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Abstract

In this paper, new iterative schemes called DI-iterative scheme, Chugh-DI iterative scheme and IH-iterative scheme
are introduced and studied. In addition, convergence and stability results were obtained without necessarily imposing
sum conditions on the iteration parameters, which, among other things, increase the bulkiness and complexity of
computations as was the case for several works studied so far in the literature.
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1 Introduction

Let (Y, ρ) be a complete metric space and Γ : Y −→ Y a selfmap of Y . Suppose that FΓ = {q ∈ Y : Γq = q} is the
set of fixed points of Γ.

In the last few years, many interesting iterative schemes for which the fixed points of operators could be approxi-
mated have been developed and used in literature, see for example, [2], [9], [12]-[23], [24]-[30] and the references therein
for more details. Following the Kirk’s remarkable iterative algorithm of 1971, the iterative schemes below have been
studied extensively by different researchers:

Let X be a normed linear space and Γ : X −→ X be a self-map on X.

(I) For arbitrarily y0 ∈ X, define the sequence {yn}∞n=0 iteratively as follows:

yn+1 =

ℓ∑
j=0

αjΓ
jyn,

ℓ∑
j=0

αj = 1, n ≥ 0. (1.1)

The iteration method defined by (1.1) is due to Kirk [15].
(II) In [20], Olatinwo presented the Foowing iterative schemes:

(a) for an arbitrary point y0 ∈ X and for αn,j ≥ 0, αn,0 ̸= 0, αn,j ∈ [0, 1] and ℓ as a fixed integer, define the
sequence {yn}∞n=0 by

yn+1 =

ℓ∑
j=0

αn,jΓ
jyn,

ℓ∑
j=0

αn,j = 1, n ≥ 0 (1.2)
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(b) for an arbitrary point y0 ∈ X and for ℓ ≥ m,αn,j βn,j ≥ 0, αn,0, βn,0 ̸= 0, αn,jβn,j ∈ [0, 1] and ℓ,m as fixed
integers, define the sequence {yn}∞n=0 by

yn+1 = αn,0yn +

ℓ∑
j=0

αn,jΓ
jzn,

ℓ∑
j=0

αn,j = 1;

zn =

m∑
j=0

βn,jΓ
jyn,

ℓ∑
j=0

βn,j = 1, n ≥ 0, (1.3)

and called them Kirk-Mann and Kirk-Ishikawa iterative scheme respectively.
(III) In 2012, Chugh and Kumar [8] presented the following Kirk-Noor-type iterative scheme: for an arbitrary point

y0 ∈ X and for ℓ ≥ m ≥ p, αn,j , γn,k, βn,i ≥ 0, γn,0, αn,0, βn,0 ̸= 0, αn,j , γn,k, βn,i ∈ [0, 1] and ℓ,m, p as fixed
integers, define the sequence {yn}∞n=0 by

yn+1 = γn,0yn +

ℓ∑
k=1

γn,kΓ
kzn,

ℓ∑
k=0

γn,k = 1;

zn = αn,0yn +

m∑
j=1

αn,jΓ
jtn,

m∑
j=0

αn,j = 1;

tn =

p∑
i=0

βn,iΓ
iyn,

p∑
i=0

βn,i = 1, n ≥ 0, (1.4)

(IV ) Also, in 2012, Hussain, Chugh, Kummar and Ratig [10] introduced the following iterative schemes in the sense
of Kirk [15]:
(i) for an arbitrary point y0 ∈ X and for ℓ ≥ m ≥ p, αn,j , γn,k, βn,i ≥ 0, γn,0, αn,0, βn,0 ̸= 0, αn,j , γn,k, βn,i ∈

[0, 1] and ℓ,m, p as fixed integers, define the sequence {yn}∞n=0 by

yn+1 = γn,0zn +

ℓ∑
k=1

γn,kΓ
kzn,

ℓ∑
k=0

γn,k = 1;

zn = αn,0tn +

m∑
j=1

αn,jΓ
jtn,

m∑
j=0

αn,j = 1;

tn =

p∑
i=0

βn,iΓ
iyn,

p∑
i=0

βn,i = 1, n ≥ 0, (1.5)

(ii) for an arbitrary point y0 ∈ X, retaining the conditions in (i), define the sequence {yn}∞n=0 by

yn+1 = γn,0zn +

ℓ∑
k=1

γn,kΓ
kzn,

ℓ∑
k=0

γn,k = 1;

zn = αn,0Γtn +

m∑
j=1

αn,jΓ
jtn,

m∑
j=0

αn,j = 1;

tn =

p∑
i=0

βn,iΓ
iyn,

p∑
i=0

βn,i = 1, n ≥ 0, (1.6)

They called the iterative schemes defined by (1.5) and (1.6) Kirk-SP and Kirk-CR iterative schemes, re-
spectively.

In practical sense, convergence of the various iterative schemes studied above is not enough to ascertain their
usability, the stability of the schemes is quite priceless. Ostrowski [22] was the first researcher to perform an experiment
on this using Banach contractive conditions. Thereafter, other researchers have investigated and developed this subject
extensively. Some recent works in this direction could be seen in [2, 4, 5, 7, 8, 11, 13, 21, 18, 22, 19, 29, 28] and the
references therein.

Remark 1.1. All the iterative schemes for approximating common fixed points of finite families of mappings studied
above requires the condition that, for each n,

∑ℓ
k=0 γn,k = 1,

∑m
j=0 αn,j = 1 and

∑p
i=0 βn,i = 1 (see, for example, (1.1)

to (1.6)) on the control parameters {{γn,k}∞n=1}ℓk=1, {{αn,j}∞n=1}mj=1 and {{βn,i}∞n=1}
p
i=1, respectively. However, in

real life applications, if ℓ,m and p are very large, it would be very difficult or almost impossible to generate a family
of such control parameters. Again, the computational cost of generating such a family of control parameters is quite
enormous and also takes a very long process. Consequently, the following question becomes necessary:
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Question 1.1. Is it possible to construct alternative iterative schemes that would address the problems generated

by the sum conditions
(∑ℓ

k=0 γn,k = 1,
∑m

j=0 αn,j = 1 and
∑p

i=0 βn,i = 1
)

imposed on the control parameters

{{γn,k}∞n=1}ℓk=1, {{αn,j}∞n=1}mj=1 and {{βn,i}∞n=1}
p
i=1, respectively while maintaining the convergence and stability

results of the papers studied?

Following the same argument as in [14] regarding the linear combination of the products of countably finite family of
control parameters and the problems identified in each of the iterative schemes studied, the aim of this paper is to
provide an affirmative answer to Question 1.1.

2 Preliminary

The following definitions, lemmas and propositions will be needed to prove our main results.

