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Abstract

This paper presents a new numerical technique for solving stochastic Itô integral equations. A new operational matrix
for integration of cardinal Legendre polynomials are introduced. By using this new operational matrix of integration
and the so-called collocation method, stochastic nonlinear Itô integral equations are reduced to systems of algebraic
equations with unknown coefficients. Only small dimension of Legnedre operational matrix is needed to obtain a
satisfactory results. Some error estimations are provided and illustrative examples are also included to demonstrate
the efficiency and applicability of the proposed numerical technique.
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1 Introduction

In the last decades, there has been an increasing interest in applying cardinal basis functions [4] for various types
of problems. Spectral methods have been finding an important rôle in numerical analysis. They have a wide range of
application in science and engineering. Numerical methods are important tools for calculating approximation solutions
of stochastic differential equations. In recent years many numerical methods for deterministic and stochastic integral
equations have been designed, for example, Adomian method [37], implicit Taylor methods [15, 23] and recently
the operational matrices of integration for orthogonal polynomials, Legendre wavelets, Chebychev polynomials,..etc
[2, 6, 16, 19, 20, 25, 26, 27, 28, 29, 30, 31, 32, 36, 38]. Several analytical and numerical methods have been proposed for
solving various types of stochastic problems with the classical Brownian motion [21, 22, 24, 26, 29]. Noting that finding
the exact solutions for most of these equations is hard, therefore, we have to apply approximate numerical methods
to obtain numerical solutions. There is a growing interest in using interpolate approximate base function to deal
with various problems. The main characteristic of the approach using this technique is that it reduces these problems
to a systems of algebraic equations which simplifying the problem. In recent years, Cardinal functions have been
finding an important role in numerical analysis, in particulary for solving integral equations [9, 10, 17, 18]. Integral
equation technique is a well known approach for modeling of scattering models. Traditionally, most of the numerical
methods for the solutions of these models use basis functions [2, 20, 35, 39]. Some authors have proposed modified or
hybrid methods to increase the computational efficiency of the traditional approach [19, 25, 38]. In [9] M.H. Heydari
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& al. used Chebyshev cardinal wavelets and their application in solving nonlinear stochastic differential equations
with fractional Brownian motion. M.H.Heydari obtained a new method based on the Chebyshev cardinal functions
for variable-order fractional optimal control problems [34]. An effective direct method to determine the numerical
solution of Volterra-Fredholm integro-differential equations based on Chebychev cardinal functions and deterministic
operational matrices was also found in [10] their method shows good results in solution of nonlinear integro-differential
equations. In [14], Kader et al used cardinal Legendre functions for solvingm− order linear and nonlinear deterministic
integro-differential equations under mixed boundary conditions. There are several advantages to using approximations
based on cardinal functions. First, due to their rapid convergence, cardinal numerical methods do not suffer from
the common instability problems associated with other numerical methods and secondly, it is now well-established
that they are characterized by exponentially decaying error. Finally, cardinal functions is a good method for solving
problems with singular equations. In this paper, we use cardinal Legendre functions to find numerical solution of the
following stochastic Itô integral equations.

X(t) = X0 +

∫ t

0

a(s,X(s))ds+

∫ t

0

b(s,X(s))dB(s), (1.1)

under the initial condition X(0) = X0, where X(t) is an unknown process, which shoud be computed. for 0 ≤ t, s ≤ 1,
X0 is a random variable, B(s) is a Brownian motion and where a(s,X(s, ω)), b(s,X(s, ω)) for s, t ∈ [0, 1] are known
stochastic processes defined on the same filtered probability space (Ω,F ,Ft, P ) with natural filtration Ft, X0 is the
known random variable with E|X0|2 < +∞ and X(t) is unknown stochastic process. The second integral in ((1.1)) is
the Itô integral. Furthermore, all Lebesgue’s and Itô integrals in ((1.1)) are well defined. Note that the existence and
the uniqueness of a solution for the problem (1.1) are investigated in [15]. The organization of this paper is as follows.
Section 2 reviews some definitions of stochastic calculus. We introduce Legendre and Legendre cardinal functions and
operational matrix of integration in section 3. In sections 4 and 5, we present the numerical procedure of the numerical
solution of the proposed problem. Convergence analysis of the method will be investigated in section 6. To show the
computational efficiency of the proposed technique, we give some test problems which will be presented in section 7.
Conclusion of the article is supplied in section 8.

