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Abstract

This work is intended to probe the connections between the diffeology and gyrogroup by introducing the notion of
diffeological gyrogroup and proceeding with the study of some basic facts about it. The theory is developed by the
study of smooth action of a diffeological gyrogroup.
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1 Introduction

Smooth manifolds are nice and distinguished spaces in mathematics, however, the category of these objects does
not behave well under taking some constructions like subspaces, quotients, and function spaces. Treatment to this
difficulty can be generalizing the category of smooth manifolds to diffeologies. The theory of diffeology goes back to
J.-M. Souriau in the early 1980s, where diffeological groups were suggested at first [12], and then the general concept of
diffeological spaces was introduced [13]. Diffeological spaces include smooth manifolds as a full subcategory and make
a complete, co-complete, and cartesian closed category. Subspaces, quotients, function spaces of diffeological spaces
inherit diffeological structures. It is worth mentioning the irrational torus Tα = R/(Z + αZ) as a typical example
of a diffeological space (actually a diffeological group), which is neither a smooth manifold nor an orbifold. For the
convenience of the reader, we bring the relevant material from [8] in Section 2.

On the other hand, diffeology provides a unified framework to study mathematical objects with algebraic and
geometric information, such as diffeological groups, diffeological polygroups, and diffeological hypergroups (see [1]).
This paper is aimed to investigate gyrogroups in diffeology. Gyrogroups are an extension of groups, initiated by A.
A. Ungar [17]. The main motivation behind it is to enrich the structure of Einstein’s relativistic velocity addition
by inventing an additional, however natural, operator so-called gyrator as a measure of failure to associativity. The
binary operation of a gyrogroup induces a map from that gyrogroup to the group of its symmetries by taking any
element to its corresponding left translation, which we call the gyrotranslator. The gyrotranslator is a homomorphism
if and only if the gyrogroup is a group ([14]). This gives rise to another description of gyrogroups in terms of failure
to be homomorphism for gyro-translators.
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In order to study gyrogroups in the realm of differential geometry, we impose diffeologies over gyrogroups respecting
key features of gyrogroups. Indeed, by a diffeological gyrogroup, we mean a gyrogroup endowed with a diffeology
compatible with the binary operation and inversion operation. Thanks to the functional diffeology, we provide a
characterization of diffeological gyrogroup concerning the smoothness of gyro-translators. We also observe that the
gyrator of a diffeological gyrogroup is a smooth map as well. In other words, the properties of gyrogroups remain
stable in diffeology. This is another reason why we work with diffeologies instead of smooth manifolds.

The structure of the paper is as follows. In Section 2 we review gyrogroups and diffeological spaces. In Section 3,
we define diffeological gyrogroups and study some properties. We finally discuss the smooth action of gyrogroups in
Section 4.

2 Preliminaries

2.1 Background on diffeology

In this section we review the basic definitions and constructions from diffeology theory that will be used. For a
deeper discussion of diffeology we refer the reader to [8].

Definition 2.1. Let X be a non empty set. Every map P : U → X is called a parametrization in X, where U
is a real domain, that is, an open subset of Rn for some non-negative integer n. A diffeology of X is a set D of
parametrizations of X, called plots, satisfying the following axioms:

D1. (Covering) Every constant parametrization x : r 7→ x defined on Rn is a plot, for all x ∈ X and all non-negative
integers n.

D2. (Locality) If P : U → X is a parametrization and for every point r of U there exists an open neighborhood V of
r such that P |V is a plot, then P is a plot.

D3. (Smooth compatibility) For every plot P : U → X, for every real domain V and for every smooth map F : V → U ,
P ◦ F is a plot.

A diffeological space is a pair (X,D), where D is a diffeology on the underlying set X.

Let X and Y be two diffeological spaces. A map f : X → Y is called smooth if for every plot P of X, f ◦ P is a
plot of the space Y . A smooth bijective map with smooth inverse is called a diffeomorphism. The set of all smooth
maps from X to Y is denoted by C∞(X,Y ), and the set of all diffeomorphisms from X to Y by Diff(X,Y ). Once
X = Y , smooth maps and diffeomorphisms of X are denoted by C∞(X) and Diff(X), respectively.