Definition 2.1. (see [22]) Let (Y, d) be a metric space and let Γ : Y −→ Y be a self-map of Y . Let {xn}∞n=0 ⊆ Y
be a sequence generated by an iteration scheme

xn+1 = g(Γ, xn), (2.1)

where x0 ∈ Y is the initial approximation and g is some function. Suppose that {xn}∞n=0 converges to a fixed point q
of Γ. Let {tn}∞n=0 ⊆ Y be an arbitrary sequence and set ϵn = d(tn, g(Γ, tn)), n = 1, 2, · · · Then, the iteration scheme
(2.1) is called Γ-stable if and only if limn→∞ ϵn = 0 implies limn→∞ yn = q.

Note that in practice, the sequence {tn}∞n=0 could be obtained in the following manner: let x0 ∈ Y . Set xn+1 = g(Γ, xn)
and let t0 = x0. Now, x1 = g(Γ, x0) because of rounding in the function Γ, and a new value t1 (approximately equal to
x1) might be calculated to give t2, an approximate value of g(Γ, t1). The procedure is continued to yield the sequence
{tn}∞n=0, an approximate sequence of {xn}∞n=0.

Lemma 2.2. (see, e.g., [2]) Let {τn}∞n=0 be a sequence of positive numbers such that τn → 0 as n→ ∞. For 0 ≤ δ < 1,
let {wn}∞n=0 be a sequence of positive numbers satisfying wn+1 ≤ δwn + τn, n = 0, 1, 2, · · · Then, wn → 0 as n→ ∞.

Lemma 2.3. (see, e.g., [20]) Let (Y, ∥ .∥) be a normed space, the self-map Γ : Y −→ Y satisfies (1.13) and ψ :
R+ −→ R+ be a monotone increasing subadditive function such that ψ(0) = 0, ψ(Mt) =Mψ(t),M ≥ 0, t ∈ R+. Then,
∀i ∈ N and ∀s, t ∈ Y, we have

∥Γjs− Γjt∥ ≤ ρj∥s− t∥+
j∑

i=0

(
j

i

)
ρj−1ϕ(∥s− Γs∥). (2.2)

Proposition 2.4. (see, e.g., [14]) Let {αi}∞i=1 ⊆ N be a countable subset of the set of real numbers R, where k is a
fixed nonnegative integer and N is any integer with k + 1 ≤ N. Then, the following holds:

αk +

N∑
i=k+1

αi

i−1∏
j=k

(1− αj) +

N∏
j=k

(1− αj) = 1. (2.3)

Proposition 2.5. (see, e.g., [14]) Let t, u and v be arbitrary elements of a real Hilbert space H. Let k be any fixed
nonnegetive integer and N ∈ N be such that k + 1 ≤ N. Let {vi}N−1

i=1 ⊆ H and {αi}Ni=1 ⊆ [0, 1] be a countable finite
subset of H and R, respectively. Define

y = αk +

N∑
i=k+1

αi

i−1∏
j=k

(1− αj)vi−1 +

N∏
j=k

(1− αj)v.
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Then,

∥y − u∥2 = αk∥t− u∥2 +
N∑

i=k+1

αi

i−1∏
j=k

(1− αj)∥vi−1 − u∥2 +
N∏

j=k

(1− αj)∥v − u∥2

−αk

[ N∑
i=k+1

αi

i−1∏
j=k

(1− αj)∥t− vi−1∥2 +
i−1∏
j=k

(1− αj)∥t− v∥2
]

−(1− αk)
[ N∑
i=k+1

αi

i−1∏
j=k

(1− αj)∥vi−1 − (αi+1 + wi+1)∥2 + αN

i−1∏
j=k

(1− αj)∥v − vN−1∥2
]
,

where wk =
∑N

i=k+1 αi

∏i−1
j=k(1− αj)vi−1 +

∏i−1
j=k(1− αj)v, k = 1, 2, · · · , N and wn = (1− cn)v.

3 Main Results I

Let H be a Hilbert space and let Γ : H −→ H be a self-map of H. For arbitrary y0 ∈ Y , we define the following
iteratively algorithms for the sequence {yn}∞n=0:

yn+1 = δn,1tn +
∑a

ℓ=2 δn,k
∏ℓ−1

p=1(1− δn,p)Γ
ℓ−1tn +

∏a
p=1(1− δn,p)Γ

atn;

tn = γn,1ωn +
∑b

t=2 γn,t
∏t−1

s=1(1− γn,s)Γ
t−1ωn +

∏b
s=1(1− γn,s)Γ

bωn;

ωn =
∑c

r=1 τn,r
∏r−1

i=1 (1− τn,i)Γ
r−1yn +

∏c
i=1(1− τn,i)Γ

cyn, n ≥ 0, 1, 2, ..,

(3.1)


yn+1 = δn,1tn +

∑a
ℓ=2 δn,k

∏ℓ−1
p=1(1− δn,p)Γ

ℓ−1tn +
∏a

p=1(1− δn,p)Γ
atn;

tn = γn,1Γyn +
∑b

t=2 γn,t
∏t−1

s=1(1− γn,s)Γ
t−1ωn +

∏b
s=1(1− γn,s)Γ

bωn;

ωn =
∑c

r=1 τn,r
∏r−1

i=1 (1− τn,i)Γ
r−1yn +

∏c
i=1(1− τn,i)Γ

cyn, n ≥ 0, 1, 2, ..,

(3.2)

and 
yn+1 = δn,1yn +

∑a
ℓ=2 δn,k

∏ℓ−1
p=1(1− δn,p)Γ

ℓ−1tn +
∏a

p=1(1− δn,p)Γ
atn;

tn = γn,1yn +
∑b

t=2 γn,t
∏t−1

s=1(1− γn,s)Γ
t−1ωn +

∏b
s=1(1− γn,s)Γ

bωn;

ωn =
∑c

r=1 τn,r
∏r−1

i=1 (1− τn,i)Γ
r−1yn +

∏c
i=1(1− τn,i)Γ

cyn, n ≥ 0, 1, 2, ..,

(3.3)

where {{δn,k}∞n=0}ak=1, {{γn,t}∞n=0}bt=1, {{τn,r}∞n=0}cr=1 are countable finite family of real sequences in [0, 1] and a, b, c ∈
N. We shall call the iterative schemes defined by (3.1), (3.2) and (3.3) the DI-iterative scheme, Chugh-DI iterative
scheme and IH-iterative scheme respectively.

Remark 3.1. If a = b = c = 2, δn,1 = δn, δn,2 = αn, γn,1 = γn, γn,2 = ξn, τn,1 = τn, τn,2 = ρn,Γ
1 = I (where I is an

identity mapping) and Γ2 = Γ, we obtain the following iteration algorithms:

(a) From (3.1), we have
yn+1 = δntn + (1− δn)[αntn + (1− αn)Γtn]

tn = γnωn + (1− γn)[ξnωn + (1− ξn)Γωn]

ωn = τnyn + (1− τn)[ρnyn + (1− ρn)Γyn].

