Int. J. Nonlinear Anal. Appl. 13 (2022) 2, 2399-2403 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2022.6566

Cofinitely $\bigoplus D_j$ -supplemented modules

Amenah Hasan*, Wasan Khalid

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

(Communicated by Madjid Eshaghi Gordji)

Abstract

For any *R*-module *W*, $D_j(W)$ presented as the total of all *J*-small sub-modules. If *A* and *B* are sub-module of *W*, we say *A* is $\bigoplus D_j$ 'supplement of *B* in *W* if $W = A + B = A \bigoplus \hat{A}$, for $\hat{A} \longrightarrow W$, and $A \bigcap B \ll_j D_j(A)$. If every sub-module has $\bigoplus D_j$ -supplemented, then *W* is $\bigoplus D_j$ -supplemented *A* sub-module *A* of *W*. If a sentence is conclusive, it is said to be cofinite i.e., $\frac{W}{A}$ is finitely generated. Also we introduce cofinite $\bigoplus D_j$ -supplemented if every cofinite sub-module of *W* has $\bigoplus D_j$ -supplemented.

Keywords: Cofinite, finitely generated, module, supplemented module 2020 MSC: 16D10

1 Introduction

Assume that R is a ring with identity and all modules are unitary left R-modules. Suppose that A is a micromodule inside the R-module W [2, 3]. If A + N = W for any sub-module N of W, then W = N is a sub-module of W [4, 6]. Let A and N be sub-modules of a module W, A is a supplement of N in W if the impact on property is modest W = A + N, equivalently if W - A + N and $\ln N \ll L$, if every sub-module of a module W has a supplement in W, then W is called a supplemented module [1, 5, 7]. As a generalization of a small sub-module A. Kabban and Khalid in [4] introduced J-small sub-modules. A sub-module A of W is called J-small sub-module of W written as $A \ll_j W$ if whenever W = A + N with $J\left(\frac{W}{N}\right) = \frac{W}{N}$ implies that W = N [4]. It is known that J(W) is the sum of all small sub-modules of W. Abdlkareem and Khalid in [4] introduced $Rad_j(W)$ as the sum of all J-small sub-modules of W, for short we refer to $D_j(W)$ instead of $Rad_j(W)$. In this paper we introduce $\bigoplus D_j$ -supplemented module. Let B and N sub-module of N in W, with W = B + N, and $B \cap N \ll_j D_j(B)$, so W is called $\bigoplus D_j$ -supplemented module if each sub-module of a program is tested of W has $\bigoplus D_j$ -supplement in W. Sub module A of a larger module; A cofinite sub module of W is referred to as W. If $\frac{W}{A}$ is finitely created. We define cofinite $\bigoplus D_j$ -supplemented as follows; a module W is called a cofinite $\bigoplus D_j$ -supplemented module if for every coifinite sub-module has $\bigoplus D_j$ -supplement. Clearly every $\bigoplus D_j$ -supplemented module is a cofinite $\bigoplus D_j$ -supplemented module. In this work, main properties of these concepts were proved.

2 $\bigoplus D_j$ -supplemented modules

This section is devoted to introduce $\bigoplus D_i$ -supplemented module.

*Corresponding author

Email addresses: amna.hasan1203a@sc.uobaghdad.edu.iq (Amenah Hasan), wasankhalid222@gmail.com (Wasan Khalid)

Definition 2.1. Let W be an R-module and let A, B is a sub-module of W. We say N is a $\bigoplus D_j$ -supplement of A in W if W = A + B, B directly summarizes of W and $A \cap B \ll_j D_j(B)$. Then W is said to be $\bigoplus D_j$ -supplemented, if every sub-module of W has $\bigoplus D_j$ -supplement.

- **Example 2.2.** 1. It is obvious that each semi-simple module is $\bigoplus D_j$ -supplemented. In particular Z_6 as Z-module is $\bigoplus D_j$ -supplemented.
 - 2. consider Z_8 as Z_module, $D_j(Z_8) = \langle \underline{2} \rangle$ Notice that $\langle \underline{2} \rangle + Z_8 = Z_8$ and $\langle \underline{2} \rangle \cap Z_8 = \langle \underline{2} \rangle \notin D_J(Z_8) = \langle \underline{2} \rangle$, so Z_8 as Z-module is not $\bigoplus D_j$ -supplemented module.