Example 2.1. Let U be any open subset of Euclidean spaces. The set of all smooth parametrizations f : V → U as
a usual sense of smoothness in Euclidean spaces from any open subset V ⊆ Rn for some integer n makes a diffeology
on U what is known as standard diffeology on U .

Definition 2.2. For any set X, all of the locally constant parametrizations in X make finest diffeology on X called
fine (or discrete) diffeology and the set of all parametrizations in X is the coarsest diffeology on X called coarse
(or indiscrete) diffeology.

Let {Xi}i∈I be a collection of diffeological spaces. The product diffeology on the X =
∏

i∈I Xi is the coarsest
diffeology such that the natural projection Pi :

∏
i∈I Xi → Xi for any index i ∈ I is smooth.

For a diffeological space X, a diffeological subspace is a subset Y ⊆ X equipped with the subspace diffeology:
the set of all plots of X with values in Y . In this situation canonical inclusion Y ↪→ X is smooth.

Thus, intersection of two diffeological spaces is a diffeological subspace of each of them, even though it is empty.

Every diffeological space X admits an intrinsic topology called the D-topology for which the plots are continuous,
by means of a subset of X is D-open if and only if its preimage is open by every plot.

Definition 2.3. Let X be a diffeological space and ∼ be an equivalence relation on X. Let Y = X/∼ be the quotient
set, and let π : X → Y be the quotient map. We define the quotient diffeology on Y to be the diffeology for which
the plots are those maps p : U → Y such that for every point in U there exist an open neighborhood V ⊆ U and a
plot q : V → X such that p|V = π ◦ q.
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Definition 2.4. Let Y and Z be diffeological spaces. The standard functional diffeology on C∞(Y,Z) is defined
as follows. A parametrization p : U → C∞(Y,Z) is a plot if the evaluation map

U × Y → Z given by (u, y) 7→ p(u)(y)

is smooth.

Definition 2.5. A diffeological group is a group G equipped with a diffeology such that the multiplication and
inverse maps are smooth. Let X be a diffeological space and let G be a diffeological group. A smooth action of a
diffeological group G on X is any smooth homomorphism ρ : G → Diff(X), where Diff(X) together with composition
of maps is a group of diffeomorphisms on X which is equipped with functional diffeology (see [8, 1.61]).

2.2 Gyrogroups

In this section, we proceed regarding the concept of gyrogroup which is a kind of generalization of a group. In a
gyrogroup, the associativity law is replaced by a weaker one. Throughout this paper, we will consider that a groupoid
G is a nonempty set with a binary operation. Also if (G1,⊕1), (G2,⊕2) are two groupoids then the map f : G1 → G2

is said to be homomorphism if f(a⊕b) = f(a)⊕f(b) for all a, b ∈ G1 and Aut(G,⊕) is the the group of automorphisms
of the groupoid (G,⊕).

Definition 2.6. [17] A groupoid (G,⊕) is called a gyrogroup if its binary operation satisfies the following axioms:

1) In G there is at least one element, 0, called a left identity, satisfying 0⊕ a = a;

2) For each a ∈ G there is an element ⊖a ∈ G, called a left inverse of a satisfying

⊖a⊕ a = 0;

3) For any a, b ∈ G there exists gyr[a, b] ∈ Aut(G,⊕) such that for all c ∈ G we have:

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c.

The automorphism gyr[a, b] of G is called the gyroautomorphism of G generated by a, b ∈ G and the operator
gyr : G×G → Aut(G,⊕) is called the gyrator of G.

4) The gyroautomorphism gyr[a, b] generated by any a, b ∈ G possesses the left loop property

gyr[a, b] = gyr[a⊕ b, b].

The notation a⊖ b = a⊕ (⊖b) is used in gyrogroup theory as it is common in group theory.

A gyrogroup (G,⊕) is gyrocommutative if its binary operation obeys the gyrocommutative law

a⊕ b = gyr[a, b](b⊕ a) ∀a, b ∈ G.

The existence of right identity and right inverse of each element and uniqueness of them and some other facts about
gyrogroups is a consequence of the above gyrogroup axioms which is explained by Ungar in the following theorem:

Theorem 2.2. [17] Let (G,⊕) be a gyrogroup. For any elements a, b, c, x ∈ G we have:

(1) If a⊕ b = a⊕ c, then b = c (general left cancellation law).