2 Preliminaries

In this section, we express some basic definitions and mathematical preliminary of stochastic calculus.

Definition 2.1. Let V = V(s, T ), 0 ≤ s ≤ T be the class of functions g(t, ω) : [0,∞) −→ R such that:

1. The function g(t, ω) be B × F measurable, where B is the Borel σ-algebra of R+.
2. The function g(t, ω) is Ft− adapted (measurable).

3. E

[ ∫ T

s

g2(t, ω)dt

]
<∞.

Lemma 2.2. (Itô isometry) For each X(t, ω) ∈ V(s, T ), we have

E
( ∫ T

s

X(s, ω)dB(s)
)2

= E
( ∫ T

s

X2(s, ω)ds
)
.

Lemma 2.3. ( The Gronwall inequality) Let α, β : [t0, T ] −→ R be integrable with

0 ≤ α(t) ≤ β(t) + L

∫ t

t0

α(s)ds, (2.1)

for t ∈ [t0, T ] where L > 0. Then

0 ≤ α(t) ≤ β(t) + L

∫ t

t0

eL(t−s)β(s)ds, t ∈ [t0, T ]. (2.2)

3 Cardinal functions and Legendre polynomials

Definition 3.1. A cardinal function Cj(x) for a specific interpolation function (e.g polynomail, etc) and for a set of
interpolation points xj is defined as [1]

Cj(xi) = δij , i, j = 1, 2, . . . , N, (3.1)

where N is the number of the interpolation points and δij is the Kronecker delta.
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3.1 Legendre polynomials and some properties

Legendre polynomials L0(x), L1(x), . . . , Ln(x) are a special case of Jacobi polynomilas. These polynomials are very
attractive to use because of they are orthogonal on the interval [−1, 1] with respect to the weight function w(t) = 1
and easy to compute. The Legendre polynomials Ln(x), for −1 ≤ t ≤ 1 and n ≥ 0, are given by the forms [7, 11, 13]

Ln(x) =
1

2n

[n/2]∑
k=0

(−1)k
(
n

k

)(
2n− 2k

n

)
xn−2k, n = 0, 1, . . . , (3.2)

where [n/2] = n/2 if n is even, otherwise (n− 1)/2. To use the Legendre polynomials for our purposes, it is preferable
to map this to [0, 1]. The Legendre basis of degree n in [0, 1] or shifted Legendre polynomials are defined by

Li+1(x) =
(2i+ 1)(2x− 1)

i+ 1
Li(t)−

i

i+ 1
Li−1(x), i = 1, 2, . . . , (3.3)

where L0(x) = 1, L1(x) = 2x− 1. The shifted Legendre polynomials of degree i can be also written as

Li(x) =

i∑
k=0

(−1)i+k (i+ k)!

(i− k)!(k!)2
xk. (3.4)

3.2 Legendre cardinal functions

To construct the so called Legendre cardinal functions for the set of orthogonal Legendre polynomials LN (x), we
will use the Taylor expansion of LN+1(x) in neighborhood the j-th root of LN+1(x), which gives

Ln+1(x) ≃ LN+1(xj) + LN+1,x(x− xj) + o(x− xj)
2.

Since the first term in the right hand side vanishes, then we can define the cardinal function of degree N in [−1, 1] as
follows [4, 8]

Cj(x) =
LN+1(x)

L′
N+1,x(xj)(x− xj)

, x ∈ [−1, 1] (3.5)

where the subscript x denotes x differentiation and xj are the zeros of LN+1(x). We have

Cj(xi) = δji =

{
1 if j = i,
0 if j ̸= i.

