}^* A + B$ in M and $B \leq_{\mu ce}^* A + B$ in M, hence $f(A) \leq_{\mu ce}^* f(A + B) = f(A) + f(B)$ in M and $f(B) \leq_{\mu ce}^* f(A + B) = f(A) + f(B)$ in M' by [6]. Thus $f(A)\mu^*f(B)$. \Box

Proposition 2.14. Let $M = M_1 \bigoplus M_2$ be an R- module and let $A \leq M$, $B \leq M$, then $A\mu^*M_1$ and $B\mu^*M_2$ if and only if $(A \bigoplus B)\mu^*(M_1 \bigoplus M_2)$.

Proof . (\Longrightarrow) by proposition 2.10. \Box

Proof. (\Leftarrow) Let $P_1 : M \longrightarrow M_1$ and $P_2 : M \longrightarrow M_2$ be the projection homomorphisms on M_1 and M_2 respectively, since $(A \bigoplus B)\mu^*(M_2 \bigoplus M_2)$ and $A\mu^*M_1$, by proposition 2.13, we have $P_1(A \bigoplus B)\mu^*(P(M_1 \bigoplus M_2))$. Since $B\mu^*M_2$, $P_1(A \bigoplus B)\mu^*P_2(M_1 \bigoplus M_2)$. Thus we get the result. \Box

3 $H - \mu^*$ -essential -supplemented module

By using the concept of μ^* -essential- relation on the set of submodules of M we define the following:

Definition 3.1. Let M be an R- module, M is said to be $H - \mu^*$ -essential -supplemented if every submodule A of M there exists a direct summand D of M such that $A\mu^*D$.

Example 3.2. 1. Z_4 as Z-module is $H - \mu^*$ -essential-supplemented.

- 2. Z as Z-module is not $H \mu^*$ -essential-supplemented.
- 3. Z_6 as Z_6 -module is $H \mu^*$ -essential-supplemented.
- 4. Z_12 as Z_12 is $H \mu^*$ -essential supplemented.
- 5. Its easy to show that Q as Z-module is not $H \mu^*$ -essential- supplemented, since the only direct summand submodules of Q is Q and $\{0\}$.
- 6. $H \mu^*$ -essential- supplemented modules is closed under isomorphisim.
- 7. Every μ^* -essential-lifting module is $H \mu^*$ -essential-supplemented to show that

Proof. Let A be a submodule of M, since M is μ^* -essential-lifting module, there exists a direct summand D of M such that $M = D \bigoplus D'$, $D \le A$, $D' \le M$. And $A \cap D' \ll_{\mu e}^* M$. $A = A \cap M = A \cap (D \bigoplus D') = D \bigoplus (A \cap D')$, by modular law. Now $\frac{A+D}{A} \cong 0 \ll_{\mu e}^* M$, and $\frac{A+D}{D} \cong (A \cap D') \ll_{\mu e}^* M$, Hence $A\mu^*D$, then M is $H - \mu^*$ -essential-supplemented module. \Box

The converse is not true in general for Examples:

Example 3.3. Consider the Z- module $M = Z_2 \bigoplus Z_8$. The submodules of M are:

$$\begin{split} &A_1 = \{(\bar{0},\bar{0}),(\bar{1},\bar{0}),(\bar{2},\bar{0}),(\bar{3},\bar{0}),(\bar{4},\bar{0}),(\bar{5},\bar{0}),(\bar{6},\bar{0}),(\bar{7},\bar{0})\}.\\ &A_2 = \{(\bar{0},\bar{0}),(\bar{2},\bar{0}),(\bar{4},\bar{0}),(\bar{6},\bar{0})\}.\\ &A_3 = \{(\bar{0},\bar{0}),(\bar{4},\bar{0})\}.\\ &A_4 = \{(\bar{0},\bar{0}),(\bar{0},\bar{1})\}.\\ &A_5 = \{(\bar{0},\bar{0}),(\bar{1},\bar{1}),(\bar{2},\bar{0}),(\bar{3},\bar{1}),(\bar{4},\bar{0}),(\bar{5},\bar{1}),(\bar{6},\bar{0}),(\bar{7},\bar{1})\}.\\ &A_6 = \{(\bar{0},\bar{0}),(\bar{2},\bar{1}),(\bar{4},\bar{0}),(\bar{6},\bar{1})\}.\\ &A_7 = \{(\bar{0},\bar{0}),(\bar{2},\bar{1}),(\bar{4},\bar{0}),(\bar{6},\bar{0}),(\bar{2},\bar{1}),(\bar{4},\bar{1}),(\bar{6},\bar{1}),(\bar{0},\bar{1})\}.\\ &A_8 = \{(\bar{0},\bar{0}),(\bar{2},\bar{0}),(\bar{4},\bar{0}),(\bar{6},\bar{0}),(\bar{2},\bar{1}),(\bar{4},\bar{1}),(\bar{6},\bar{1}),(\bar{0},\bar{1})\}.\\ &A_{10} = \{(\bar{0},\bar{0})\}.\\ &A_{11} = M \end{split}$$

Clearly, $M = A_1 \bigoplus A_4 = A_1 \bigoplus A_7 = A_4 \bigoplus A_5$ and the μ^* -essential-small submodules of M are A_2 and A_3 . It enough to check that A_6 , A_8 , and A_9 satisfy the definition. For A_6 , the only submodules A of M satisfy $A_6 + A = M$ is A_1 . Since A_1 is a direct summand of M, $A_6\mu^*A_4$ and $A_6\mu^*A_7$. For A_8 , since A_1 and A_5 are satisfy $M = A_8 + A_1 = A_8 + A_5$ and booth is a direct summand of M, $A_8\mu^*A_4$, by the same argument one can see that $A_9\mu^*A_4$. Thus M is $H - \mu^*$ -essential-supplemented module. But not μ^* -lifting to show that consider the submodule A_6 , the only direct summand of M in A_6 is $\{0\}$, then $A_6 \cap M = A_6$ is not small in M. Hence M is not μ^* -lifting.

We say the submodule A of an R-module M is a μ^* -essential-co-closed submodule of M denoted by $A \leq_{\mu cc}^* M$, if whenever $X \leq_{\mu cc}^* A$ in M for some X of A, implies that X = A [6].

Lemma 3.4. Let M be an R- module. The following statement are equivalent:

- 1. Every submodule of M, has a unique μ^* -essential-co- closed
- 2. Given a submodule A of M, then there exists a μ^* -essential-co- closed A' of A such that $A' \leq B$ where $B \leq_{\mu ce}^* A$ in M.

Proof. $(1 \Longrightarrow 2)$: Let A be a submodule of M, by (1) A has a unique μ^* -essential-co-closed say A', hence $A' \leq_{\mu ce}^* A$ in M and $A \leq_{\mu ce}^* A'$, let B be a submodule of M such that $B \leq_{\mu ce}^* A$ in M and let B' be a μ^* -essential-co-closed of

B, hence $B' \leq_{\mu ce}^* B$ in M, and $B' \leq_{\mu ce}^* M$, so $B' \leq_{\mu ce}^* A$ in M by [6], hence B' is a μ^* -essential-co- closed of A by (1) we get $A'B' \leq B$. \Box

Proof. $(2 \Longrightarrow 1)$: Let A be a submodule of M and assume that A has a μ^* -essential-co-closed B and C in M, hence $B \leq_{\mu ce}^* A$ in M, and $C \leq_{\mu ce}^* A$ in M and B, C are μ^* -essential-co-closed submodule of M, to show that B = C, by (2) we have $B \leq C$. Since $B \leq_{\mu ce}^* A$ in $M, B \leq_{\mu ce}^* C$ in M, but $C \leq_{\mu ce}^* A$. Therefore B = C. \Box

The following proposition gives a condition under which μ^* -essential-lifting modules and $H-\mu^*$ -essential-supplemented modules be equivalent:

Proposition 3.5. Let M be an R-module such that every submodule of M has a unique μ^* -essential-co-closed. M is μ^* -essential-lifting module if and only if M is $H - \mu^*$ -essential-supplemented module.

