
Int. J. Nonlinear Anal. Appl. 14 (2023) 1, 987–1003
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2021.23478.2546

A numerical approach for solving a class of nonlinear fractional
integro-differential equation with weakly singular kernel by
alternative legendary polynomials

Reza Ezzatia,∗, Mohammad Ali Ebadib

aDepartment of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran

bYoung Researchers and Elite Club, Karaj Branch, Islamic Azad University, Karaj, Iran

(Communicated by Saeid Abbasbandy)

Abstract

In this paper, we propose a new spectral approach based on alternative Legendre polynomials for solving nonlinear
fractional integro-differential equations with weakly singular kernel. To do this, by the help of operational matrices
of fractional integration and product based on these polynomials, we reduce the considered problem to a system of
algebraic equations. Also, we investigate the error analysis of the proposed scheme. Finally, we present some numerical
examples to show the high accuracy and validity of the new work.
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1 Introduction

Fractional calculus is a useful tool for understanding the complex world. The significance of fractional calculus
has been demonstrated to be very effective in various phenomena, such as diffusion processes, viscoelastic materials,
long-range interactions, etc. It turns out that fractional calculus provide many helpful features that offer interesting
solutions to system modeling and control, optimization algorithm design, and machine learning. The fractional order
calculus (FOC) was unexplored in engineering, because of its inherent complexity, the apparent self-sufficiency of the
integer order calculus (IOC), and the fact that it does not have a fully acceptable geometrical or physical interpretation.
The integral and integro-differential equations play an important role in the modeling and analyzing many problems
in the fields of mechanics, engineering, physics, chemistry [1, 5, 4, 22, 8, 23, 9, 12, 15]. Also, some of these types of
equations can be appear in the field of dynamics of interfaces between nanoparticles and substrates [20], radioactive
equilibrium [13], heat condition equation [27] and etc. As we know, in general, determining the analytical solutions of
these equations are either difficult or complex. Therefore, the development of efficient and accurate numerical methods
to solve these equations is inevitable. Over the last decades, several numerical methods for solving these equations
have been proposed by researchers. Among these numerical techniques, spectral approaches based on operational
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matrices are a class of spatial discretization for obtaining the approximate solution for various integral and differential
equations. To study some numerical methods for solving these equations, one can refer to [11, 28, 7, 2, 16, 10, 26]. In
this work, we consider a class of nonlinear fractional integro-differential equations with weakly singular kernel of the
following form

C
0 D

α
t y(t) = g(t) + p(t)y(t) + λ1

∫ t

0

(t− s)−βym(s)ds+ λ2

∫ t

0

sα(t− s)−βy(s)ds, (1.1)

y(i)(0) = y
(i)
0 , i = 0, 1, · · · , [α]− 1, (1.2)

where α, β are positive real constants, p(t) and g(t) are known functions defined on the interval I(T ) := [0, T ], y
(i)
0 (i =

0, 1, · · · , [α]−1) are given real numbers, [α] is the ceiling function of α, Dα
t is the Caputo fractional differential operator

of order α and λ1, λ2, m are positive integer numbers and also y(t) is the unknown function to be determined. Because
of the importance of fractional integro- differential equations, many studies such as the existence and uniqueness of
solution for these equations have been done in [6, 25]. Local and global existence and uniqueness results for the
solution of fractional differential equations have been studied in [18] and [19], respectively. Nemati et al. [21] applied
modification of hat functions to solve nonlinear fractional integro-differential equations (1.1),(1.2) in cases λ1 = 1 and
λ2 = 0. The authors of [31] investigated collocation schemes to solve problems (1.1),(1.2) in cases λ1 = 1, λ2 = 0 and
m = 1 (linear case). In [14], the authors applied a hybrid collocation method for solving fractional integro-differential
equations with a weakly singular kernel. Also, Wang et al. [29] introduced the second kind Chebyshev wavelets
schemes for solving the fractional integro-differential equations with weakly singular kernel.
The present paper is organized in six sections. In Section 2, we give preliminaries of the fractional calculus. Section
3 is devoted to introduce some basic definitions and the operational matrices of integration and product based on
alternative Legendre polynomials. In Section 4, we propose a numerical approach to solve problems (1.1),(1.2) by the
help of operational matrices derived in previous section. Also, in this section, we present the error estimation for the
proposed method. In Section 5, to show the applicability and the accuracy of the proposed method, we give some
numerical examples. Finally, in Section 7 the conclusion of this article is presented.