3.3 Function approximation

We change the variable t =
x+ 1

2
to obtain cardinal functions basis in the interval [0, 1], then the shifted Legendre

cardinal functions are defined on the interval [0, 1] as follows:

C⋆
i (t) = Ci(2t− 1), i = 1, . . . N + 1. (3.6)

Theorem 3.2. Any function f(t) mean square integrable on [0, 1] can be expanded by elements of shifted cardinal
Legendre function as follow

f(t) ≃
N+1∑
j=1

ujC
⋆
j (t) = UTΦN (t), (3.7)

where uj = f(tj), tj =
xj + 1

2
, j = 1, . . . N + 1 are the shifted points of xj , U = (u1, u2, . . . , uN+1)

T and ΦN (t) =(
C⋆

1 , C
⋆
2 , . . . C

⋆
N+1

)T
.

Proof . Let f(t) ≃
N+1∑
j=1

ujC
⋆
j (t), then f(ti) ≃

N+1∑
j=1

ujC
⋆
j (ti) =

N+1∑
j=1

ujδji. Then ui = f(ti). □
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Theorem 3.3. Any function g(t, s) mean square integrable on [0, 1]× [0, 1] can be approximated by cardinal Legendre
functions as follow

f(t, s) ≃
N+1∑
j=1

N+1∑
i=1

f(ti, sj)C
⋆
i (t)C

⋆
j (t) = ΦN (t)TK1ΦN (s), (3.8)

where K1,(i,j) = f(ti, tj).

Proof . We can proof this theorem by the similar way as the proof of theorem ((3.2)). □

3.4 Operational matrices of integration

Let ΦN (t) =
(
C⋆

1 , C
⋆
2 , . . . C

⋆
N+1

)T
, then

Lemma 3.4. We have ∫ t

0

ΦN (s)ds = A−1QΦN (t). (3.9)

where the (N + 1)× (N + 1) matrix A is called the transform matrix (or Vandermonde’s matrix) and is given by

A =



1 1 . . . 1
t1 t2 . . . tN+1

t21 t22 . . . t2N+1
...

...
...

tN−1
1 tN−1

2 . . . tN−1
N+1

tN1 tN2 . . . tNN+1


and

Q =



t1 t2 . . . tN+1

t21
2

t22
2

. . .
t2N+1

2
...

...
...

tN−1
1

N − 1

tN−1
2

N − 1
. . .

tN−1
N+1

N − 1

tN1
N

tN2
N

. . .
tNN+1

N

tN+1
1

N + 1

tN+1
2

N + 1
. . .

tN+1
N+1

N + 1


Proof . Let ψi(t) = ti−1 for i = 1, . . . N + 1, by expanding ψi(t) in (N + 1) terms of the shifted Legendre cardinal

functions, we obtain ψi(t) =

N+1∑
j=1

ψi(tj)C
⋆
j (t), i = 1, 2, . . . N + 1. Then


ψ1(t)
ψ2(t)
...

ψN+1(t)

 = A


C⋆

1 (t)
C⋆

2 (t)
...

C⋆
N+1(t)

 = AΦN (t).

Since the matrix A is invertible then ΦN (t) = A−1ΨN (t), where

ΨN (t) =


ψ1(t)
ψ2(t)
...

ψN+1(t)

 .
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Hence∫ t

0

ΦN (s)ds =

∫ t

0

A−1ΨN (s)ds

= A−1

∫ t

0

ΨN (s)ds = A−1



t
t2

2
...

tN+1

N + 1



Now, let gi(t) =
ti

i
, i = 1, 2, . . . , N + 1, we have gi(t) =

N+1∑
j=1

gi(tj)C
⋆
j (t) = QΦN (t). Then

∫ t

0

ΦN (s)ds = A−1QΦN (t).

□

3.5 Stochastic operational matrices of integration

In this subsection, we give stochastic operational matrix of integration with repect to Brownian motion. We have∫ t

0

ΦN (s)dB(s) =

∫ t

0

A−1ΨN (s)dB(s) = A−1

∫ t

0

ΨN (s)dB(s)

= A−1

[ ∫ t

0

dB(s),

∫ t

0

sdB(s), ...,

∫ t

0

sNdB(s)

]T
we apply Itô formula, we get

∫ t

0

dB(s)∫ t

0

sdB(s)∫ t

0

s2dB(s)

.̇
.̇∫ t

0

sNdB(s)