Remember that a sub module N of W is said to be completely invariant if and only if for every $f \operatorname{End}(W)$, $f(N) \leq N$ and W If every sub-module of W is entirely invariant, then W is considered a duo module [2].

Theorem 2.3. Let W be a $\bigoplus D_j$ -supplemented, let A an invariant submodule of the W, then $\frac{W}{A}$ is $\bigoplus D_j$ -supplemented.

Proof. An invariant submodule of L may be defined of W and let $\frac{N}{A}$ any sub-module of $\frac{M}{A}$ since W is $\bigoplus D_j$ -supplemented therefore there is a direct summand B of W that is equal to the sum of W and B. W = N + B and $N \cap B \ll_j D_j(B)$ with $W = B \bigoplus B'$ for $B' \subseteq W$. Now $\frac{W}{A} = \frac{N+B}{A} = \frac{N}{A} + \frac{B+A}{A}$, $\frac{N}{A} \cap \frac{B+A}{A} = \frac{N \cap (B+A)}{A} = \frac{(N \cap B) + A}{A}$, but $N \cap B \ll_j D_j(B)$, then $\frac{(N \cap B) + A}{A} \ll_j \frac{D_j(B) + A}{A} \subseteq D_j\left(\frac{B+A}{A}\right)$ by [3], since $W = B \bigoplus B'$ and L is fully invariant, then $\frac{W}{A} = \frac{B \bigoplus B'}{A} = \frac{B+A}{A} \bigoplus \frac{B' \bigoplus A}{A}$ by [2]. so $\frac{B+A}{A}$ is a 'supplement of $\frac{N+A}{A}$ and $\frac{B+A}{A}$ is a direct summation of $\frac{W}{A}$. Therefore $\frac{W}{A}$ is $\bigoplus D_j$ -supplemented. \Box

Theorem 2.4. Let $W = W_1 \bigoplus W_2$ be a duo module, than W_1 and W_2 are $\bigoplus D_j$ -supplemented modules if and only if W is $\bigoplus D_j$ -'supplemented [1].

Proof. \Rightarrow) Suppose that W_1 and $W_2 \bigoplus D_j$ -supplemented, and let A sub-module of W since $W \cap A = A = (W_1 \cap A) \bigoplus (W_2 \cap A)$ take $W_1 \cap A = A \subseteq W_1$, and $W_2 \cap A = A_2 \subseteq W_2$, so there exists $B_1 \subseteq_{\bigoplus} W_1$, and there exists $B_2 \subseteq_{\bigoplus} W_2$ Such that $W_1 = B_1 + A_1$ and $W_2 = B_2 + A_2$, $B_1 \cap A_1 \ll_j D_j(B_1)$ and $B_2 \cap A_2 \ll_j D_j(B_2)$. $W_1 = B_1 \bigoplus B'_1$ and $W_2 = B_2 \bigoplus B'_2$ but $W = W_1 \bigoplus W_2$, thus $W = B_1 + A_1 \bigoplus B_2 + A_2$

$$\begin{split} W &= (B_1 + B_2) + (A_1 + A_2). \ W = (B_1 + B_2) + A \text{ and } (B_1 + B_2) \cap A = B_1 \cap A + B_2 \cap A = B_1 \cap (A \cap W_1) + B_2 \cap (A \cap W_2) \subseteq D_j(B_1) + D_j(B_2) \ll_j D_j(B_1 + B_2), \text{ now } W = W_1 \bigoplus W_2 = B_1 \bigoplus B'_1 \bigoplus B_2 \bigoplus B'_2 = (B_1 \bigoplus B_2) \bigoplus (B'_1 \bigoplus B'_2) \text{ but } W = W_1 \bigoplus W_2, \text{ then } W = B_1 \bigoplus B'_1 \bigoplus B_2 \bigoplus B'_2 = B_1 \bigoplus B_2 \bigoplus B'_1 \bigoplus B'_2 \bigoplus B'_2 \iff W_1, \text{ then } A_1 \underline{\rightarrow} W, \text{ so there exists } B_1 \underline{\rightarrow} W \text{ such that } W = A_1 + B_1 W = B_1 \bigoplus B'_1 \bigoplus B'_1 \text{ and } A_1 \cap B_1 \ll_j D_j(B_1) \text{ thus } W_1 = W \cap W_1 = (A_1 + B_1) \cap W_1 = A_1 + (B_1 \cap W_1) \text{ by modular law, } W_1 = W \cap W_1 = (B_1 \bigoplus B'_1) \cap W_1 = (B_1 \cap W_1) \bigoplus (B'_1 \cap W_1) \text{ so } B_1 \cap W_1 \hookrightarrow W_1 \text{ Now } A_1 \cap (B_1 \cap W_1) = A_1 \cap B_1 \ll_j D_j(B_1) \text{ and } D_j(B_1 \cap W_1) \subseteq D_j(W_1) \end{split}$$