2 Overview of the fractional calculus

There are several definitions of fractional integration and differentiation. Among the types of fractional derivatives
that are used in fractional calculus, we use the Caputo fractional derivative. The essentials of the theory of fractional
calculus and the main definitions and some facts applied in this article are presented here.

Definition 2.1. [25] A real function f(t), t > 0 is assumed to be in the space Cµ, µ ∈ R if there exists a real number
(q > µ) such that f(t) = tqg(t), where g(t) ∈ C[0,∞], and it is said to be in the space Cm

µ if f (m) ∈ Cµ,m ∈ N.

Definition 2.2. [25] Caputo fractional derivative of order α is defined as follows

(Dαf)(t) =
1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n
ds, n− 1 < α ≤ n, n ∈ N, (2.1)

where α is the order of the derivative and n is the smallest integer greater than α.

Definition 2.3. [25] The Riemann-Liouville fractional integral of order α (α > 0) of function y(t) ∈ Cµ, µ ≥ −1 is
denoted by Iα, which defined by

D−αy(t) = Iαy(t) =

{
1

Γ(α)

∫ t

0
y(x)

(t−x)1−α dx, α > 0,

y(t), α = 0.
(2.2)

Theorem 2.4. The supposition is that the continuous function ζ(t) has a fractional derivative of order α thus, we
have:

Dα
t I

β
t ζ(t) =


Iβ−α
t ζ(t), α < β,

ζ(t), α = β,

D−β+α
t ζ(t), α > β,

(2.3)
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Iαt D
α
t ζ(t) = ζ(t)−

n−1∑
k=0

ζ(k)(0+)
tk

k!
, n− 1 < α ≤ n, n ∈ N, (2.4)

Dα
t I

α
t ζ(t) =

{
ζ(t), n− 1 < α ≤ n, n ∈ N,
Dα

t I
α
t ζ(t) + ζ(0), 0 < α < 1.

(2.5)

The Caputo derivative and Riemann-Liouville integral present the following properties [24] for
f ∈ Cα, α ≥ −1, µ ≥ 1, η ≥ 0, β > −1:

Iµ ∈ C0,

IηIδf(t) = IδIηf(t)

IδIηf(t) = Iδ+ηf(t), (2.6)

DδDηf(t) = Dδ+ηf(t),

DδIδf(t) = f(t),

IδDδf(t) = f(t)−
m−1∑
k=0

tk

k!
f (k)(o+), m− 1 < δ < m, m ∈ N.

Furthermore,

IδXβ =
Γ(β + 1)

Γ(δ + β + 1)
Xδ+β . (2.7)

3 Some basic concepts of alternative Legendre polynomials (ALPs)

3.1 Properties of ALPs

The set Pn = {Pnk : k = 0, 1, · · · , n} of ALPs of degree n are defined by explicit formula on the interval [0, 1] (see
[3]) as follows:

Pnk(t) =

n−k∑
j=0

(−1)j
(
n− k

j

)(
n+ k + j + 1

n− k

)
tk+j , k = 0, 1, · · · , n. (3.1)

In the other hand, by considering the weighting function w(t) = 1, they are the orthogonal function on the interval
[0, 1]. We note that the ALPs satisfy the orthogonality relationships as∫ 1

0

Pnk(t)Pnl(t)dt =

{
1

k+l+1 , k = l,

0, otherwhise,
(3.2)

for k, l = 0, 1, · · · , n.
We can reproduce equation (3.1) with Rodrigues’s type as

Pnk(t) =
1

(n− k)!

1

tk+1

dn−k

dtn−k

(
tn+k+1(1− t)n−k

)
, k = 0, 1, · · · , n. (3.3)

So, we have ∫ 1

0

Pnk(t)dt =

∫ 1

0

tndt =
1

n+ 1
, k = 0, 1, · · · , n. (3.4)

Here, we note that each element of the set Pn = {Pnk}nk=0 are the polynomials of degree k, 0 ≤ k ≤ n. For example,
in the following and for n = 3, we give the first few alternative Legendre polynomials

P30(t) = 4− 30t+ 60t2 − 35t3, P31(t) = 10t− 30t2 + 21t3,

P32(t) = 6t2 − 7t3, P33(t) = t3.
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3.2 Function approximation