= B(t)ΨN (t)−



0∫ t

0

B(s)ds

2

∫ t

0

sB(s)ds

.̇
.̇

N

∫ t

0

sN−1B(s)ds


= AN (t) = (ai)i=0,...,N

where ai = tiB(t)− i

∫ t

0

si−1B(s)ds, i = 0, ..., N. For the integral

∫ t

0

si−1B(s)ds, we can use Simpson rule as follow

∫ t

0

si−1B(s)ds ≃ t

6

(
0i−1B(0) + 4(

t

2
)i−1B(

t

2
) + ti−1B(t)

)
, i = 1, 2, . . . N,

so

ai = tiB(t)− i
t

6

(
4(
t

2
)i−1B(

t

2
) + ti−1B(t)

)
=

(
(1− i

6
)B(t)− i

3× 2i−2
B(t/2)

)
ti, i = 1, 2, . . . , N

ai = B(t) for i = 0.
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Also we approximate B(t) and B( t2 ) for 0 ≤ t ≤ 1 by B(0.5) and B(0.25), then we obtain

A−1AN (t) = A−1


B(0.5) 0 0 ... 0

0 5
6
B(0.5)− 2

3
B(0.25) 0 ... 0

.̇ .̇ .̇ ... .̇
.̇ .̇ .̇ ... .̇
.̇ .̇ .̇ ... (1− N

6
)B(0.5)− N

3×2N−2B(0.25)





1
t
t2

.

.

.

.
tN


Then

A−1AN (t) = A−1AsΨN (t) = A−1AsAΦN (t) = PsΦN (t), (3.10)

where

As =


B(0.5) 0 0 ... 0

0 5
6
B(0.5)− 2

3
B(0.25) 0 ... 0

.̇ .̇ .̇ ... .̇
.̇ .̇ .̇ ... .̇
.̇ .̇ .̇ ... (1− N

6
)B(0.5)− N

3×2N−2B(0.25)


and Ps = A−1AsA is (N + 1)× (N + 1) stochastic operational matrix. Then∫ t

0

ΦN (t)dB(t) ≃ PsΦN (t). (3.11)

4 Solving stochastic integral equation

We approximate equation ((1.1)) as follows

z1(t) = a(t,X(t)), z2(t) = b(t,X(t)), t ∈ [0, 1]. (4.1)

By using equation ((1.1)) and ((4.1)), we have
z1(t) = a

(
t,X0 +

∫ t

0

z1(s)ds+

∫ t

0

z2(s)dB(s)

)
,

z2(t) = b(t,X0 +

∫ t

0

z1(s)ds+

∫ t

0

z2(s)dB(s)).

(4.2)

By expanding z1(t) and z2(t) by elements of cardinal functions, we get

z1(t) = UT
1 ΦN (t), z2(t) = UT

2 ΦN (t). (4.3)

By substituting equation (4.3)) in ((4.2)), we obtain
z1(t) = a

(
t,X0 +

∫ t

0

UT
1 ΦN (s)ds+

∫ t

0

UT
2 ΦN (s)dB(s)

)
,

z2(t) = b

(
t,X0 +

∫ t

0

UT
1 ΦN (s)ds+

∫ t

0

UT
2 ΦN (s)dB(s)

)
.

(4.4)

which is equivalent to 
z1(t) = a

(
t,X0 + UT

1

∫ t

0

ΦN (s)ds+ UT
2

∫ t

0

ΦN (s)dB(s)

)
,

z2(t) = b

(
t,X0 + UT

1

∫ t

0

ΦN (s)ds+ UT
2

∫ t

0

ΦN (s)dB(s)

)
.

(4.5)

By using equation ((3.9)) and ((3.11)), we get
UT

1 ΦN (t) = a

(
t,X0 + UT

1 A−1QΦN (t) + UT
2 PsΦN (t)

)
,

UT
2 ΦN (t) = b

(
t,X0 + UT

1 A−1QΦN (t) + UT
2 PsΦN (t)

)
.