(3.4)

The following well known iteration schemes are consequences of (3.4):
(i) if αn = ξn = ρn = 0 in (3.4), we have

yn+1 = δntn + (1− δn)Γtn

tn = γnωn + (1− γn)Γωn

ωn = τnyn + (1− τn)Γyn,

(3.5)

and is called SP-iteration scheme.
(ii) if τn = 1 in (3.5), we get

yn+1 = δntn + (1− δn)Γtn

tn = γnωn + (1− γn)Γωn (3.6)
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(b) From (3.2), we have
yn+1 = δntn + (1− δn)[αntn + (1− αn)Γtn]r

tn = γnΓωn + (1− γn)[ξnωn + (1− ξn)Γωn]

ωn = τnyn + (1− τn)[ρnyn + (1− ρn)Γyn].

(3.7)

Again the following well known iteration scheme is a consequence of (3.7):

(i) if αn = ξn = ρn = 0 in (3.7), we have
yn+1 = δntn + (1− δn)Γtn

tn = γnΓωn + (1− γn)Γωn

ωn = τnyn + (1− τn)Γyn,

(3.8)

and is called CR-iteration scheme and

(c) From (3.3), we have
yn+1 = δnyn + (1− δn)[αntn + (1− αn)Γtn]

tn = γnyn + (1− γn)[ξnωn + (1− ξn)Γωn]

ωn = τnyn + (1− τn)[ρnyn + (1− ρn)Γyn],

(3.9)

so that, if αn = ξn = ρn = 0 in (3.9), the following well known (Noor) iteration scheme is obtained
yn+1 = δnyn + (1− δn)Γtn

tn = γnyn + (1− γn)Γωn

ωn = τnyn + (1− τn)Γyn.

(3.10)

Theorem 3.2. Let H be a Hilbert space, Γ : H −→ H be a self-map of H satisfying the contractive condition

∥Γsξ − Γsω∥ ≤ νs∥ξ − ω∥+
s∑

j=0

(
s

j

)
ρs−jϕ(∥ξ − Γξ∥), (3.11)

where ξ, ω ∈ H, 0 ≤ νs < 1, and let ϕ : R+ −→ R+ be a subadditive monotone increasing function with ϕ(0) = 0
and ϕ(Mt) = Mϕ(t),M ≥ 0, t ∈ R+. For arbitrary y0 ∈ H, let {yn}∞n=0 be the DI-iteration scheme defined by (3.1).
Then,

(i) Γ defined by (3.11) has a fixed point q;

(ii) the DI-iteration scheme converges strongly to q ∈ Γ.

Proof . First, we argue that Γ satisfying contractive condition (3.11) has a unique fixed point. Assume for contra-
diction that there exists two points q1, q2 ∈ F (Γ) with q1 ̸= q2. Then, we have

0 < ∥q1 − q2∥ = ∥Γsq1 − Γsq2∥ ≤ νs∥q1 − q2∥+
j∑

s=1

(
j

s

)
νj−sϕ(∥q

√
1− Γq1∥)

= νs∥q1 − q2∥+
j∑

s=1

(
j

s

)
νj−sϕ(0).

Then, (1− νs)∥q1 − q2∥ ≤ 0. Using the fact that νs ∈ [0, 1), we get 0 < 1− νs and ∥q1 − q2∥ ≤ 0. Since the norm
is a nonnegative function, we get ∥q1 − q2∥ = 0; q1 = q2 = q(say). Therefore, Γ has a unique fixed point.

Again, we show that the sequence {yn}∞n=0 generated by (3.1) converges strongly to q ∈ F (Γ). By (3.1) and
Proposition 2.5, with yn+1 = y, tn = t, q = u, k = 1 and yn,N ∈ Γk−1tn, we have the following estimates:

∥yn+1 − q∥2 ≤ δn,1∥tn − q∥2 +
a∑

ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)∥Γℓ−1tn − Γℓ−1q∥2 +
a∏

p=1

(1− δn,p)∥Γatn − Γaq∥2. (3.12)
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But from (3.11), with ξ = tn, we have

∥Γℓ−1tn − Γℓ−1q∥ ≤ νs∥tn − q∥+
s∑

j=1

(
s

j

)
νs−jϕ(∥q − Γq∥)

= νs∥tn − q∥. (3.13)

Using (3.12) and (3.13), we get

∥yn+1 − q∥2 =
[
δn,1 +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)(ν
s)2 +

a∏
p=1

(1− δn,p)(ν
s)2

]
∥tn − q∥2. (3.14)

Also,

∥tn − q∥2 = γn,1∥ωn − q∥2 +
b∑

t=2

γn,t

t−1∏
s=1

(1− γn,s)∥Γt−1ωn − Γt−1q∥2 +
b∏

s=1

(1− γn,s)∥Γbωn − Γbq∥2. (3.15)

But from (3.11), with ξ = ωn, we have

∥Γt−1ωn − Γt−1q∥ ≤ νs∥ωn − q∥+
s∑

j=1

(
s

j

)
νs−jϕ(∥q − Γq∥)

= νs∥ωn − q∥. (3.16)

From (3.15) and (3.16), we obtain

∥tn − q∥2 =
[
γn,1 +

b∑
t=2

γn,t

t−1∏
s=1

(1− γn,s)(ν
s)2 +

b∏
s=1

(1− γn,s)(ν
s)2

]
∥ωn − q∥2. (3.17)

Moreover,

∥ωn − q∥2 = τn,1∥yn − q∥2 +
b∑

r=2

τn,r

r−1∏
i=1

(1− τn,i)∥Γr−1yn − Γr−1q∥2 +
c∏

i=1

(1− τn,i)∥Γcyn − Γcq∥2. (3.18)

Using (3.11), with ξ = yn, and following the same approach as was used to obtain (3.17), we get

∥ωn − q∥2 =
[
τn,1 +

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i)(ν
s)2 +

c∏
i=1

(1− τn,i)(ν
s)2

]
∥yn − q∥2. (3.19)

Now, (3.12), (3.15) and (3.19) imply that

∥yn+1 − q∥2 =
(
δn,1 +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)(ν
s)2 +

a∏
p=1

(1− δn,p)(ν
s)2

)(
γn,1 +

b∑
t=2

γn,t

t−1∏
s=1

(1− γn,s)(ν
s)2

+

b∏
s=1

(1− γn,s)(ν
s)2

)(
τn,1 +

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i)(ν
s)2 +

c∏
i=1

(1− τn,i)(ν
s)2

)
∥yn − q∥2. (3.20)

Using Lemma 2.3 and the fact that νs ∈ [0, 1), we have

A < B = 1, (3.21)
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where

A =
(
δn,1 +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)(ν
s)2 +

a∏
p=1

(1− δn,p)(ν
s)2

)(
γn,1 +

b∑
t=2

γn,t

t−1∏
s=1

(1− γn,s)(ν
s)2

+

b∏
s=1

(1− γn,s)(ν
s)2

)(
τn,1 +

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i)(ν
s)2 +

c∏
i=1

(1− τn,i)(ν
s)2

)
and

B =
(
δn,1 +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p) +

a∏
p=1

(1− δn,p)
)(
γn,1 +

b∑
t=2

γn,t

t−1∏
s=1

(1− γn,s) +

b∏
s=1

(1− γn,s)
)

(
τn,1 +

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i) +

c∏
i=1

(1− τn,i)
)
.