Consider Pn = {Pnk}nk=0 ⊂ H = L2[0, 1] is a set of ALPs and suppose that Y = Span{Pnk(t) : k = 0, 1, · · · , n}.
Also, f be arbitrary function from H. So, Y is a finite dimensional subspace of H. Therefore, based on Weierstrass
theorem states that every continuous function f on interval [a, b] can be uniformly approximated by a polynomial
function. So, f has a unique best approximation in Y named f∗(t) such that

∀y(t) ∈ Y : ||f − f∗||2 ≤ ||f − y||2. (3.5)

This implies that
∀y(t) ∈ Y : ⟨y, f − f∗⟩ = 0, (3.6)

where ⟨., .⟩ denotes inner product. Therefore, any arbitrary function f ∈ H = L2[0, 1] can be approximated in terms
of ALPs. So, there exists a set of unique coefficient {ck : k = 0, 1, · · · , n} such that

f(t) ≈ f∗(t) =

n∑
k=0

ckPnk(t), (3.7)

Here coefficient ck can be calculated by the following formula

ck =
⟨f, Pnk⟩

⟨Pnk, Pnk⟩
= (2k + 1)⟨f, Pnk⟩, k = 0, 1, · · · , n, (3.8)

and

⟨f, f⟩ =
∫ 1

0

f2(t)dt. (3.9)

Clearly, equation (3.7) can be written by the matrix form as follows:

f(t) ≃
n∑

k=0

ckPnk(t) = CtΦ(t), (3.10)

where
C = [c0, c1, · · · , cn], (3.11)

and
Φ(t) = [Pn0(t), Pn1(t), · · · , Pnn(t)]

T . (3.12)

In the order hand, we can be written equation (3.12) by the following formula

Φ(t) = QXt, (3.13)

where
Xt = [1, t, t2, · · · , tn]T , (3.14)

and Q is the upper triangular matrix defined by

Q = [akj ], k, j = 0, 1, · · · , n,

akj =

{
0, 0 ≤ j < k,

(−1)j−k
(
n−k
j−k

)(
n+j+1
n−k

)
, k ≤ j ≤ n.

(3.15)

3.3 Operational matrices of the ALPs

In this part of the study, we describe the analytic expression of operational matrices of fractional integration and
product based on the ALPs.
To compute the operational matrices of fractional integration and product, we need to introduce some properties of
ALPs as the following. Let
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Pni(t) =
∑n

r=0 p
(i)
r tr, Pnj(t) =

∑n
r=0 p

(i)
r tr and Pnk(t) =

∑n
r=0 p

(k)
r tr are ith, jth and kth ALPs, respectively. There-

fore, we have

1) Pnk(t)Pnj(t) =

2n∑
r=0

q(k,j)r tr,

2) q(k,j)r =

{∑r
l=0 p

(k)
l p

(j)
r−l, r ≤ n,∑n

l=r−n p
(k)
l p

(j)
r−l, r > n,

(3.16)

3)

∫ 1

0

trPnk(t)dt =

n−k∑
l=0

(−1)l
(
n−k
l

)(
n+k+l+1

n−k

)
k + l + r + 1

, k = 0, 1, · · · , n, (3.17)

4)

∫ 1

0

Pni(t)Pnj(t)Pnk(t)dt =

2n∑
r=0

q(k,j)r

n−i∑
l=0

(−1)l
(
n−i
l

)(
n+i+l+1

n−i

)
i+ l + r + 1

. (3.18)

By applying the fractional operator Iαt defined by equation (2.2) on the polynomial Pnk(t) and then by using equation
(2.7), we get

IαPnk(t) = Iα
n−k∑
j=0

(−1)j
(
n− k

j

)(
n+ k + j + 1

n− k

)
tk+j

=

n−k∑
j=0

(−1)j
(
n− k

j

)(
n+ k + j + 1

n− k

)
Iαtk+j

=

n−k∑
j=0

(−1)j
Γ(k + j + 1)

Γ(k + j + α+ 1)

(
n− k

j

)(
n+ k + j + 1

n− k

)
tα+k+j , k = 0, 1, · · · , n (3.19)

Now, by using equation (3.10), one can approximate tα+k+j in terms of ALPs as follows:

tk+j+α ≃
n∑

r=0

ckjrpnr(t). (3.20)