(4.6)

We collocate ((4.6)) at shifted points tj , j = 1, 2, . . . N + 1, we have
UT

1 eNj = a

(
tj , X0 + UT

1 A−1QeNj + UT
2 Pse

N
j

)
,

UT
2 eNj = b

(
tj , X0 + UT

1 A−1QeNj + UT
2 Pse

N
j

)
,

(4.7)
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where eNj denotes the column of ordre j of identity matrix I of order N + 1. The system (4.7)) can be solved for the unknown
U1 and U2 with Matlab software packages or by the Newton’s iterative method. By determining U1 and U2, we can determine
the approximate solution of X(t) as follow

XN (x) = X0 + UT
1 A−1QΦN (t) + UT

2 PsΦN (t). (4.8)

5 Convergence analysis

In this section, we investigate the convergence and error analysis of the proposed method in the Sobolev space.

Definition 5.1. [5] The Sobolev space Hm
w (a, b) is defined as follow

Hm
w (a, b) =

{
u ∈ L2

w(a, b), u
(j)(t) ∈ L2

w(a, b), j = 0, 1, . . .m
}
, (5.1)

where w be a weight function and m ≥ 0 be an integer.

Remark 1. 1. The Sobolev space Hm
w (a, b) is endowed with the following weighted inner product

⟨u(t), v(t)⟩m,w =

m∑
i=1

∫ b

a

u(j)v(j)w(t)dt. (5.2)

The space Hm
w (a, b) is a Hilbert space with the following norm

||u(t)||Hm
w (a,b) =

( m∑
i=1

||u(j)||L2
w(a,b)

)1/2

. (5.3)

2. The sobolev space Hm
w (a, b) satisfy Hm+1

w (a, b) ⊂ Hm
w (a, b) ⊂ Hm−1

w (a, b) ⊂ . . . H0
w(a, b) = L2

w(a, b) and Cm([a, b]) ⊂
Hm

w (a, b).

Lemma 5.2. [5] Let u ∈ Hm
w (−1, 1), w(t) = 1 and INu =

N+1∑
j=1

u(xj)Cj(x) be the Legendre interpolant of u(t), where Cj(x) are

defined in ((3.5)) and xj are the zeros of LN+1(x). Then, the truncated error u− INu satisfies

||u− INu||L2
w(−1,1) ≤ ĈmN−m

( m∑
j=min(m,N)

||u(j)||L2
w(−1,1)

)1/2

. (5.4)

where Ĉm is a positive constant independent of N and dependent on m. Moreover, in the maximum norm, it yields

||u− INu||L∞
w (−1,1) ≤ ĈmN1/2−m

( m∑
j=min(m,N)

||u(j)||L2
w(−1,1)

)1/2

. (5.5)

where Ĉm is a positive constant independent of N and dependent on m, and ||u||L∞
w (−1,1) = sup

−1≤t≤1
|u(t)|.

Theorem 5.3. Let u ∈ Hm
w⋆(0, 1), w⋆(t) = 1 and I⋆Nu =

N+1∑
j=1

ujC
⋆
j (t), uj = u(tj) be the Legendre interpolant of u(t), where

C⋆
j (t) are defined in ((3.6)) and tj =

xj + 1

2
, j = 1, . . . N + 1 are the shifted points of xj . Then, the truncated error u − I⋆Nu

satisfies

||u− I⋆Nu||L2
w⋆ (0,1) ≤ ĈmN−m

( m∑
j=min(m,N)

(1/2)2j ||u(j)||L2
w⋆ (0,1)

)1/2

. (5.6)

where Ĉm is a positive constant independent of N and dependent on m. Moreover, in the maximum norm, it yields

||u− INu||L∞(0,1) ≤≤ ĈmN1/2−m
√
2

( m∑
j=min(m,N)

(1/2)2j ||u(j)||L2
w⋆ (0,1)

)1/2

. (5.7)

where Ĉm is a positive constant independent of N and dependent on m, and ||u||L∞(0,1) = sup
0≤t≤1

|u(t)|.