(2) gyr[0, a] = I for any left identity 0 in G.

(3) gyr[x, a] = I for any left inverse x of a in G.

(4) gyr[a, a] = I

(5) There is a left identity which is a right identity.

(6) There is only one left identity.

(7) Every left inverse is a right inverse.

(8) There is only one left inverse, ⊖a, of a, and ⊖(⊖a) = a.

(9) ⊖a⊕ (a⊕ b) = b (Left Cancellation Law).

(10) gyr[a, b]x = ⊖(a⊕ b)⊕ {a⊕ (b⊕ x)} (The Gyrator Identity).

(11) gyr[a, b]0 = 0
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(12) gyr[a, b](⊖x) = ⊖gyr[a, b]x

(13) gyr[a, 0] = gyr[0, b] = I.

Theorem 2.3. [5] Let (V2,⊕2) be a gyrogroup, V1 be an arbitrary set, and ϕ : V1 → V2 be a bijection between V1

and V2. Then V1 endowed with the induced operation:

a⊕1 b : = ϕ−1(ϕ(a)⊕2 ϕ(b)), a, b ∈ V1

becomes a gyrogroup.

3 Diffeological Gyrogroups

In this section, we will dedicate a geometrical sense to gyrogroups by introducing the notion of diffeological
gyrogroups. Diffeological gyrogroups are indeed generalizations of the diffeological groups which includes Lie groups.
A Lie group is in fact a diffeological group by means of its manifold diffeology. The simplest examples of diffeological
gyrogroups are obviously obtained by putting the coarse diffeology (definition 2.2) on any gyrogroup so we are probing
over the examples with a finer diffeology.

Definition 3.1. Let G be a gyrogroup. A diffeology D on G is called a quasi-gyrogroup diffeology if the left gyrotrans-
lations on G are all smooth. We call G along with such a diffeology D on it a quasi-diffeological gyrogroup.

Proposition 3.1. Let G be diffeological gyrogroup and g ∈ G. The left and right gyrotranslations on G are diffeo-
morphisms.

Proof . The left gyrotranslation Lg : G → G given by x 7→ g ⊕ x and right gyrotranslation Rg : G → G given by
x 7→ x ⊕ g are indeed the restriction of the binary operation to the set {g} × G ⊆ G × G and G × {g} ⊆ G × G,
respectively, which are smooth maps by definition of diffeological gyrogroups. On the other hand, by [17, theorem
2.22], the equations a⊕x = b and x⊕a = b have unique solutions in G, so left and right gyrotranslations are bijective.
Similarly, their inverse maps are smooth as they are also gyrotranslations. We have thus proved our claim. □

Remark 3.2. By the above proposition, every quasi-diffeological gyrogroup G gives us a map L : G → Diff(G) taking
any a ∈ G to the diffeomorphism La. Notice that the map L is not a homomorphism. By the gyrator identity in
2.2 , one can write gyr[a, b] = L⊖(a⊕b) ◦ La ◦ Lb. Indeed, the gyrator is a measure for which L deviates from to be
homomorphism.

Proposition 3.3. Let (G,⊕) be a quasi-diffeological gyrogroup. Then for every a, b ∈ G, the gyroautomorphism
gyr[a, b] is a diffeomorphism.

Proof . Because gyr[a, b] is as a composition of some diffeomorphisms. □We denote the subgroup Aut(G)
⋂

Diff(G) ⊆
Diff(G) by DiffAut(G), which is a diffeological group. Thus, the gyrator of a quasi-diffeological gyrogroup G is into
DiffAut(G), i.e., gyr : G×G → DiffAut(G).

Definition 3.2. Let (G,⊕) be a gyrogroup. A diffeology D on G is called a gyrogroup diffeology if the operation
⊕ : G × G → G and the map ⊖ : G → G taking g 7→ ⊖g, are both smooth. We call a gyrogroup G along with a
gyrogroup diffeology D on it a diffeological gyrogroup.

Thus, any diffeological gyrogroup is a quasi-diffeological gyrogroup. We here show how the converse to this implication
depends on the smoothness of the map L : G → Diff(G).