Clearly, we can obtain the coefficients ckjr by using equation (3.8) as follows:

ckjr = (2r + 1)

∫ 1

0

y(t)Pnrdt

= (2r + 1)

∫ 1

0

tα+k+j
n−r∑
l=0

(−1)l
(
n− r

l

)(
n+ r + l + 1

n− r

)
tr+1dt

= (2r + 1)

n−r∑
l=0

(−1)l
(
n−r
l

)(
n+r+l+1

n−r

)
k + j + r + l + α+ 1

, r = 0, 1, · · · , n. (3.21)

Substituting (3.20) into (3.19), we have

Iαpnk(t) =

n−k∑
j=0

(−1)j
(
n− k

j

)(
n+ k + j + 1

n− k

)
Γ(k + j + 1)

Γ(k + j + α+ 1)

n∑
r=0

ckjrpnr(t), (3.22)

for k = 0, 1, · · · , n. By using equations (3.21) and (3.22), we get

Iαpnk(t) =

n∑
r=0

(2r + 1)

[
n−k∑
j=0

(−1)j
(
n−k
j

)(
n+k+j+1

n−k

)
Γ(k + j + 1)

Γ(k + j + α+ 1)

n−r∑
l=0

(−1)l
(
n−r
l

)(
n+r+l+1

n−r

)
k + j + r + l + α+ 1

]
pnr(t)

=

n∑
r=0

θ
(α)
kr pnr(t), (3.23)



992 Ezzati, Ebadi

where

θ
(α)
kr = (2r + 1)

[
n−k∑
j=0

(−1)j
(
n−k
j

)(
n+k+j+1

n−k

)
Γ(k + j + 1)

Γ(k + j + α+ 1)

n−r∑
l=0

(−1)l
(
n−r
l

)(
n+r+l+1

n−r

)
k + j + r + l + α+ 1

]
. (3.24)

So, we conclude that
Iαt Φ(t) = P (α)Φ(t), (3.25)

where P (α) is operational matrix of fractional integration based on the ALPs defined as follows

P (α) = [θ
(α)
kr ], k, r = 0, 1, · · · , n. (3.26)

In the process of solving all forms of differential and integral equations numerically, we require to evaluate Φ(t)ΦT (t)C
in terms of Pn,k, k = 0, 1, · · · , n where C is an arbitrary n× 1 vector. So, we have

Φ(t)ΦT (t)C ≃ C̃Φ(t). (3.27)

Here, C̃ = [c̃ik]
n
i,k=0 is called the operational matrix of product of order (n+ 1)× (n+ 1). The elements of matrix C̃

can be obtain based on ALPs over the interval [0, 1]. Obviously, we have

Φ(t)ΦT (t)C =


∑n

j=0 cjpn0(t)pnj(t)∑n
j=0 cjpn1(t)pnj(t)

...∑n
j=0 cjpnn(t)pnj(t)

 (3.28)

By approximating pni(t)pnj(t), i, j = 0, 1, · · · , n in terms of ALPs, we have

pni(t)pnj(t) ≃
n∑

k=0

aijkpnk(t). (3.29)

Also, by using equation (3.8) and (3.18), we have

aijk = (2k + 1)

∫ 1

0

pni(t)pnj(t)pnk(t)dt = (2k + 1)τijk, (3.30)

where

τijk =

∫ 1

0

pni(t)pnj(t)pnk(t)dt. (3.31)

Therefore, we obtain

n∑
j=0

cjpni(t)pnj(x) ≃
n∑

j=0

cj

n∑
k=0

(2k + 1)τijkpnk(t)

=

n∑
k=0

(
(2k + 1)

n∑
j=0

cjτijk
)
pnk(t),

=

n∑
k=0

c̃ikpnk(t), (3.32)

for i = 0, 1, · · · , n. Substituting (3.32) into (3.28), we get the following equation

Φ(t)ΦT (t)C ≃


∑n

k=0 c̃0kpnk(t)∑n
k=0 c̃1kpnk(t)

...∑n
k=0 c̃nkpnk(t)

 = C̃Φ(t). (3.33)

Clearly, from (3.33), we have
C̃ = [c̃ik], i, k = 0, 1, · · · , n, (3.34)
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where

c̃ik = (2k + 1)

n∑
j=0

cjτijk,

τijk =

∫ 1

0

pni(t)pnj(t)pnk(t)dt. (3.35)