Proof . The proof proceeds in a same manner as the one of Theorem (5.4) in [9]. □
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Theorem 5.4. Suppose X(t) ∈ Hm
w (0, 1) and XN (t) be the exact and approximate solutions of equation ((1.1)), respectively,

furthermore, we suppose that

(H1) |a(t,X1(t))− a(t,X2(t))|+ |b(t,X1(t))− b(t,X2(t))| ≤ L|X1 −X2|, ( Lipschitz condition ),

(H2) |a(t,X(t))|+ |b(t,X(t))| ≤ L(1 + |X|), (Linear growth condition ),
where t ∈ [0, 1], X1, X2 ∈ R and Li are positive constants for i = 1, 2.

(H3) E|X0|2 < ∞.

Then Xn(t) converges to X(t) in L2.

Proof . Let eN (t) = X(t)−XN (t) be an error function between approximate solution XN (t) and exact solution X(t). Then,
we have

X(t)−XN (t) =

∫ t

0

(z1(s)− z̄1(s))ds+

∫ t

0

(z2(s)− z̄2(s))dB(s), (5.8)

where zi(t), i = 1, 2 are given by z1(t) = a(t,X(t)), z2(t) = b(t,X(t)). Let z̄i(t), i = 1, 2 are the approximation by shifted
cardinal Legendre functions of zi(t),

z̄1(t) = appN (a(t,XN (t)), z̄2(t) = appN (b(t,XN (t)) and zN1 (t) = a(t,XN (t)), zN2 (t) = b(t,XN t)).

We have

eN (t) =

∫ t

0

(z1(s)− z̄1(s))ds+

∫ t

0

(z2(s)− z̄2(s))dB(s)

E|eN (t)|2 = E

(∣∣ ∫ t

0

(z1(s)− z̄1(s))ds+

∫ t

0

(z2(s)− z̄2(s))dB(s)
∣∣)2

,

using the inequality (b+ c)2 ≤ 2(b2 + c2), we obtain

E|eN (t)|2 ≤ 2E
∣∣ ∫ t

0

(z1(s)− z̄1(s))ds
∣∣2 + 2E

∣∣ ∫ t

0

(z2(s)− z̄2(s))dB(s)
∣∣2

by using the Itô isometry and Schwartz inequality, we have

E|eN (t)|2 ≤ 2E

(∫ t

0

|z1(s)− z̄1(s)|2ds
)
+ 2E

(∫ t

0

|z2(s)− z̄2(s)|2ds
)
,

2E

(∫ t

0

|z1(s)− z̄1(s)|2ds
)

≤ 4E

(∫ t

0

|z1(s)− zN1 (s)|2ds
)
+ 4E

(∫ t

0

|zN1 (s)− z̄1(s)|2ds
)
,

and

2E

(∫ t

0

|z2(s)− z̄2(s)|2ds
)

≤ 4E

(∫ t

0

|z2(s)− zN2 (s)|2ds
)
+ 4E

(∫ t

0

|zN2 (s)− z̄2(s)|2ds
)
.

By considering theorem (5.3), there exists αi(m,N), i = 1, 2 such that

E||zNi (s)− z̄i(s)||2 ≤
(
αi(m,N)

)2
, i = 1, 2.

where αi(m,N) = ĈmN−m

( m∑
j=min(m,N)

(1/2)2j ||(zNi )(j)||L2
w⋆ (0,1)

)1/2

, i = 1, 2. Then

E|en(t)|2 ≤ 4
(
α1(m,N) + α2(m,N))2 + 4

(∫ t

0

E|z1(s)− zn1 (s)|2ds+
∫ t

0

E|z2(s)− zn2 (s)|2ds
)
.

Moreover, using Lipschitz condition, one has

E|en(t)|2 ≤ 4
(
α1(m,N) + α2(m,N))2 + 8L

∫ t

0

E|en(s)|2ds. (5.9)

Hence by Gronwall inequality, we get
E|eN (t)|2 −→ 0, as N −→ ∞.

□

Remark 2. From lemma ((5.2)), the error is sufficiently small if m is sufficiently large.
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6 Numerical examples

To demonstrate the accuracy and effectiveness of the method proposed herein, we have applied it to several examples. These
examples are solved in different references, so the numerical results obtained here can be compared with those of other numerical
methods. In order to analyze the error of the method we introduce the absolute error between exact and approximate solutions,
with M simulations, eN (t) = |X(t)−XN (t)|.