By Lemma 2.2 and (3.21), we obtain from (3.20) that yn → q as n → ∞; that is, DI-iteration scheme converges
strongly to q ∈ F (Γ). □

Theorem 3.3. Let H be a Hilbert space, Γ : H −→ H be a self-map of H satisfying the contractive condition

∥Γsξ − Γsω∥ ≤ νs∥ξ − ω∥+
s∑

j=0

(
s

j

)
ρs−jϕ(∥ξ − Γξ∥), (3.22)

where ξ, ω ∈ H, 0 ≤ νs < 1, and let ϕ : R+ −→ R+ be a subadditive monotone increasing function with ϕ(0) = 0 and
ϕ(Mt) =Mϕ(t),M ≥ 0, t ∈ R+. For arbitrary y0 ∈ H, let {yn}∞n=0 be the Chugh-DIiteration scheme defined by (3.2).
Then,

(i) Γ defined by (3.22) has a fixed point q;

(ii) The Chugh-DI iteration scheme converges strongly to q ∈ Γ.

Proof . Assume for contradiction that there exists two points q1, q2 ∈ F (Γ) with q1 ̸= q2. Then, following the same
technique as in (i) of Theorem 3.2, we have q1 = q2 = q( say ). Hence, q is the unique fixed point of Γ. Next, we
prove that xn → q as n→ ∞. Now, by (3.2), Proposition 2.4 and (3.22), we get

∥yn+1 − q∥2 =
[
δn,1 +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)(ν
s)2 +

a∏
p=1

(1− δn,p)(ν
s)2

]
∥tn − q∥2. (3.23)

Again, from (3.2), (3.22) and Proposition 2.5, with k = 1, tn = yn,Γyn = t, yn,N ∈ Γj−1, , we get

∥tn − q∥2 = γn,1∥Γyn − q∥2 +
b∑

t=2

γn,t

t−1∏
s=1

(1− γn,s)∥Γt−1ωn − Γt−1q∥2 +
b∏

s=1

(1− γn,s)∥Γbωn − Γbq∥2

≤ νγn,1∥yn − q∥2 +
b∑

t=2

γn,t

t−1∏
s=1

(1− γn,s)∥Γt−1ωn − Γt−1q∥2 +
b∏

s=1

(1− γn,s)∥Γbωn − Γbq∥2,

which by (3.16) yields

∥tn − q∥2 = νγn,1∥yn − q∥2 +
[ b∑

t=2

γn,t

t−1∏
s=1

(1− γn,s)(ν
s)2 +

b∏
s=1

(1− γn,s)(ν
s)2

]
∥ωn − q∥2. (3.24)

Furthermore, using the method as was used to obtain (3.19) in Theorem 3.2, we obtain

∥ωn − q∥2 =
[
τn,1 +

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i)(ν
s)2 +

c∏
i=1

(1− τn,i)(ν
s)2

]
∥yn − q∥2. (3.25)
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(3.23), (3.24) and (3.25) yield

∥yn+1 − q∥2 =
(
δn,1 +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)(ν
s)2 +

a∏
p=1

(1− δn,p)(ν
s)2

)
×

{
νγn,1 +

( b∑
t=2

γn,t

t−1∏
s=1

(1− γn,s)(ν
s)2

+

b∏
s=1

(1− γn,s)(ν
s)2

)(
τn,1 +

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i)(ν
s)2 +

c∏
i=1

(1− τn,i)(ν
s)2

)}
∥yn − q∥2. (3.26)

Using Proposition 2.4 and the fact that νs ∈ [0, 1), we have

A⋆ < B⋆ = 1, (3.27)

where

A⋆ =
(
δn,1 +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)(ν
s)2 +

a∏
p=1

(1− δn,p)(ν
s)2

)

×
{
νγn,1 +

( b∑
t=2

γn,t

t−1∏
s=1

(1− γn,s)(ν
s)2 +

b∏
s=1

(1− γn,s)(ν
s)2

)(
τn,1

+

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i)(ν
s)2 +

c∏
i=1

(1− τn,i)(ν
s)2

)}
and

B⋆ =
(
δn,1 +

a∑
k=2

δn,k

k−1∏
p=1

(1− δn,p) +

a∏
p=1

(1− δn,p)
)(
γn,1 +

b∑
t=2

γn,t

t−1∏
s=1

(1− γn,s)

+

b∏
s=1

(1− γn,s)
)(
τn,1 +

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i) +

c∏
i=1

(1− τn,i)
)

By Lemma 2.2 and (3.27), it follows from (3.26) that yn → q as n → ∞; that is, Chugh-DI iteration scheme
converges strongly to q ∈ F (Γ). □

Theorem 3.4. Let H be a normed space, Γ : H −→ H be a self-map of H satisfying the contractive condition

∥Γsξ − Γsω∥ ≤ νs∥ξ − ω∥+
s∑

j=0

(
s

j

)
ρs−jϕ(∥ξ − Γξ∥), (3.28)

where ξ, ω ∈ H, 0 ≤ νs < 1, and let ϕ : R+ −→ R+ be a subadditive monotone increasing function with ϕ(0) = 0
and ϕ(Mt) = Mϕ(t),M ≥ 0, t ∈ R+. For arbitrary y0 ∈ H, let {yn}∞n=0 be the IH-iteration scheme defined by (3.3).
Then,

(i) Γ defined by (3.33) has a unique fixed point q;
(ii) The IH-iteration scheme converges strongly to q ∈ Γ.

Proof . (i) The result follows immediately as in the proof of (i) in Theoerem 3.2.
(ii) To show that the sequence {yn}∞n=0 generated by (3.3) converges strongly to a point q ∈ F (Γ), we shall use (3.3),
Proposition 2.5, with yn+1 = y, yn = t, q = u, k = 1, yn,N ∈ Γk−1tn and then estimate as follows:

∥yn+1 − q∥2 ≤ δn,1∥yn − q∥2 +
a∑

ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)∥Γℓ−1tn − Γℓ−1q∥2 +
a∏

p=1

(1− δn,p)∥Γatn − Γaq∥2,

which on the application of (3.16) yields

∥yn+1 − q∥2 ≤ δn,1∥yn − q∥2 +
( a∑

ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)(ν
s)2 +

a∏
p=1

(1− δn,p)(ν
s)2

)
∥tn − q∥2. (3.29)
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Since

∥tn − q∥2 ≤ γn,1∥yn − q∥2 +
b∑

t=2

γn,t

t−1∏
s=1

(1− γn,s)∥Γt−1ωn − Γt−1q∥2 +
b∏

s=1

(1− γn,s)∥Γbωn − Γbq∥2

we obtain using (3.16) that

∥tn − q∥2 ≤ γn,1∥yn − q∥2 +
[ b∑

t=2

γn,t

t−1∏
s=1

(1− γn,s)(ν
s)2 +

c∏
s=1

(1− γn,s)(ν
s)2

]
∥ωn − q∥2. (3.30)