Obviously, for n = 2 and a = 1, we have

C = [c0, c1, c2]
T , Φ(t) = [P2 0(t), b2 1(t), b2 2(t)]

T , (3.36)

C̃ =

 1
105 (195c0 + 25c1 + 9c2)

1
35 (25c0 + 5c1 − 8c2)

1
21 (9c0 − 8c1 + 3c2)

1
105 (25c0 + 5c1 − 8c2)

1
35 (5c0 + 15c1 + 11c2)

1
21 (−8c0 + 11c1 − 5c2)

1
105 (9c0 − 8c1 + 3c2)

1
35 (−8c0 + 11c1 − 5c2)

1
21 (3c0 − 5c1 + 15c2)



4 Analysis of the numerical implementation

In this section, by the help of the operational matrices of integration and product of the ALPs as well as the
collocation method, we convert (1.1) with the condition (1.2) into a system of algebraic equations. To do this, we
approximate Dα

t y(t) as follows:
Dα

t y(t) = CTΦ(t). (4.1)

By implementation of operator Iαt (4.1), we conclude that

y(t) = CTP (α)Φ(t) + y0(t), (4.2)

where y0(t) =
∑n−1

k=0 y
(k)
0

tk

k! . Also, by approximating y0(t), we get

y0(t) = XTΦ(t). (4.3)

In the order hand, we can obtain the following equation

y(t) = CTP (α)Φ(t) +XTΦ(t) = (CTP (α) +XT )Φ(t),

y2(t) = (CTP (α) +XT )C̃1Φ(t),

· · · ,
ym(t) = (CTP (α) +XT )C̃m−1Φ(t). (4.4)

where C̃1 is the operational matrix of product of the (n + 1) × 1 vector CTP (α) + XT . Clearly, the order of C̃1 is
(n+ 1)× (n+ 1).
Now, we need to approximate the integral parts of (1.1) in the matrix form. So, by using (3.13) and (4.4), we can
approximate the following integral part as∫ t

0

(t− s)−βym(s)ds ≃ (CTP (α) +XT )C̃m−1Q

∫ t

0

Xs

(t− s)β
ds. (4.5)

Clearly, we have ∫ t

0

sr

(t− s)β
ds =

Γ(1− β)Γ(r + 1)

Γ(r − β + 2)
t(r−β+1), r = 0, 1, · · · (4.6)

therefore, by using (4.6) and (4.5), we obtain∫ t

0

Xs

(t− s)β
ds =

[ ∫ t

0

1

(t− s)β
ds,

∫ t

0

s

(t− s)β
ds, · · · ,

∫ t

0

sr

(t− s)α
ds, · · ·

]T
=

[Γ(1− β)Γ(1)

Γ(−β + 2)
t(−β+1),

Γ(1− β)Γ(2)

Γ(−β + 3)
t(−β+2), · · ·

]T
= T1Π1, (4.7)

where Π1 is a vector as
Π1 = [t−β+1, t−β+2, · · · , tr−β+1, · · · ], r = 0, 1, · · · (4.8)
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Also T1 is an infinite diagonal matrix with elements Γ(1−β)Γ(r+1)
Γ(r−β+2) , r = 0, 1, · · · .

By approximating tr−β+1, r = 0, 1, · · · in terms of ALPs, we have

tr−β+1 =

∞∑
l=1

cr,lΦl(t) = ∂rQXt, ∂r = [cr,0, cr,1, · · · ], r = 0, 1, · · · (4.9)

Also, by using (4.9), we obtain

Π1 = [∂0QXt, ∂1QXt, · · · , ∂rQXt, · · · ] = Υ1QXt, Υ = [∂0, ∂1, · · · , ∂r, · · · ]T , r = 0, 1, · · · (4.10)

Substituting (4.10) into (4.8), we have∫ t

0

Xs

(t− s)β
ds = T1Υ1QXt = T1Υ1Φ(t). (4.11)

So, by using (4.11), we rewrite (4.5) as the following form∫ t

0

(t− s)−βym(s)ds ≃ (CTP (α) +XT )C̃m−1QT1Υ1Φ(t). (4.12)

Similarly, we can compute the second integral in the side of (1.1) as follows:∫ t

0

sα(t− s)−βy(s)ds ≃ (CTP (α) +XT )QT2Υ2Φ(t). (4.13)