Example 6.1. Let given the deterministic Riccati differential equation

u′(t) + u2(t)− 1 = 0, u(0) = 0. (6.1)

The exact solution is given by u(t) =
exp(2t)− 1

exp(2t) + 1
. The numerical results of this example are given in table (1).

Table 1: The absolute errors obtained by the proposed method with different values of N for Example (6.1)

t N = 6 N = 10 N = 12

0.0 6.4731 E-6 5.1826 E-9 7.0595 E -11

0.1 1.9335 E-6 1.4375 E-9 1.9858 E-11

0.2 2.0340 E-6 1.1345 E-9 6.6977 E-11

0.3 3.8270 E-7 1.2643 E-9 5.6513 E-11

0.4 1.9180 E-6 1.0563 E-9 2.2130 E-10

0.5 3.9244 E-7 7.6294 E-8 1.9696 E-6

0.6 1.8670 E-6 7.6311 E-10 3.9650 E-9

0.9 3.7044 E-6 1.0957 E-9 1.1698 E-8

0.8 2.0978 E-6 5.4205 E-10 2.7887 E-8

0.9 1.4228 E-6 2.4433 E-9 1.4775 E-6

1.0 6.4731 E-6 5.1724 E-9 1.0582 E-9

Example 6.2. Let us consider the problem

X(t) = X0 +

∫ t

0

a2 cos(X(s)) sin3(X(s))ds− a

∫ t

0

sin2(X(s))dB(s), t ∈ [0, 1]. (6.2)

The exact solution is X(t) = arccot(aB(s) + cot(X0)). The computed errors for N = 5, a = 1/8 and different values of X0 are
summarized in table (2).

Table 2: The absolute errors obtained by the proposed method with different values of X0 with M = 500 simultations for Example (6.2)

t X0 = 0.01 X0 = π/32 X0 = 0.001 X0 = 1

0 4.0171 E-6 3.8327 E -4 4.0202 E-8 6.2593 E-2

0.1 1.6608 E-5 1.5645 E-3 1.6642 E-7 5.9772 E-2

0.2 1.3697 E-4 1.4837 E-2 1.3541 E-6 1.1500 E-2

0.3 1.8395 E-5 1.7325 E-3 1.8434 E-7 3.2472 E-2

0.4 1.4249 E-5 1.3701 E-3 1.4249 E-7 1.2364 E-3

0.5 1.9835 E-5 1.8680 E-3 1.9877 E-7 6.1292 E-2

0.6 1.8980 E-4 2.1690 E-2 1.8676 E-6 2.8464 E-2

0.7 3.9812 E-5 3.2924 E-3 3.9711 E-7 4.1968 E-2

0.8 6.7643 E-5 6.1056 E-3 6.8096 E-7 4.9793 E-3

0.9 6.4465 E-6 6.2461 E-4 6.4410 E-8 1.7478 E-2

1.0 6.4384 E-5 6.4939 E-3 6.4077 E-7 1.7478 E-2

Example 6.3. Consider the deterministic Volterra integral equation as follows [10]

− 1

15

(
− 8 exp(2t) + 6 sin(t) + 3 cos(t) + 5 exp(−t)

)
−

∫ t

0

(
exp(s− t) + sin(t− s)X(s)

)
ds,

where the exact solution is X(t) = exp(2t). The numerical results are summarized in table (3), figure (1) and figure (2).
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Table 3: The absolute errors obtained by the proposed method with different values of N for Example (6.3)

t N = 4 N = 10

0 1.6414 E-2 1.9052 E-8

0.2 6.4196 E-3 5.5029 E -9

0.4 6.8821 E-3 1.1685 E-10

0.6 2.6189 E-4 6.5420 E-9

0.8 1.1788 E-2 4.9335 E-9

1 8.4551 E-2 1.7840 E-7

Figure 1: Exact and approximate solutions for N = 4 for example (6.3).