Proposition 3.4. A quasi-diffeological gyrogroup (G,⊕) is a diffeological gyrogroup if and only if the map L : G →
Diff(G) is smooth, where the group Diff(G) of diffeomorphisms on G is equipped with the standard diffeology.

Proof . If G is a diffeological gyrogroup, then the smoothness of L follows from the smoothness of ⊕ : G × G → G
and ⊖ : G → G, also cartesian closeness property. On the other hand, let the map L : G → Diff(G) be smooth. Again,
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by cartesian closeness property, the operation ⊕ : G×G → G is smooth. Moreover, one observes that the composition
of the following smooth maps

G
L−→ Diff(G)

inv−→ Diff(G)
ev(0)−→ G,

where inv and ev(0) are f 7→ f−1 and evaluation map calculated on 0, is the same as the inverse map ⊖ : G → G.
Because this composition is smooth, the inverse map is smooth as well. □

By the above proposition and a similar argument to [8, 7.7], one can state the following:

Proposition 3.5. If (G,⊕) is a diffeological gyrogroup then the map L : G → Diff(G) is an embedding.

Proposition 3.6. The gyrator of a diffeological gyrogroup is smooth.

Proof . Let (G,⊕) be a diffeological gyrogroup and let (P1, P2) be a plot in G × G. Then ⊖(P1 ⊕ P2) is a plot
in G. Since L : G → Diff(G) is smooth, LP1 , LP2 , and L⊖(P1⊕P2) are plots in Diff(G). Now since (Diff(G), ◦) is a
diffeological group, gyr[P1, P2] = L⊖(P1⊕P2) ◦ LP1 ◦ LP2 is a plot in Diff(G). Therefore, gyr : G × G → Diff(G) is
smooth. □

One of the most famous examples of gyrogroup is Möbius gyrogroup that is explained in [17]. Here we show that
it is also a diffeological gyrogroup.

Example 3.7. Suppose that D is a complex open unit disk D = {z ∈ C | |z| < 1}. The Möbius addition on D is given
by

a⊕M z =
a+ z

1 + āz
, a, z ∈ D.

Möbius addition on D is neither commutative nor associative but it is gyroassociative and gyrocommutative such that
for all a, b ∈ D gyroautomorphism is defined by the formula:

gyr[a, b]d =
a⊕M b

b⊕M a
d =

1 + ab̄

1 + āb
d, d ∈ D.

A deeper discussion of verifying gyrogroup axioms can be found in [17]. Thus (D,⊕M ) is a gyrogroup which is called
Möbius gyrogroup. Because D is an open subset of an Euclidean space, by example 2.1, it is equipped with standard
diffeology. So D is a diffeological space and we just need to show addition and minus on D are smooth. Since the
equation 1 + āz = 0 has no solution on D, the addition operator is smooth and the inverse of each element a ∈ D is
−a, so the inverse map is also smooth on D. Therefore D is a diffeological gyrogroup.

As mentioned previously, for a diffeological gyrogroup (G,⊕), the smooth map L : G → (Diff(G), ◦) is not a
homomorphism. However, similar to what shown in [16], we can consider another binary operation for Diff(G) turning
it to a gyrogroup such that L : G → Diff(G) is a homomorphism. Let f be a diffeomorphism of G. Then f can
be written uniquely as f = Lf(0) ◦ α in which α is diffeomorphism of G with α(0) = 0. Define the operation
f ⊚ g := Lf(0)⊕g(0) ◦ α ◦ β, where β is the unique diffeomorphism with g = Lg(0) ◦ β. An argument like Theorem 3.3
of [16] proves that (Diff(G),⊚) is a gyrogroup.

Proposition 3.8. Let G be a diffeological gyrogroup. Then (Diff(G),⊚) is a diffeological gyrogroup.

Proof . We should show that the operation ⊚ and the inverse map I : Diff(G) → Diff(G) are smooth. First, consider
the composition Φ of the following smooth maps

Φ : Diff(G)
ev(0)−→ G

L−→ Diff(G)
inv−→ Diff(G),

which takes a diffeomorphism f to the left gyrotranslation L⊖f(0). Because the operation ◦ is smooth, we conclude
that the map

Ψ : Diff(G)
(Φ,id)−→ Diff(G)×Diff(G)

◦−→ Diff(G),
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taking a diffeomorphism f to the unique diffeomorphism α with f = Lf(0) ◦ α is smooth, too. So is the map

Γ : Diff(G)×Diff(G)
Φ×Φ−→ Diff(G)×Diff(G)

◦−→ Diff(G).