Again, since by (3.19)

∥ωn − q∥2 =
[
τn,1 +

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i)(ν
s)2 +

c∏
i=1

(1− τn,i)(ν
s)2

]
∥yn − q∥2,

it follows (from (3.30)) that

∥tn − q∥2 ≤
[
γn,1 +

( b∑
t=2

γn,t

t−1∏
s=1

(1− γn,s)(ν
s)2 +

c∏
s=1

(1− γn,s)(ν
s)2

)(
τn,1

+

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i)(ν
s)2 +

c∏
i=1

(1− τn,i)(ν
s)2

)]
∥yn − q∥2. (3.31)

(3.29) and (3.31) and Proposition 2.3 (with k = 1) imply

∥yn+1 − q∥2 ≤
{
δn,1 +

( a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)(ν
s)2 +

a∏
p=1

(1− δn,p)(ν
s)2

)

×
[
γn,1 +

( b∑
t=2

γn,t

t−1∏
s=1

(1− γn,s)(ν
s)2 +

c∏
s=1

(1− γn,s)(ν
s)2

)(
τn,1

+

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i)(ν
s)2 +

c∏
i=1

(1− τn,i)(ν
s)2

)]}
∥yn − q∥2

<
{
δn,1 +

( a∑
k=2

δn,k

k−1∏
p=1

(1− δn,p) +

a∏
p=1

(1− δn,p)
)[
γn,1 +

( b∑
t=2

γn,t

t−1∏
s=1

(1− γn,s)

+

c∏
s=1

(1− γn,s)
)(
τn,1 +

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i) +

c∏
i=1

(1− τn,i)
)]}

× ∥yn − q∥2

= ∥yn − q∥2. (3.32)

By applying Lemma 2.2, we obtain from (3.32) that yn → q as n → ∞; that is, the IH-iteration scheme strongly
converges to q ∈ F (Γ). □

If c = 0 in (3.3), then we have the following corollary:

Corollary 3.5. Let H be a Hilbert space, Γ : H −→ H be a self-map of H satisfying the contractive condition

∥Γsξ − Γsω∥ ≤ νs∥ξ − ω∥+
s∑

j=0

(
s

j

)
ρs−jϕ(∥ξ − Γξ∥), (3.33)

where ξ, ω ∈ H, 0 ≤ νs < 1, and let ϕ : R+ −→ R+ be a subadditive monotone increasing function with ϕ(0) = 0 and
ϕ(Mt) = Mϕ(t),M ≥ 0, t ∈ R+. For arbitrary y0 ∈ H, let {yn}∞n=0 be the enhanced-Kirk-Ishikawa-iteration scheme
defined by{

yn+1 = δn,1yn +
∑a

ℓ=2 δn,ℓ
∏ℓ−1

p=1(1− δn,p)Γ
ℓ−1tn +

∏a
p=1(1− δn,p)Γ

atn;

tn =
∑b

t=t γn,t
∏t−1

s=1(1− γn,s)Γ
t−1ωn +

∏
s=1(1− γn,s)Γ

bωn, n ≥ 0, 1, 2, .., .
(3.34)
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Then,

(i) Γ defined by (3.33) has a unique fixed point q;
(ii) The sequence defined by (3.34) converges strongly to q ∈ Γ.

If b = c = 0, then we have the following corollary:

Corollary 3.6. Let H be a HiLbert space, Γ : H −→ H be a self-map of H satisfying the contractive condition

∥Γsξ − Γsω∥ ≤ νs∥ξ − ω∥+
s∑

j=0

(
s

j

)
ρs−jϕ(∥ξ − Γξ∥), (3.35)

where ξ, ω ∈ H, 0 ≤ νs < 1, and let ϕ : R+ −→ R+ be a subadditive monotone increasing function with ϕ(0) = 0
and ϕ(Mt) =Mϕ(t),M ≥ 0, t ∈ R+. For arbitrary y0 ∈ H, let {yn}∞n=0 be the enhanced-Kirk-Mann-iteration scheme
defined by

yn+1 =

a∑
ℓ=1

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
k−1tn +

a∏
p=1

(1− δn,p)Γ
atn, n ≥ 0, 1, 2, .., (3.36)

Then,

(i) Γ defined by (3.35) has a unique fixed point q;
(ii) The sequence defined by (3.36) converges strongly to q ∈ Γ.

4 Main Results II

In this section, we consider the stability results for the DI-iterative scheme, Chugh-DI iterative scheme and IH-
iterative scheme defined by (3.1), (3.2) and (3.3) for mappings satisfying (2.2), respectively. The stabilities of (3.5), (3.8)
and (3.10) follows immediately as corollaries.

Theorem 4.1. Let H be a Hilbert space, Γ : H −→ H be a self-map of H satisfying the contractive condition

∥Γsξ − Γsω∥ ≤ νs∥ξ − ω∥+
s∑

j=0

(
s

j

)
ρs−jϕ(∥ξ − Γξ∥), (4.1)

where ξ, ω ∈ H, 0 ≤ νs < 1, and let ϕ : R+ −→ R+ retains its usual meaning with ϕ(0) = 0 and ϕ(Mt) =Mϕ(t),M ≥
0, t ∈ R+. For arbitrary y0 ∈ H, let {yn}∞n=0 be the DI-iterative scheme defined by (4.1). Suppose F (Γ) ̸= ∅ and
q ∈ F (Γ). Then, the DI-iterative scheme is Γ-stable.

Proof . We want to prove that the DI-iterative scheme is Γ-stable. Let {fn}∞n=0 ⊆ H be an arbitrary sequence and
set

ϵn = ∥fn+1 − δn,1gn −
a∑

ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn −

a∏
p=1

(1− δn,p)Γ
agn∥2, (4.2)

where

gn = γnun +

b∑
t=2

γn,j

t−1∏
s=1

(1− γn,s)Γ
t−1un +

b∏
s=1

(1− γn,p)Γ
bun (4.3)

and

un =

c∑
r=1

τn,r

r−1∏
i=1

(1− τn,i)Γ
r−1fn +

c∏
i=1

(1− τn,i)Γ
cfn. (4.4)

Suppose ϵn → 0 as n → ∞. Then, we prove that fn → q as n → ∞. Now, using Proposition 2.5 with u = q, gn =
t, k = 1,Γℓ−1gn = vj−1 and Γagn = v, we get

∥fn+1 − q∥2 = ∥δn,1gn +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − q − [δn,1gn

+

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − fn+1]∥2
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≤ ∥ − [δn,1gn +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − fn+1]∥2