Proof. Let M be an $H - \mu^*$ -essential–supplemented module, and let A be a submodule of M then there exists a direct summand D of M such that $A \mu^* D$. Now D is a unique μ^* -essential-co-closed of A + D in M, by lemma 3.4 $D \leq A$. Thus M is a μ^* -essential–lifting module. The converse is clear. \Box

Proposition 3.6. Let M be an R-module. Then the following statements are equivalent:

- 1. M is $H \mu^*$ -essential-supplemented module.
- 2. For every submodule A of M there exists a direct summand D of M such that $M = D \bigoplus D', D' \leq M$, and $(A+D) \cap D' \ll_{ue}^* D'$.
- 3. For every submodule A of M, there exists a direct summand D of M such that $A + D = D \bigoplus S$, $S \ll_{ue}^{*} M$.

Proof. $(1 \Longrightarrow 2)$: Assume that M is a $H - \mu^*$ -essential–supplemented module, and let $A \le M$, so there exists a direct summand D of M such that $A\mu^*D$. Let $M = D \bigoplus D'$, $D' \le M$. To show that $(A + D) \cap D' \ll_{\mu e}^* D'$. Let $U \le D'$ such that $[(A + D) \cap D'] + U = D'$, U is a μ^* -essential-submodule, so $M = D + D' = D + [(A + D) \cap D'] + U$ now $\frac{M}{D} \cong \frac{D+U}{D} + \frac{[(A+D)\cap D']+D}{D}$, but $D \le [(A + D) \cap D'] + D \le A + D$, and $D \le_{\mu ce}^* A + D$ in M. Therefore $D \le_{\mu ce}^* [(A + D) \cap D'] + D$ in M. By [6], and M = D + U, $D \cap U \le D \cap D' = 0$, then $D \cap U = 0$. Hence $M = D \bigoplus U$. So U = D'. Thus $[(A + D) \cap D'] \ll_{\mu e}^* D'$. \Box

Proof. (2 \Longrightarrow 3): Let A be a submodule of M, by (2) there exists a direct summand D of M such that $M = D \bigoplus D', D' \leq M$ and $[(A + D) \cap D'] \ll_{\mu e}^{*} D'$. Now $A + D = (A + D) \cap M = (A + D) \cap (D \bigoplus D') = D \bigoplus [(A + D) \cap D']$, $(A + D) \cap D' \ll_{\mu e}^{*} D'$. \Box

Proof. $(3 \Longrightarrow 1)$: Let A be a submodule of M, by (3) there exists a direct summand D of M such that $A + D = D \bigoplus S$, $S \ll_{\mu e}^{*} M$. Let $\frac{M}{D} = \frac{A+D}{D} \frac{U}{D}$, $\frac{U}{D}$ be a μ^{*} -essential-submodule and by [3], U is μ^{*} -essential-submodule. Now M = A + D + U = D + S + U = S + U = U, hence $\frac{A+D}{A} \ll_{\mu e}^{*} \frac{M}{D}$. Similarly. One can show that $\frac{A+D}{A} \ll_{\mu e}^{*} \frac{M}{A}$. Thus $A\mu^{*}D$. \Box

Corollary 3.7. Let M be an $H - \mu^*$ -essential–supplemented module, then for each submodule A of M, there exists a direct summand D of M such that $M = D \bigoplus D'$, where $D' \leq M$, and $A \cap D' \ll_{\mu e}^* D'$.