 $D_j(B_1 \cap W_1) \hookrightarrow_{\bigoplus} D_j(W_1)$ so $A_1 \cap B_1 \ll_j D_j(B_1 \cap W_1)$ by [4] similarly one can show that W_2 is $\bigoplus D_j$ -supplemented.

Corollary 2.5. Let $W = W_1 \bigoplus W_2 \bigoplus \dots \dots \bigoplus W_n$ be a duo module, then W_1, W_2, \dots and W_n are $\bigoplus D_j$ -supplemented if and only if M is $\bigoplus D_j$ -supplemented.

Proposition 2.6. Let $W = W_1 \bigoplus W_2$ be a two-parter Sub-modules *B* and *A* are part of W_1 . If *B* is $\bigoplus D_j$ -supplement on *A* in *M*, then $B \bigoplus W_2$ is $\bigoplus D_j$ -supplement of *A* in *W*.

Proof. Since *B* is $\bigoplus D_j$ -supplement of *A* in W_1 , $W_1 = B + A$ and $B \cap A \ll_j D_j(B)W_1 = B \bigoplus B'$ for $B' \subseteq W_1$ since $W = W_1 \bigoplus W_2$, then $W = (B + A) \bigoplus W_2$, hence $W = A + (B \bigoplus W_2)$ and $(B \bigoplus W_2) \cap A = (B \bigoplus W_2) \cap W_1 \cap A = B \cap A \ll_j D_j(B)$ and since $B \subseteq B \bigoplus W_2$, then $D_j(B) \subseteq D_j(B \bigoplus W_2)$ and $W = W_1 \bigoplus W_2 = (B \bigoplus B') \bigoplus W_2 = B \bigoplus W_2 \bigoplus B'$, therefore $B \bigoplus W_2$ is $\bigoplus D_j$ -supplement of *A* in *W*. \Box

Proposition 2.7. Let any module W has sub-modules B and A, if B is $\bigoplus D_j$ -supplement of A in W, Similarly for each completely invariant sub-module N of W such that $N \subseteq A$, $\frac{B+N}{N}$ is $\bigoplus D_j$ -supplement of $\frac{A}{N}$ in $\frac{W}{N}$ [6].

Proof. Let B be a $\bigoplus D_j$ -supplement of A in W, then W = A + B but B is the direct sum of W, then $W = B \bigoplus B'$, $B' \subseteq W$ and $A \cap B \ll_j D_j(B)$

Now $\frac{M}{N} = \frac{A+B}{N} = \frac{A}{N} + \frac{B+N}{N}$. $\frac{A}{N} \cap \frac{B+N}{N} \ll_j D_j \left(\frac{B+N}{N}\right)$, $\frac{A}{N} \cap \frac{B+N}{N} = \frac{A \cap (B+N)}{N} = \frac{(A \cap B)+N}{N}$ (by modular law) since $A \cap B \ll_j D_j(B)$, then $\frac{(A \cap B)+N}{N} \subseteq \frac{D_j(B)+N}{N}$ and $\frac{D_j(B)+N}{N} \ll_j D_j \left(\frac{B+N}{N}\right)$ by [3]. Now $W = B \bigoplus B'$ and N is a fully invariant of, then $\frac{W}{N} = \frac{B+N}{N} \bigoplus \frac{B'+N}{N}$ by [2]; therefore $\frac{B+N}{N}$ is $\bigoplus D_j$ -'supplement of $\frac{A}{N}$ in $\frac{W}{N}$. \Box

Proposition 2.8. Let W be any R-module. If A has $\bigoplus D_j$ -supplement in W, then $\frac{A}{N}$ has $\bigoplus D_j$ -supplement in $\frac{W}{N}$ where N is a totally invariant of W in such a way that $N \subseteq A$.