Next, the map

Θ : Diff(G)×Diff(G)
ev(0)×ev(0)−→ G×G

⊕−→ G
L−→ Diff(G)

which takes the pair (f, g) of diffeomorphisms to the left gyrotranslation Lf(0)⊕g(0), is smooth. Now, the operation ⊚
that is the composition

⊚ : Diff(G)×Diff(G)
(Γ,Θ)−→ Diff(G)×Diff(G)

◦−→ Diff(G),

is smooth. Finally, let Ψ the composition

Ψ : Diff(G)
Ψ−→ Diff(G)

inv−→ Diff(G).

Then the inverse map I is as

I : Diff(G)
(Φ,Ψ)−→ Diff(G)×Diff(G)

◦−→ Diff(G),

which is smooth. □

Corollary 3.9. Let G be a diffeological gyrogroup. Then L : G → (Diff(G),⊚) is a smooth homomorphism.

Proposition 3.10. Let G be a diffeological gyrogroup. The inverse map I : G → G which maps g to ⊖g is a
diffeomorphism.

Proof . Since in a gyrogroup, the inverse of each element is unique, so the inverse map is bijective. Moreover, by
⊖(⊖g) = g we have (I)−1 = I which is smooth. Thus I is a diffeomorphism. □

Now, let us examine gyrogroup diffeology on sub objects and products and quotients.

Lemma 3.11. Suppose that {Gi}ni=1 is a nonempty family of diffeological gyrogroups. By the product diffeology
which is defined on 2.2, G =

∏n
i=1 Gi is also a diffeological gyrogroup.

Proof . Firstly, we show that by the operation below, G is a gyrogroup:

{ai}ni=1 ⊕ {bi}ni=1 = {ai ⊕ bi}ni=1, ⊖({ai}ni=1) = {⊖ai}ni=1.

Zero element of G is the sequence of zero elements {0}ni=1, so we have

⊖{ai}ni=1 ⊕ {ai}ni=1 = {⊖ai ⊕ ai}ni=1 = {0}ni=1.

Now suppose that ai, bi, ci ∈ Gi for all i = 1, ..., n. Then we have

{ai}ni=1 ⊕ ({bi}ni=1 ⊕ {ci}ni=1) = {ai ⊕ (bi ⊕ ci)}ni=1 = {(ai ⊕ bi)⊕ gyr[ai, bi]ci}ni=1

= ({ai}ni=1 ⊕ {bi}ni=1)⊕ {gyr[ai, bi]ci}ni=1

where, gyr[a1, b1] ∈ Aut(G1), ..., gyr[an, bn] ∈ Aut(Gn). We define
gyr[{ai}ni=1, {bi}ni=1] :=

∏n
i=1 gyr[ai, bi] ∈ Aut(

∏n
i=1 Gi) which maps {ci}ni=1 to {gyr[ai, bi]ci}ni=1. So we obtain

{ai}ni=1 ⊕ ({bi}ni=1 ⊕ {ci}ni=1) = ({ai}ni=1 ⊕ {bi}ni=1)⊕ gyr[{ai}ni=1, {bi}ni=1]{ci}ni=1,

As we need. For checking the axiom of loop property, we have

gyr[{ai}ni=1 ⊕ {bi}ni=1, {bi}ni=1] =

n∏
i=1

gyr[ai ⊕ bi, bi] =

n∏
i=1

gyr[ai, bi] = gyr[{ai}ni=1, {bi}ni=1].
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It implies that G is a gyrogroup. Now we must show that ⊕ and ⊖ maps are smooth on G. Suppose that
r 7→ {P 1

i (r)}ni=1, r 7→ {P 2
i (r)}ni=1 are two plots of G. Thus for every 1 ≤ i ≤ n, r 7→ P 1

i (r) and r 7→ P 2
i (r) are two

plots of Gi. Since for all 1 ≤ i ≤ n, Gi is a diffeological gyrogroup then r 7→ ⊖P 1
i (r), r 7→ P 1

i (r)⊕ P 2
i (r) are smooth.