Proof. Since $A \cap D' \leq (A + D) \cap D' \ll_{\mu e}^* D'$, we have $(A \cap D') \ll_{\mu e}^* D'$. \Box

One can easily prove the following characterization:

Proposition 3.8. Let M be an R-module. M is $H - \mu^*$ -essential-supplemented module if and only if for each submodule A of M, there exists an idempotent $f \in (End(M))$ such that $A\mu^*f(M)$,

The following proposition gives another characterization of $H - \mu^*$ -essential-supplemented module.

Proposition 3.9. Let M be an R-module. M is $H - \mu^*$ -essential-supplemented module if and only if each submodule A of M, there exists a direct summand D of M and submodule B of M such that $A \leq_{\mu ce}^* B$, $D \leq_{\mu ce}^* B$.

Proof. suppose that M is $H - \mu^*$ -essential-supplemented module, let $A \leq M$, so there exists a direct summand D of M such that $A\mu^*D$, hence $A \leq_{\mu ce}^* A + D$, and $D \leq_{\mu ce}^* A + D$ in M. Put B = A + D. Thus we get the result. \Box

Proof. Let $A \leq M$, by our assumption, there exists a direct summand D of M, and $B \leq M$ such that $A \leq_{\mu ce}^{*} B$ in M, and $D \leq_{\mu ce}^{*} B$, in M. Since $D \leq A + D \leq B$, and $D \leq_{\mu ce}^{*} B$ in M, $D \leq_{\mu ce}^{*} A + D$ in M, by [6] Similarly $A \leq_{\mu ce}^{*} A + D$ in M. Thus M is $H - \mu^{*}$ -essential-supplemented module,

Recall that an *R*-module *M* is called distributive module if for all *A*, *B* and *C* submodules of $M \land A \cap (B + C) = (A \cap B) + (A \cap C)$ [1]. \Box

Proposition 3.10. Let M be an R-module and let A be a submodule of M. Then $\frac{M}{A}$ is $H - \mu^*$ -essential-supplemented module in each of the following cases:

- 1. For every direct summand D of M, $\frac{D+A}{A}$ is a direct summand of $\frac{M}{A}$
- 2. M is distributive module.

Proof.

- 1. Suppose that M is an $H \mu^*$ -essential-supplemented R-module and let $\frac{X}{A}$ be a submodule of $\frac{M}{A}$, since M is $H \mu^*$ -essential-supplemented, there exists a direct summand D of M such that $M = D \bigoplus D'$, $D' \leq M$, and $X\mu^*D$, since $\frac{D+A}{A}$ is a direct summand of $\frac{M}{A}$ and $\frac{D+A}{A}\mu^*\frac{X}{A}$ by proposition 2.9. Thus $\frac{M}{A}$ is $H \mu^*$ -essential-supplemented.
- 2. Suppose that M is a distributive module, we use (1) to show that $\frac{M}{A}$ is $H \mu^*$ -essential-supplemented. Let D be a direct summand of M, since M is a distributive module, $\frac{D+A}{A}$ is a direct summand of $\frac{X}{A}$. So by (1) M is a $H \mu^*$ -essential-supplemented.

Proposition 3.11. Let M be an $H - \mu^*$ -essential-supplemented R-module. If A is fully invariant submodule of M, then $\frac{M}{A}$ is $H - \mu^*$ -essential-supplemented module.

Proof. Let $\frac{X}{A}$ be a submodule of $\frac{M}{A}$. Since M is $H - \mu^*$ -essential-supplemented module, there is a direct summand D of M such that $X\mu^*A$, where $M = D \bigoplus D'$ and $D' \leq M$. By lemma 3.4 [5] we have $\frac{M}{A} = \frac{D+A}{A} \bigoplus \frac{D'+A}{A}$, since $X\mu^*A$, by proposition 2.9, we have $\frac{X}{A}\mu^*\frac{D+A}{A}$. Thus $\frac{M}{A}$ is $H - \mu^*$ -essential-supplemented module. \Box

Proposition 3.12. Let $M = M_1 \bigoplus M_2$ be an *R*-module such that $ann(M_1) + ann(M_2)$ if M_1 and M_2 are $H - \mu^*$ -essential-supplemented. Then M is $H - \mu^*$ -essential-supplemented module.