Proof. Since A has $\bigoplus D_j$ -supplement in W, there is a straight summation B of W such that B + A = W and, $B \cap A \ll_j D_j(B)$ with $W = B \bigoplus B'$, $B' \subseteq W$ for $B' \leq W$. Now $\frac{W}{N} = \frac{A}{N} + \frac{B+N}{N}$, $\frac{A}{N} \cap \frac{B+N}{N} = \frac{A \cap (B+N)}{N} = \frac{(B \cap A) + N}{N}$ (by modular law). Since $B \cap A \ll_j D_j(B)$, we have $\frac{(B \cap A) + N}{N} \subseteq \frac{D_j(B) + N}{N}$ and $\frac{D_j(B) + N}{N} \ll_j D_j(\frac{B+N}{N})$, by [4], therefore $\frac{B+N}{N} \bigoplus D_j$ -supplement of $\frac{A}{N}$ in $\frac{W}{N}$. \Box

Proposition 2.9. Let A, B be sub-modules of a module W and Let B be a $\bigoplus D_j$ -supplement of A in W if $C \ll_j W$ and $D_j(B)$ direct summand of B then B is $\bigoplus D_j$ -supplement of A + C [7].

Proof. Let *B* be a $\bigoplus D_j$ -supplement of *A* in *W*, then *W* = *B* + *A*, and *B* is a direct summand of *W* with $B \cap A \ll_j D_j(B)$ with $W = B \bigoplus B'$ for $B' \subseteq W$ so B + (A + C) = W. To show $B \cap (A + C) \ll_j D_j(B)$ let $B \cap (A + C) + N = B$ with $J\left(\frac{B}{N}\right) = \frac{B}{N}$ so $W = B \cap (A + C) + N + (A + C) = N + (A + C) = (A + N) + C$ since $\frac{W}{A+X} = \frac{B+(A+C)+N}{A+N} = \frac{B+(A+N)}{(A+N)} \cong \frac{B}{B+(A+N)} = \frac{B}{N+(A\cap B)}$ (second isomorphism and modular law are used to figure out how to make things that look like each other) and $J\left(\frac{B}{N}\right) = \frac{B}{N}$ we get $J\left(\frac{B}{N+(A\cap B)}\right) = \frac{B}{N+(A\cap B)}$ by [4]. Hence $J\left(\frac{W}{A+N}\right) = \frac{W}{A+N}$, but $C \ll_j W$, then W = A + N so $B = B \cap W = B \cap (A + N) = B \cap A + N$ (by modular law) but $B \cap A \ll_j D_j(B) \subseteq B$, then by [4] $B \cap A \ll_j B$ and since $J\left(\frac{B}{N}\right) = \frac{B}{N}$, therefore N = B. So $B \cap (A + C) \ll_j B$ so $B \cap (A + C) \subseteq D_j(B)$ and $D_j(B) \subset_{\bigoplus} B$ so by [4], $B \cap (A + C) \ll_j D_j(B)$. □

Theorem 2.10. Let $W = W_1 \bigoplus W_2$ is an *R*-module. Then W_2 is $\bigoplus D_j$ -supplemented module if and only if a direct summand *B* of *W* exists, $B \subseteq W_2$, W = B + A and $B \cap A \ll_j D_j(B)$ for every sub-module $\frac{A}{W_1}$ of $\frac{W}{W_1}$.

Proof. Let $\frac{A}{W_1}$ be any sub-module of $\frac{W}{W_1}$ Since $A \cap W_2 \subseteq W_2$ and W_2 is $\bigoplus D_j$ -supplemented module, there exists a direct summand B of W_2 such that $W_2 = (A \cap W_2) + B$ and $A \cap W_2 \cap B = A \cap B \ll_j D_j(B)$ with $W_2 = B \bigoplus B'$ for $B' \subseteq W_2$. Now $W = W_1 + W_2 = W_1 + (A \cap W_2) + B \subseteq W_1 + A + B$ but, $W_1 \subseteq A$; therefore W = B + A. So we get the result. Conversely let A be a sub-module of W_2 . Consider the sub-module $\frac{A \bigoplus W_1}{W_1}$ of $\frac{W}{W_1}$ By our assumption there exists a straight summand B of W such that $B \subseteq W_2$, $W = (A + W_1) + B$ and $(A + W_1) \cap B \ll_j D_j(B)$, $W = B \bigoplus B'$ for $B' \subseteq W$. Since $W_2 = W_2 \cap W = W_2 \cap [(A + W_1) + B] = B + [(A + W_1) \cap W_2] = B + A + (W_1 \cap W_2) = B + A$ by (modular law) since $\cap A \subseteq (A + W_1) \cap B \ll_j D_j(B)$, then $B \cap A \ll_j D_j(B)$ and $W_2 \cap W = W_2 \cap (B \bigoplus B') = B \bigoplus W_2 \cap B'$ by (modular law). $W = B \bigoplus B'W_2 = W \cap W_2 = (B \bigoplus B') \cap W_2 = B \bigoplus (B' \cap W_2)$ (by modular law), so $B \hookrightarrow_{\bigoplus} W_2$.