+∥δn,1gn +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − q∥2

= ∥fn+1 − δn,1gn −
a∑

ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn −

a∏
p=1

(1− δn,p)Γ
agn]∥2

+∥δn,1gn +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − q∥2

= ϵn + ∥δn,1gn +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − q∥2( by (4.2))

≤ ϵn + δn,1∥gn − q∥2 +
a∑

ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)∥Γℓ−1gn − Γℓ−1q∥2 +
a∏

p=1

(1− δn,p)∥Γagn − Γaq∥2. (4.5)

But from (3.11), with ξ = gn, we have

∥Γℓ−1gn − Γℓ−1q∥ ≤ νs∥gn − q∥+
s∑

j=1

(
s

j

)
νs−jϕ(∥q − Γq∥)

= νs∥gn − q∥. (4.6)

Using (4.5) and (4.6), we get

∥fn+1 − q∥2 = ϵn +
[
δn,1 +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)(ν
s)2 +

a∏
p=1

(1− δn,p)(ν
s)2

]
∥gn − q∥2. (4.7)

Also,

∥gn − q∥2 = γn,1∥un − q∥2 +
b∑

t=2

γn,t

t−1∏
s=1

(1− γn,s)∥Γt−1un − Γt−1q∥2 +
b∏

s=1

(1− γn,s)∥Γbun − Γbq∥2. (4.8)

Again, from (3.11), with ξ = un, we have

∥Γt−1un − Γt−1q∥ ≤ νs∥un − q∥+
s∑

j=1

(
s

j

)
νs−jϕ(∥q − Γq∥)

= νs∥un − q∥. (4.9)

(4.8) and (4.9) imply

∥gn − q∥2 =
[
γn,1 +

b∑
t=2

γn,t

t−1∏
s=1

(1− γn,s)(ν
s)2 +

b∏
s=1

(1− γn,s)(ν
s)2

]
∥un − q∥2. (4.10)

Moreover,

∥un − q∥2 = τn,1∥fn − q∥2 +
b∑

r=2

τn,r

r−1∏
i=1

(1− τn,i)∥Γr−1fn − Γr−1q∥2 +
c∏

i=1

(1− τn,i)∥Γcfn − Γcq∥2. (4.11)
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Using (3.11), with ξ = yn, and following the same approach as in (4.10), we get

∥un − q∥2 =
[
τn,1 +

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i)(ν
s)2 +

c∏
i=1

(1− τn,i)(ν
s)2

]
∥fn − q∥2. (4.12)

(4.7), (4.10) and (4.12) imply that

∥fn+1 − q∥2 = ϵn +
(
δn,1 +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)(ν
s)2 +

a∏
p=1

(1− δn,p)(ν
s)2

)(
γn,1 +

b∑
t=2

γn,t

t−1∏
s=1

(1− γn,s)(ν
s)2

+

b∏
s=1

(1− γn,s)(ν
s)2

)(
τn,1 +

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i)(ν
s)2 +

c∏
i=1

(1− τn,i)(ν
s)2

)
∥fn − q∥2. (4.13)

Using Proposition 2.4 and the fact that νs ∈ [0, 1), we have

A⋆ < B⋆ = 1, (4.14)

where

A⋆ =
(
δn,1 +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)(ν
s)2 +

a∏
p=1

(1− δn,p)(ν
s)2

)(
γn,1 +

b∑
t=2

γn,t

t−1∏
s=1

(1− γn,s)(ν
s)2

+

b∏
s=1

(1− γn,s)(ν
s)2

)(
τn,1 +

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i)(ν
s)2 +

c∏
i=1

(1− τn,i)(ν
s)2

)
and

B⋆ =
(
δn,1 +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p) +

a∏
p=1

(1− δn,p)
)(
γn,1 +

b∑
t=2

γn,t

t−1∏
s=1

(1− γn,s) +

b∏
s=1

(1− γn,s)
)

(
τn,1 +

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i) +

c∏
i=1

(1− τn,i)
)
.

By Lemma 2.2, (4.14) and the fact that ϵn → 0 as n → ∞, we obtain from (4.13) that fn → q as n → ∞ as
required. On the other hand, suppose fn → q as n → ∞. Then, we show that ϵn → 0 as n → ∞. lndeed, from (4.2)
and Proposition 2.5 with u = q, gn = t, k = 1,Γℓ−1gn = vj−1 and Γagn = v, we get

ϵn = ∥fn+1 − q −
[
δn,1gn +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − q

]
∥2

≤ ∥fn+1 − q∥2 + ∥δn,1gn +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − q∥2

≤ ∥fn+1 − q∥2 + δn,1∥gn − q∥2 +
a∑

ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)∥Γℓ−1gn − q∥2 +
a∏

p=1

(1− δn,p)∥Γagn − q∥2 (4.15)

From (4.6) and (4.15), we obtain

ϵn ≤ ∥fn+1 − q∥2 +
[
δn,1 +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)(ν
s)2 +

a∏
p=1

(1− δn,p)(ν
s)2

]
∥gn − q∥2,
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and from (4.10) and (4.12), we get

ϵn ≤ ∥fn+1 − q∥2 +
(
δn,1 +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)(ν
s)2 +

a∏
p=1

(1− δn,p)(ν
s)2

)(
γn,1 +

b∑
t=2

γn,t

t−1∏
s=1

(1− γn,s)(ν
s)2

+

b∏
s=1

(1− γn,s)(ν
s)2

)(
τn,1 +

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i)(ν
s)2 +

c∏
i=1

(1− τn,i)(ν
s)2

)
∥fn − q∥2. (4.16)

Since fn → 0 as n→ ∞, it follows from (4.16) that ϵn → 0 as n→ ∞, which completes the proof. □

Theorem 4.2. Let H be a Hilbert space, Γ : H −→ H be a self-map of Z satisfying the contractive condition

∥Γsξ − Γsω∥ ≤ νs∥ξ − ω∥+
s∑

j=0

(
s

j

)
ρs−jϕ(∥ξ − Γξ∥), (4.17)

where ξ, ω ∈ H, 0 ≤ νs < 1, and let ϕ : R+ −→ R+ retains its usual meaning with ϕ(0) = 0 and ϕ(Mt) =Mϕ(t),M ≥
0, t ∈ R+. For arbitrary y0 ∈ H, let {yn}∞n=0 be the Chugh-DI iterative scheme defined by (4.17). Suppose F (Γ) ̸= ∅
and q ∈ F (Γ). Then, the Chugh-DI iterative scheme is Γ-stable.