Example 6.4. Consider the linear Volterra integral equation

X(t) =
1

12
+

∫ t

0

cos(s)X(s)ds+

∫ t

0

sin(s)X(s)dB(s), s, t ∈ [0, 1). (6.3)

The exact solution is

X(t) =
1

12
exp(− t

4
+ sin(t) +

sin(2t)

8
+

∫ t

0

sin(s)dB(s)), s, t ∈ [0, 1).

In this example, we take X0 = 1
12
, n = 5, n = 7 and n = 9. The results are summarized in table (4).

Example 6.5. (The basic Black-Scholes model) Let given the following linear stochastic equation

dX(t) = λX(t)dt+ µX(t)dW (t), X(0) = X0, t ∈ [0, 1], (6.4)

where the exact solution is given by X(t) = exp((λ − 1
2
µ2)t + µW (t)). The results obtained for λ = −100, µ = 1, N = 9 and

M = 10000 simulations of this example are given in Table (5).

Figure 2: Exact and approximate solutions for N = 10 for example (6.3).
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Table 4: Computed errors of cardinal shifted Legendre solution of Example (6.4)

t n = 5 n = 7 n = 9 m̂ = 32 [6] m̂ = 128[6]

0 4.8461 E-4 1.0924 E-5 1.9905 E-6

0.1 8.7041 E-3 1.3050 E-3 8.4205 E-4 0.00027710 0.00020525

0.2 8.9302 E-3 1.6426 E-3 1.2920 E-3

0.3 3.9782 E-2 6.6196 E-4 1.3555 E-3 0.00030417 0.00045023

0.4 1.2240 E-2 1.8642 E-3 1.2598 E-3

0.5 4.6941 E-2 5.7119 E-3 1.5698 E-3 0.06034923 0.12302136

0.6 1.5917 E-2 9.8883 E-3 3.2920 E-3

0.7 3.1020 E-2 1.2572 E-2 7.8045 E-3 0.00676411 0.00800211

0.8 1.3880 E-2 1.1550 E-2 1.6411 E-2

0.9 1.1846 E-2 5.3969 E-3 2.9506 E-2 0.01404822 0.01578822

Table 5: Computed errors for Example (6.5).

t X0 = 0.001 X0 = 0.01 X0 = 0.1 X0 = 1

0 1.0968 E-5 4.1376 E-3 3.1817 E-2 5.0676 E-1

0.1 3.4040 E-4 1.3261 E-3 2.0642 E-2 2.1272 E-2

0.2 1.1517 E-4 7.7968 E-4 1.0664 E-2 2.0320 E-2

0.3 7.8544 E-7 4.3569 E-4 5.0918 E-3 1.6041 E-2

0.4 3.2718 E-5 3.5683 E-4 4.7638 E-3 8.3613 E-3

0.5 8.3004 E-5 3.6748 E-4 5.6970 E-3 2.7126 E-3

0.6 7.2813 E-5 2.9280 E-4 4.7074 E-3 1.5862 E-2

0.7 3.3842 E-5 2.1419 E-4 3.0152 E-3 5.6668 E-3

0.8 2.2559 E-6 1.7920 E-4 1.9934 E-3 1.0030 E-2

0.9 3.1680 E-6 1.3367 E-4 1.4717 E-3 7.4090 E-3

7 Conclusion

A new numerical technique is constructed for solving numerically different kind of deterministic and stochastic integral
and integro-differential equations which can not be solved analytically. The proposed approach is based on cardinal Legendre
functions where the collocation points are the zeros of shifted Legendre LN+1(x) polynomials. The deterministic and stochastic
operational matrices of these orthogonal functions have been obtained in order to reduce our problem to a system of algebraic
equations. Some illustrative test problems are given to show the efficiency and accuracy of the proposed technique.The results
of the present method have been compared with analytical solutions and with others techniques. The numerical tests of the
proposed method were in a good agreement with the exact solutions, so this approach can be applied to solve some stochastic
problems such that stochastic population growth, stochastic Volterra’s population model, stochastic pendulum problem . . . etc.
The proposed technique can be also used to solve a class of variable-order optimal control problems in the Caputo sense and
other types of fractional differential equations. Our aim is that this survey paper will stimulate further interest in the area of
optimal control computation and also for stochastic integro and partial differential equations. There are still many possibilities
for future research.
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