3 Cofinitely $\bigoplus D_i$ -supplemented modules

A sub-module N of W is called cofinite if $\frac{W}{N}$ is finitely generated. In this section we introduce Cofinitely $\bigoplus D_j$ -supplemented modules.

Definition 3.1. Let W be any R-module and let N a sub-module of W. We say that W is a cofinitely $\bigoplus D_j$ -supplemented module if for each cofinite sub-module N of W there exists a direct summand B of W such that W = N + B and $N \cap B \subseteq D_j(B)$.

Theorem 3.2. Let W be a cofinite $\bigoplus D_j$ -supplemented module and let A be a fully invariant sub-module of W, then $\frac{W}{A}$ is cofinite $\bigoplus D_j$ -supplemented module.

Proof. Let A be a fully invariant sub-module of W and $\frac{B}{A}$ any cofinite sub-module of $\frac{W}{A}$, then $\frac{W}{B} \cong \frac{W}{A}$. Therefore $\frac{W}{B}$ is finitely generated, hence B cofinite sub-module of W. Since W is cofinite $\bigoplus D_j$ -supplemented module, there is a direct summand N of W such that W = B + N, $B \cap N \ll_j D_j(N)W = N \bigoplus N'$, $N' \subseteq W$ Now $\frac{W}{A} = \frac{B+N}{A} = \frac{B}{A} + \frac{N+A}{A}$ and $\frac{B}{A} \cap \frac{N+A}{A} \ll_j D_j \left(\frac{N+A}{A}\right) \frac{B}{A} \cap \frac{N+A}{A} = \frac{B \cap (N+A)}{A} = \frac{(B \cap N)+A}{A}$ by (modular law) since $B \cap N \ll_j D_j(N)$, then $\frac{(B \cap N)+A}{A} \subseteq \frac{D_J(N)+A}{A}$ and $\frac{D_J(N)+A}{A} \ll_j D_j \left(\frac{N+A}{A}\right)$ by [3] and $W = N \bigoplus N'$, then $\frac{W}{A} = \frac{N \bigoplus N'}{A} = \frac{N+A}{A} \bigoplus \frac{N'+A}{A}$ thus $\frac{W}{A}$ is cofinite $\bigoplus D_j$ -supplemented module. \Box

Theorem 3.3. Let W be a cofinite $\bigoplus D_j$ -supplemented modules and let $N \subseteq W$ if for every direct summand K of $W \frac{N+K}{N}$ is direct summand of $\frac{W}{N}$, then $\frac{W}{N}$ cofinite $\bigoplus D_j$ -supplemented module.

Proof. For $N \subseteq A$, let $\frac{A}{N}$ be a cofinite sub-module of $\frac{W}{N}$, then A is a cofinite sub-module of W since W is cofinite $\bigoplus D_j$ -supplemented modules so there exists direct summand B of W such that $W = A + B = B \bigoplus B'$ and $A \cap B \ll_j D_j(B)$ for some $B' \subseteq W$ Now $\frac{W}{N} = \frac{A}{N} + \frac{B+N}{N}$ by hypothesis $\frac{B+N}{N}$ is direct summand of $\frac{W}{N}$, Note that $\frac{A}{N} \cap \frac{B+N}{N} = \frac{A \cap B+N}{N} = \frac{N+(B \cap A)}{N}$ since $A \cap B \ll_j D_j(B)$, then $\frac{((B \cap A)+N)}{N} \ll_j D_j(\frac{B+N}{N})$, therefore $\frac{W}{N}$ is a cofinite $\bigoplus D_j$ -supplemented modules. \Box

Theorem 3.4. Let W be a module and B be a completely invariant sub-module of W if W is a cofinitely invariant module. $\bigoplus D_j$ -supplemented module, then $\frac{W}{B}$ is a cofinitely $\bigoplus D_j$ -supplemented module moreover if B is cofinitely direct summand of W, then B is also cofinitely $\bigoplus D_j$ -supplemented module.