Proof . Let {fn}∞n=0 ⊆ H be an arbitrary sequence and set

ϵn = ∥fn+1 − δn,1gn −
a∑

ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn −

a∏
p=1

(1− δn,p)Γ
agn∥2, (4.18)

where

gn = γnΓun +

b∑
t=2

γn,j

t−1∏
s=1

(1− γn,s)Γ
t−1un +

b∏
s=1

(1− γn,p)Γ
bun (4.19)

and

un =

c∑
r=1

τn,r

r−1∏
i=1

(1− τn,i)Γ
r−1fn +

c∏
i=1

(1− τn,i)Γ
cfn. (4.20)

We want to prove that the Chugh-DI iterative scheme is Γ-stable. Now, suppose ϵn → 0 as n → ∞. Then, we
prove that fn → q as n→ ∞. Using Proposition 2.4 with u = q, gn = t, k = 1,Γℓ−1gn = vj−1 and Γagn = v, we get

∥fn+1 − q∥2 =∥δn,1gn +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − q − [δn,1gn

+

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − fn+1]∥2

≤∥ − [δn,1gn +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − fn+1]∥2

+ ∥δn,1gn +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − q∥2

=∥fn+1 − δn,1gn −
a∑

ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn −

a∏
p=1

(1− δn,p)Γ
agn]∥2

+ ∥δn,1gn +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − q∥2

=ϵn + ∥δn,1gn +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − q∥2( by (4.2))

≤ϵn + δn,1∥gn − q∥2 +
a∑

ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)∥Γℓ−1gn − Γℓ−1q∥2 +
a∏

p=1

(1− δn,p)∥Γagn − Γaq∥2. (4.21)
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By (3.11), with ξ = gn, we have

∥Γℓ−1gn − Γℓ−1q∥ ≤ νs∥gn − q∥+
s∑

j=1

(
s

j

)
νs−jϕ(∥q − Γq∥)

= νs∥gn − q∥. (4.22)

Using (4.21) and (4.22), we get

∥fn+1 − q∥2 = ϵn +
[
δn,1 +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)(ν
s)2 +

a∏
p=1

(1− δn,p)(ν
s)2

]
∥gn − q∥2. (4.23)

Now, from(4.17), (4.19) and Proposition 2.4, with u = q, fn = t, k = 1,Γℓ−1fn = vj−1 and Γafn = v, , we get

∥gn − q∥2 = γn,1∥Γfn − q∥2 +
b∑

t=2

γn,t

t−1∏
s=1

(1− γn,s)∥Γt−1un − Γt−1q∥2 +
b∏

s=1

(1− γn,s)∥Γbun − Γbq∥2

≤ νγn,1∥fn − q∥2 +
b∑

t=2

γn,t

t−1∏
s=1

(1− γn,s)∥Γt−1un − Γt−1q∥2 +
b∏

s=1

(1− γn,s)∥Γbun − Γbq∥2,

which by (3.16), with ωn = un, yields

∥gn − q∥2 = νγn,1∥fn − q∥2 +
[ b∑

t=2

γn,t

t−1∏
s=1

(1− γn,s)(ν
s)2 +

b∏
s=1

(1− γn,s)(ν
s)2

]
∥un − q∥2. (4.24)

Furthermore, using the same approach as in (3.25) of Theorem 3.2 with ωn = un, we obtain

∥un − q∥2 =
[
τn,1 +

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i)(ν
s)2 +

c∏
i=1

(1− τn,i)(ν
s)2

]
∥fn − q∥2. (4.25)

(4.23), (4.24) and (4.25) yield

∥fn+1 − q∥2 = ϵn +
(
δn,1 +

a∑
k=2

δn,k

k−1∏
p=1

(1− δn,p)(ν
s)2 +

a∏
p=1

(1− δn,p)(ν
s)2

)

×
{
νγn,1 +

( b∑
t=2

γn,t

t−1∏
s=1

(1− γn,s)(ν
s)2 +

b∏
s=1

(1− γn,s)(ν
s)2

)(
τn,1 +

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i)(ν
s)2

+

c∏
i=1

(1− τn,i)(ν
s)2

)}
∥fn − q∥2. (4.26)

Using Proposition 2.4 and the fact that νs ∈ [0, 1), we have

C⋆ < D⋆ = 1, (4.27)

where

C⋆ =
(
δn,1 +

a∑
k=2

δn,k

k−1∏
p=1

(1− δn,p)(ν
s)2 +

a∏
p=1

(1− δn,p)(ν
s)2

)

×
{
νγn,1 +

( b∑
t=2

γn,t

t−1∏
s=1

(1− γn,s)(ν
s)2 +

b∏
s=1

(1− γn,s)(ν
s)2

)(
τn,1

+

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i)(ν
s)2 +

c∏
i=1

(1− τn,i)(ν
s)2

)}
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and

D⋆ =
(
δn,1 +

a∑
k=2

δn,k

k−1∏
p=1

(1− δn,p) +

a∏
p=1

(1− δn,p)
)(
γn,1 +

b∑
t=2

γn,t

t−1∏
s=1

(1− γn,s)

+

b∏
s=1

(1− γn,s)
)(
τn,1 +

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i) +

c∏
i=1

(1− τn,i)
)

By Lemma 2.2, (4.27) and the fact that ϵn → 0 as n→ ∞, it follows from (4.26) that fn → q as n→ ∞ as required.
Conversely, suppose fn → q as n→ ∞. Then, we show that ϵn → 0 as n→ ∞. lndeed, from (4.18) and Proposition

2.4 with u = q, gn = t, k = 1,Γℓ−1gn = vj−1 and Γagn = v, we get

ϵn = ∥fn+1 − q −
[
δn,1gn +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − q

]
∥2

≤ ∥fn+1 − q∥2 + ∥δn,1gn +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − q∥2

≤ ∥fn+1 − q∥2 + δn,1∥gn − q∥2 +
a∑

ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)∥Γℓ−1gn − q∥2 +
a∏

p=1

(1− δn,p)∥Γagn − q∥2. (4.28)

Since, from (4.22) and (4.28),

ϵn ≤ ∥fn+1 − q∥2 +
(
δn,1 +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p) +

a∏
p=1

(1− δn,p)
)
∥gn − q∥2,

it follows from (4.24) and (4.25) that

ϵn ≤ ∥fn+1 − q∥2 +
(
δn,1 +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p) +

a∏
p=1

(1− δn,p)
){
νγn,1

+
( b∑

t=2

γn,t

t−1∏
s=1

(1− γn,s)(ν
s)2 +

b∏
s=1

(1− γn,s)(ν
s)2

)(
τn,1 +

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i)(ν
s)2

+

c∏
i=1

(1− τn,i)(ν
s)2

)}
∥fn − q∥2. (4.29)

Since ν ∈ [0, 1) and fn → 0 as n→ ∞, it follows from (4.29) that ϵn → 0 as n→ ∞, which completes the proof. □

Theorem 4.3. Let H be a Hilbert space, Γ : H −→ H be a self-map of H satisfying the contractive condition

∥Γsξ − Γsω∥ ≤ νs∥ξ − ω∥+
s∑

j=0

(
s

j

)
ρs−jϕ(∥ξ − Γξ∥), (4.30)

where ξ, ω ∈ H, 0 ≤ νs < 1, and let ϕ : R+ −→ R+ retains its usual meaning with ϕ(0) = 0 and ϕ(Mt) =Mϕ(t),M ≥
0, t ∈ R+. For arbitrary y0 ∈ H, let {yn}∞n=0 be the IH-iterative scheme defined by (4.30). Suppose F (Γ) ̸= ∅ and
q ∈ F (Γ). Then, the IH-iterative scheme is Γ-stable.