Proof. Let A be a submodule of M by [2], $A = A_1 \bigoplus A_2$ where $A_1 \leq M_1$ and $A_2 \leq M_2$, since M_1 and M_2 are $H - \mu^*$ -essential-supplemented modules, there is a direct summand D_1 and D_2 of M_1 and M_2 respectively such that $A_1\mu^*D_1$ and $A_2\mu^*D_2$ then $A = (A_1 \bigoplus A_2)\mu^*(D_1 \bigoplus D_2)$, where $(D_1 \bigoplus D_2)$ is a direct Summand of M. Thus M is a $H - \mu^*$ -essential-supplemented module. \Box

Proposition 3.13. Let $M = M_1 \bigoplus M_2$ be a due module such that M_1 and M_2 are $H - \mu^*$ -essential-supplemented module. Then M is $H - \mu^*$ -essential-supplemented module.

Proof. Let $M = M_1 \bigoplus M_2$ be a due module, and let A be a submodule of M, then A is fully invariant. Hence $A = A \cap M = A \cap (M_1 \bigoplus M_2) = (A \cap M_1) \bigoplus (A \cap M_2)$, since M_1 and M_2 are $H - \mu^*$ -essential-supplemented module. Then there is a direct summand D_1 and D_2 of M_1 and M_2 respectively such that $A_1\mu^*D_1$ and $A_2\mu^*D_2$, then $A = (A \cap M_1) \bigoplus (A \cap M_2)\mu^*(D_1 \bigoplus D_1)$. Where $(D_1 \bigoplus D_2)$ is a direct summand of M. Thus M is a $H - \mu^*$ -essential-supplemented module. \Box

Proposition 3.14. Let $M = M_1 \bigoplus M_2$ be a distributive module such that M_1 and M_2 are $H - \mu^*$ -essential-supplemented modules, then M is a $H - \mu^*$ -essential-supplemented module.

Proof. Let $M = M_1 \bigoplus M_2$ be a distributive module and let A be a submodule of M. $A = A \cap M = A \cap (M_1 \bigoplus M_2) = (A \cap M_1) \bigoplus (A \cap M_2)$, since M_1 and M_2 are $H - \mu^*$ -essential-supplemented module, there is a direct summand D_1 and D_2 of M_1 and M_2 respectively such that $A_1\mu^*D_1$ and $A_2\mu^*D_2$, then $A = (A \cap M_1) \bigoplus (A \cap M_2)\mu^*(D_1 \bigoplus D_1)$. Where $(D_1 \bigoplus D_2)$ is a direct summand of M. Thus M is a $H - \mu^*$ -essential-supplemented module. \Box

References

- [1] V. Erdogdu, Distributive modules, Canad. Math. Bull. 32 (1987), no. 2, 248–254.
- [2] T. Inoue, Sum of hollow modules, Osaka J. Math. 20 (1983), 331-336.
- [3] E.M. Kamel, μ -lifting (μ^* -extending) modules, M.Sc. Thesis, University of Baghdad, 2019.
- [4] K. Oshiro, Lifting modules, extending modules and their applications, to QF-rings, Hokkaido Math. J. 13 (1984), no. 3, 310–338.
- [5] A.C. Ozcan, Some characterizations of V-modules and rings, Vietnam J. Math. 26 (1998), no. 3, 253–258.
- [6] A.S. Wadi, μ^* -essential small submodules, M.Sc. Thesis, University of Baghdad, 2022.
- [7] A.S. Wadi and W.K. Hasan, On μ^* -essential-small submodule, to appear in IOP J. Phys. (2021).