Proof. Suppose that W is cofinitely $\bigoplus D_j$ -supplemented then by Theorem 2.3, $\frac{W}{B}$ is a cofinitely $\bigoplus D_j$ -supplemented direct summary of $\frac{W}{B}$. Therefore $\frac{W}{B}$ is a cofinitely $\bigoplus D_j$ -supplemented. Now suppose that B is a cofinitely direct summand of W, so there is a sub-module $B' \subseteq W$ such that $W = B \bigoplus B'$ and B' finitely generated because $\frac{W}{B}$ is finitely generated. Let C be a cofinite sub-module of B, thus C is a cofinite sub-module of W, but W cofinitely $\bigoplus D_j$ -supplemented sub-module, so there exists A, A'W such that $W = A \bigoplus A'$, W = C + A, $C \cap A \ll_j D_j(A)$. $B = C + (B \cap A)$, $B = (B \cap A) \bigoplus (B \cap A')$ and $C \cap (B \cap A) = C \cap A \ll_j D_j(A)$.

Definition 3.5. An *R*-module *W* is called a cofinitely $\bigoplus D_j$ -supplemented module if every cofinite sub-module of *W* has a D_j -supplement that is a direct summand of *W*. Clearly Z_6 as a *Z*-module is a cofinitely $\bigoplus D_j$ -supplemented but Z_4 as *Z*-module is not.

Proposition 3.6. Let $W = W_1 \bigoplus W_2$ be a duo module if W_1 and W_2 are cofinite $\bigoplus D_j$ -supplemented, then W is a Cofinite $\bigoplus D_j$ -supplemented.

 $\begin{array}{l} \textbf{Proof.} \text{ We have } W = W_1 \bigoplus W_2. \text{ Let } A \text{ be a cofinite sub-module of } W, \text{ then } A = A \cap W = A \cap W_1 \bigoplus A \cap W_2, \text{ so} \\ \frac{W_A}{A} \simeq \frac{W_1}{W_1 \cap A} \bigoplus \frac{W_2}{W_2 \cap A} \text{ and } \frac{W_1}{W_1 \cap A} \text{ and } \frac{W_2}{W_2 \cap A} \text{ are finitely generated, thus } W_1 \cap A \text{ is cofinite in } W_1 \text{ and } W_2 \cap A \text{ is cofinite in } W_1 \text{ and } W_2 \cap A \text{ is cofinite in } W_1 \text{ and } W_2 \cap A \text{ is cofinite in } W_1 \cap A \text{ is cofinite in } W_1 \text{ and } W_2 \cap A \text{ is cofinite in } W_1 \cap A \text{ is cofinite in } W_1 \text{ and } W_2 \cap A \text{ is cofinite in } W_1 \cap A \text{ is cofinite in } W_1 \text{ and } W_2 \cap A \text{ is cofinite } \bigoplus D_j \text{ supplemented, so there exists } B_1, B_2K_1 \subset \bigoplus W_1 \text{ and } B_2 \subset \bigoplus W_2 \text{ such that } W_1 = A \cap W_1 + B_1, A \cap W_1 \cap B_1 \ll_j D_j(W_1) \text{ with } W_1 = B_1 \bigoplus B \text{ for } B \leq W_1 \text{ and } W_2 = A \cap W_2 + B_2, A \cap W_2 \cap B_2 \ll_j D_j(W_2) \text{ and } W_2 = B_2 \bigoplus B'_2, \text{ Now } W = W_1 \bigoplus W_2 = A \cap W_1 + B_1 + A \cap W_2 + B_2 = A \cap W_1 + A \cap W_2 + B_1 + B_2 = A + (B_1 + B_2), A \cap (B_1 + B_2) = (A \cap W_1 \cap B_1) + (A \cap W_2 \cap B_2) \ll_j D_j(W_1) + D_j(W_2) \leq D_j(W_1 + W_2)W = W_1 \bigoplus W_2 = B_1 \bigoplus B'_2 \bigoplus B_2 \bigoplus B'_2 = (B_1 \bigoplus B_2) \bigoplus (B_2 \bigoplus B'_2). \Box$

Corollary 3.7. Any direct sum of cofinitely $\bigoplus D_j$ -supplemented modules is cofinitely $\bigoplus D_j$ -supplemented.