Proof . Let {fn}∞n=0 ⊆ H be an arbitrary sequence and set

ϵn = ∥fn+1 − δn,1fn −
a∑

ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn −

a∏
p=1

(1− δn,p)Γ
agn∥2, (4.31)

where

gn = γnfn +

b∑
t=2

γn,j

t−1∏
s=1

(1− γn,s)Γ
t−1un +

b∏
s=1

(1− γn,p)Γ
bun (4.32)
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and

un =

c∑
r=1

τn,r

r−1∏
i=1

(1− τn,i)Γ
r−1fn +

c∏
i=1

(1− τn,i)Γ
cfn. (4.33)

We want to prove that the IH-iterative scheme is Γ-stable. Suppose ϵn → 0 as n → ∞. Then, we prove that
fn → q as n→ ∞. Now, using Proposition 2.4 with u = q, fn = t, k = 1,Γℓ−1gn = vj−1 and Γagn = v, we get

∥fn+1 − q∥2 =∥δn,1fn +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − q − [δn,1fn

+

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − fn+1]∥2

≤∥ − [δn,1fn +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − fn+1]∥2

+ ∥δn,1fn +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − q∥2

=∥fn+1 − δn,1fn −
a∑

ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn −

a∏
p=1

(1− δn,p)Γ
agn]∥2

+ ∥δn,1fn +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − q∥2

=ϵn + ∥δn,1fn +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − q∥2( by (4.2))

≤ϵn + δn,1∥fn − q∥2 +
a∑

ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)∥Γℓ−1gn − Γℓ−1q∥2 +
a∏

p=1

(1− δn,p)∥Γagn − Γaq∥2. (4.34)

Since from (4.30), with ξ = gn,

∥Γℓ−1gn − Γℓ−1q∥ ≤ νs∥gn − q∥+
s∑

j=1

(
s

j

)
νs−jϕ(∥q − Γq∥)

= νs∥gn − q∥, (4.35)

it follows from (4.34) that

∥fn+1 − q∥2 ≤ ϵn + δn,1∥fn − q∥2 +
[ a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)(ν
s)2 +

a∏
p=1

(1− δn,p)(ν
s)2

]
∥gn − q∥2. (4.36)

Also, since

∥gn − q∥2 ≤ γn,1∥fn − q∥2 +
b∑

t=2

γn,t

t−1∏
s=1

(1− γn,s)∥Γt−1un − Γt−1q∥2

+

b∏
s=1

(1− γn,s)∥Γbun − Γbq∥2 (by (4.32) and Proposition 2.4 )

we obtain, using the same approach as in (4.35), that

∥gn − q∥2 ≤ γn,1∥fn − q∥2 +
[ b∑

t=2

γn,t

t−1∏
s=1

(1− γn,s)(ν
s)2 +

c∏
s=1

(1− γn,s)(ν
s)2

]
∥un − q∥2. (4.37)
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Similarly, using (4.33) and Proposition 2.4, we obtain

∥un − q∥2 =
[
τn,1 +

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i)(ν
s)2 +

c∏
i=1

(1− τn,i)(ν
s)2

]
∥fn − q∥2 (4.38)

(4.36), (4.37) and (4.38) imply

∥fn+1 − q∥2 ≤ ϵn +
{
δn,1 +

( a∑
k=2

δn,k

k−1∏
p=1

(1− δn,p)(ν
s)2 +

a∏
p=1

(1− δn,p)(ν
s)2

)

×
[
γn,1 +

( b∑
t=2

γn,t

t−1∏
s=1

(1− γn,s)(ν
s)2 +

c∏
s=1

(1− γn,s)(ν
s)2

)(
τn,1

+

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i)(ν
s)2 +

c∏
i=1

(1− τn,i)(ν
s)2

)]}
∥fn − q∥2

< ϵn +
{
δn,1 +

( a∑
k=2

δn,k

k−1∏
p=1

(1− δn,p) +

a∏
p=1

(1− δn,p)
)[
γn,1 +

( b∑
t=2

γn,t

t−1∏
s=1

(1− γn,s)

+

c∏
s=1

(1− γn,s)
)(
τn,1 +

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i) +

c∏
i=1

(1− τn,i)
)]}

× ∥fn − q∥2

= ϵn + ∥fn − q∥2. (4.39)

Since ϵn → 0 as n→ ∞, we obtain from Lemma 2.2 and (4.39) that fn → q as n→ ∞.

Conversely, suppose fn → q as n→ ∞. Then, we show that ϵn → 0 as n→ ∞. lndeed, from (4.18) and Proposition
2.5 with u = q, gn = t, k = 1,Γℓ−1gn = vj−1 and Γagn = v, we get

ϵn = ∥fn+1 − q −
[
δn,1fn +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − q

]
∥2

≤ ∥fn+1 − q∥2 + ∥δn,1fn +

a∑
ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)Γ
ℓ−1gn +

a∏
p=1

(1− δn,p)Γ
agn − q∥2

≤ ∥fn+1 − q∥2 + δn,1∥fn − q∥2 +
a∑

ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)∥Γℓ−1gn − q∥2 +
a∏

p=1

(1− δn,p)∥Γagn − q∥2. (4.40)

Since, from (4.35) and (4.40),

ϵn ≤ ∥fn+1 − q∥2 ++δn,1∥fn − q∥2 +
( a∑

ℓ=2

δn,ℓ

ℓ−1∏
p=1

(1− δn,p)(ν
s)2 +

a∏
p=1

(1− δn,p)(ν
s)2

)
∥gn − q∥2,

it follows from (4.37), (4.38) and the fact that ν ∈ [0, 1) that

ϵn ≤∥fn+1 − q∥2 +
{
δn,1 +

( a∑
k=2

δn,k

k−1∏
p=1

(1− δn,p) +

a∏
p=1

(1− δn,p)
)[
γn,1 +

( b∑
t=2

γn,t

t−1∏
s=1

(1− γn,s) +

c∏
s=1

(1− γn,s)
)

(
τn,1 +

c∑
r=2

τn,r

r−1∏
i=1

(1− τn,i) +

c∏
i=1

(1− τn,i)
)]}

× ∥fn − q∥2. (4.41)

Since fn → 0 as n→ ∞, it follows from (4.41) that ϵn → 0 as n→ ∞, which completes the proof. □

Conclusion

An affirmative answer has been provided for Question 1.1. The results obtained in this paper improve the corre-
sponding results in [8, 10, 15, 20] and several others currently announced in literature.
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