Therefore r 7→ {P 1
i ⊕ P 2

i (r)}ni=1, r 7→ {⊖P 1
i (r)}ni=1 are smooth on G. □

A nonempty subset H of (G,⊕) is called a subgyrogroup if it makes a gyrogroup under the operation inherited
from G and for all a, b ∈ H the restriction of automorphism gyr[a, b] to H is an automorphism of H. Suksumran and
Wiboonton mentioned a criterion for subgyrogroups in [16]:
A nonempty subset H of a gyrogroup (G,⊕) is a subgyrogroup if and only if ⊖a ∈ H and a⊕ b ∈ H for all a, b ∈ H.

Lemma 3.12. Every subgyrogroup H of a diffeological gyrogroup (G,⊕) is itself a diffeological gyrogroup.

Proof . Suppose that P1, P2 : U → H are two plots of H for the subspace diffeology 2.2. It means that they are plots
of G with values in H. Since H is a subgyrogroup, by the above argument ⊖P1 , P1 ⊕ P2 are plots of G with values
in H. Therefore ⊕ and ⊖ maps are smooth on H. It implies H is diffeological gyrogroup. □

A subgyrogroup H of a gyrogroup G is called an L-subgyrogroup if gyr[a, h](H) = H for all a ∈ G and h ∈ H [16].
If H is an L-subgyrogroup of G and a ∈ G, then a ⊕H = {a ⊕ h |h ∈ H} and H have the same cardinality and the
coset space G/H = {a⊕H : a ∈ G} makes a disjoint partition of G.

A map f : G → H between gyrogroups is called a gyrogroup homomorphism if for all a, b ∈ G, f(a⊕b) = f(a)⊕f(b)
and a bijective gyrogroup homomorphism is called a gyrogroup isomorphism. The kernel of gyrogroup homomorphism
f : G → H is defined to be the inverse image of the trivial subgyrogroup {0}. By [16], ker f is an L-subgyrogroup of
G and the following equivalence relation can be considered on it:

a ∼ker f b if and only if ⊖ a⊕ b ∈ ker f for all a, b ∈ G.

Let G/ ker f be the set of left cosets of ker f :

G/ ker f = {a⊕ ker f | a ∈ G}.

By theorem 5.5 of [16], G/ ker f equipped with the operation below , is a gyrogroup:

(a⊕ ker f)⊕ (b⊕ ker f) = (a⊕ b)⊕ ker f, a, b ∈ G.

Proposition 3.13. Let G be a diffeological gyrogroup and H be a gyrogroup. Let f : G → H be a gyrogroup
homomorphism. The quotient G/ ker f furnished with the quotient diffeology is a diffeological gyrogroup.

Proof . As we mentioned before, the quotient G/ ker f admits a gyrogroup structure and by applying definition 2.3,
the proof is straightforward. □ A subgyrogroup N of a gyrogroup G is called normal and denoted by N ⊴G if it is the
kernel of some gyrogroup homomorphism of G. This definition comes from the similar property of normal subgroups.
As we saw, the quotient of a gyrogroup by the kernel of a gyrogroup homomorphism receives a gyrogroup structure.
so we can consider the quotient of a gyrogroup by a normal subgyrogroup and generalize the previous result.

Corollary 3.14. Let G be a diffeological gyrogroup and N ⊴ G be a normal subgyrogroup. The quotient G/N
furnished with the quotient diffeology is a diffeological gyrogroup.

Definition 3.3. Let G and G′ be two diffeological gyrogroups and L(G,G′) be the space of homomorphisms from G
to G′. We denote by L∞(G,G′) = L(G,G′) ∩ C∞(G,G′) the space of all smooth homomorphisms from G to G′ and
we denote by Iso∞(G,G′) = Iso(G,G′) ∩ C∞(G,G′) the space of all smooth isomorphisms from G to G′.

Corollary 3.15. If f : G → G′ and g : G′ → G′′ are two smooth homomorphisms between diffeological gyrogroups,
the composition f ◦ g is also a smooth homomorphism because the composition of two smooth maps (in the sense
of diffeology) is smooth and the composition of two homomorphisms is a homomorphism. Therefore, the set of all
diffeological gyrogroups make a category with smooth homomorphisms as its morphisms.
As we saw in the above lemmas, this is a rich category which is closed under taking any subgyrogroup and product of
objects or even quotient by a normal subgyrogroup.