Proof. Let *B*, *A* and *N* be sub-modules of *W* if $(B \cap A) = (N + B) \cap (N + A)$, or $N \cap (B + A) = (N \cap B) + (N \cap A)$, then *W* is called distributive [2]. \Box

Theorem 3.8. Let W be a cofinite $\bigoplus D_j$ -supplemented distributive module, then $\frac{W}{N}$ is cofinite $\bigoplus D_j$ -supplemented module for every sub-module N of W.

Proof. Let A be a direct summand of W, then $W = A \bigoplus A'$ for some sub-module A' of W. Now, $\frac{W}{N} = \left[\frac{A+N}{N}\right] + \left[\frac{A'+N}{N}\right]$ and $N = N + (A \cap A') = (N + A) \cap (N + A')$ by distribute of W this implies that $\frac{W}{N} = \frac{A+N}{N} \bigoplus \frac{A'+N}{N}$, so $\frac{W}{N}$ is cofinite $\bigoplus D_j$ -supplemented module. \Box

Corollary 3.9. Let W be a cofinite $\bigoplus D_j$ -supplemented distributive module, as a result, every direct sum of W is a cofinite $\bigoplus D_j$ -supplemented module.

Assuming that N and B are direct summands of W, then the sum of N + B will likewise be W [1]. This is known as the Summand Sum Property (SSP).

Theorem 3.10. Let W be a cofinite $\bigoplus D_j$ -supplemented module with the (ssp), if W is cofinite, then every direct sum of W is $\bigoplus D_j$ -supplemented module.

Proof. Since N provide a brief summary of W, let $W = N \bigoplus N'$ for some $N' \subseteq W$. Assume that A is a direct sum of W, since W has (ssp) A + N' is direct sum of W. Let $W = (A + N') \bigoplus B$ for some $B \subseteq W$, then $\frac{W}{N'} = \frac{A + N'}{N'} \bigoplus \frac{(K+N')}{N'}$, therefore $\frac{W}{N'} \simeq N$ is cofinite $\bigoplus D_j$ -supplemented. \Box

Recall the property (D_3) , means that if W_1 and W_2 are direct summands of W and $W = W_1 + W_2$, then $W_1 \cap W_2$ is also a straight-forward summation of W [2].

Proposition 3.11. Let W be a cofinite $\bigoplus D_j$ -supplemented a module with (D_3) , then every cofinite straight-forward summation of W is cofinite $\bigoplus D_j$ -supplemented.

Proof. Since N is a cofinite straight-forward summation of $W, W = N \bigoplus \dot{N}$ for $\dot{N} \hookrightarrow W$. So \dot{N} is created indefinitely, since A is a cofinite sub-module of N, we have $\frac{W}{A} = \frac{N \bigoplus \dot{N}}{A} = \frac{N}{A} \bigoplus \frac{\dot{N} + A}{A} \frac{W}{A} \simeq \frac{W}{A}$ which is finitely generated. Thus $\frac{\dot{N} + A}{A}$ is finitely generated and hence $\frac{W}{A}$ is finitely generated. So A has a cofinite of W submodule, thus $\exists B \hookrightarrow \bigoplus W$ such that $W = A + B = B \bigoplus B'$ for $B' \hookrightarrow W$ and $A \cap B \ll_j D_j(B)$ hence $N = N \cap W = N \cap (A + B) = A + (N \cap B)$, by $(D_3)N \cap B \hookrightarrow \bigoplus W$ and hence $N \cap B \hookrightarrow \bigoplus N$ and $\cap N \cap B = A \cap B \ll_j D_j(B \cap N)$. \Box

References

- [1] J.L. Garcia, Properties of direct summands of modules, Commun. Algebra 17 (1989), no. 1, 73–92.
- [2] A. Haramanci, D. Keskin and P.F. Smith, On ⊕-supplemented Modules, Acta Math. Hungar. 83 (1999), no. 1, 161–169.
- [3] A.A. Hussein and W. Khalid, ⊕ -RadJ-supplemented modules, J. Phys.: Conf. Ser. IOP Publishing, 1818 (2021), no. 1, p. 012203.
- [4] A. Kabban and W. Khalid, On Jacobson-small sub-modules, Iraqi J. Sci. 60 (2019), no. 7, 1584–1591.
- [5] F. Kasch, Modules and rings, Academic press, 1982.
- [6] M.T. Koşan, Generalized cofinitely semiperfect modules, Int. Electr. J. Algebra 5 (2009), no. 5, 58–69.
- [7] R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Philadelphia, 1991.