Now, let us extend the notion of smooth actions by diffeological gyrogroups.
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4 Smooth action of a diffeological gyrogroup

In a natural way, the notion of group actions was extended to gyrogroups in [14]. If G is a gyrogroup and X is a
nonempty set, gyrogroup action of G on X is the map G×X → X sending (g, x) to g.x which satisfies in two following
conditions:

1) 0.x = x for all x ∈ X,

2) a.(b.x) = (a⊕ b).x for all a, b ∈ G and x ∈ X.

Now we can apply this notion to define smooth action of a diffeological gyrogroup.

Definition 4.1. Let X be a diffeological space and G be a diffeological gyrogroup. A diffeological gyrogroup action
of G on X is defined to be a gyrogroup action in which the map G×X → X sending (g, x) to g.x is smooth. Every
diffeological gyrogroup action can also be represented as a smooth gyrogroup homomorphism. We know Diff(X)
together with the composition of maps is a group of diffeomorphisms on X which is equipped with functional diffeology.
By considering gyroautomorphisms as identity maps, Diff(X) can be regarded as a diffeological gyrogroup. So, smooth
action of a diffeological gyrogroup G on a diffeological space X is indeed any smooth gyrogroup homomorphism
ρ : G → Diff(X), which maps g to ρ(g) = (x 7→ g.x).

Remark 4.1. Note that when G is a group, for any g ∈ G, left gyrotranslation Lg : G×G → G defined by (g, x) 7→ g⊕x,
makes an action of G on itself but when G is a gyrogroup, this is not an action. Indeed by proposition 4.1 of [14], a
gyrogroup G acts on itself by a.x = a⊕ x, a, x ∈ G if and only if gyr[a, b] = IdG for all a, b ∈ G. That is, G should be
a group. The same result can be drawn for right gyrotranslations.

Suppose that a diffeological gyrogroup G acts on a diffeological space X, we can define a relation on X; x ∼ y if and
only if there is g ∈ G such that g.x = y.
By theorem 3.4 of [14], this is an equivalence relation. We put the quotient diffeology on the resulted quotient space.

Definition 4.2. If a diffeological gyrogroup G acts on a diffeological space X and x ∈ X, then as their classical
definition

1) The stabilizer of x is defined to be the set Gx = {g ∈ G | g.x = x}.
2) The orbit of x is defined to be the set Gx = {g.x | g ∈ G}.
3) The action is said to be effective if the homomorphism ρ : G → C∞(X) where ρ(g)(x) = g.x is injective. Thus,

for any two distinct g, h ∈ G, there exists x ∈ X such that g.x ̸= h.x.

4) The action is said to be transitive if for given x, y ∈ X, there exists g ∈ G such that g.x = y.

Theorem 4.2. Suppose that G is a diffeological gyrogroup which acts on a diffeological space X. For every x ∈ X,
the stabilizer of x, Gx is a diffeological subgyrogroup of G.

Proof . Let g ∈ Gx. Then ⊖g ∈ Gx because x = 0.x = (⊖g ⊕ g).x = ⊖g.(g.x) = ⊖g.x. Now let g1, g2 ∈ Gx, then
(g1 ⊕ g2).x = g1.(g2.x) = g1.x = x and we have g1 ⊕ g2 ∈ Gx. So Gx is a subgyrogroup of G.
Finally, by using lemma 3.12 we deduce that Gx is a diffeological subgyrogroup. □

Corollary 4.3. By the assumption of the previous theorem, for every x ∈ X, the quotient G/Gx is a diffeological
gyrogroup.

Proof . By the previous theorem, Gx is a diffeological subgyrogroup of G for every x ∈ X. Moreover it is an
L-subgyrogroup and the quotient G/Gx takes a gyrogroup structure. □

Remark 4.4. The concept of diffeological gyrogroup is a generalization of group action. Thus diffeological gyrogroups
can be considered as some kind of generalization of dynamical systems. In that sense, all basic dynamical notions
have obvious versions for diffeological gyrogroups, like the above concepts of orbit transitiveness and etc.
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