Finally, substituting equations (4.1), (4.12) and (4.13) into (1.1), the main problem convert into a system of algebraic
equations as follows:

CTΦ(t) = g(t) + (CTP (α) +XT )[p(t) + λ1C̃m−1QT1Υ1 + λ2QT2Υ2]Φ(t). (4.14)

For finding unknown vector C, we collocate (4.14) in n+ 1 nodal points t1 named the Guass- Chelyshkov points [3]

Gn = {tl|Pn+1,0(tl) = 0, l = 0, 1, · · · , n}. (4.15)

Now, by replacing the nodes tl instead of t in (4.14), we can obtain vector C by solving the following system

CTΦ(tl) = g(tl) + (CTP (α) +XT )[p(tl) + λ1C̃m−1QT1Υ1 + λ2QT2Υ2]Φ(tl). (4.16)

for l = 0, 1, · · · , n. Finally, the approximate solution of problem (1.1),(1.2) can be obtained as follows:

yn(t) = CTP (α)Φ(t) + y0(t) = (CTP (α) +XT )Φ(t). (4.17)

If we expand g(t) in terms of ALPs as the follows:

g(t) ≈ GTΦ(t),

we get the following equation

CTΦ(t) = GTΦ(t) + (CTP (α) +XT )[p(t) + λ1C̃m−1QT1Υ1 + λ2QT2Υ2]Φ(t) (4.18)

or
CT = GT + (CTP (α) +XT )[p(t) + λ1C̃m−1QT1Υ1 + λ2QT2Υ2]. (4.19)

Obviously, we can solve the above system without the need for the collocation method and obtain the unknown vector
C. So, we give the approximate solution of problem (1.1),(1.2) as follows:

yn(t) = CTP (α)Φ(t) + y0(t) = (CTP (α) +XT )Φ(t). (4.20)
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5 Convergence analysis of the presented method

In this section, we consider convergence analysis of the proposed method in the previous section for solving the
following problem:

C
0 D

δ
t y(t) = g(t) + p(t)y(t) + λ1

∫ t

0

(t− s)−βym(s)ds+ λ2

∫ t

0

sα(t− s)−βy(s)ds, (5.1)

y(i) = y
(i)
0 , i = 0, 1, · · · , [α]− 1

Here, we use the following norm for any arbitrary function f ∈ C[0, 1]

∥f∥∞ = max
0≤t≤1

|f(t)|. (5.2)

Suppose that yn(t) = CTΦ(t) is the approximate solution of (5.1) in terms of ALPs.

Theorem 5.1. (Convergence) Suppose yn(t) and y(t) ∈ L2[0, 1] are the approximate solution obtained by the pro-
posed method in Section 4 and the exact solution of (5.1), respectively. Also, let y(t), p(t) and g(t) be continuous
function. If

∥p∥∞
1

Γ(δ + 1)
+ |λ1|

Γ(1− β)Γ(1)

Γ(−β + δ + 1)
+ |λ2|B(1− β, 1 + α)

Γ(2− β + α)

Γ(2− β + α+ δ)
< 1, (5.3)

we have
∥y − yn∥∞ = max

0≤t≤1
|y(t)− yn(t)| → 0,

as n → ∞.

Proof . By applying (2.6) on (5.1), we get the following equation

y(t) =

n−1∑
k=0

tk

k!
y(k)(0+) + Iδg(t) + Iδp(t)y(t)

+ λ1I
δ

∫ t

0

(t− s)−βym(s)ds+ λ2I
δ

∫ t

0

sα(t− s)−βy(s)ds. (5.4)

By substituting yn(t) = CTΦ(t) instead of y(t) in (5.4), we have

yn(t) =

n−1∑
k=0

tk

k!
y(k)(0+) + Iδg(t) + Iδp(t)yn(t)

+ λ1I
δ

∫ t

0

(t− s)−βymn (s)ds+ λ2I
δ

∫ t

0

sα(t− s)−βyn(s)ds. (5.5)

By subtracting (5.5) from (5.4), we have:

y(t)− yn(t) = Iδp(t)
(
y(t)− yn(t)

)
+ λ1I

δ

∫ t

0

(t− s)−β
(
ym(s)− ymn (s)

)
ds

+ λ2I
δ

∫ t

0

sα(t− s)−β
(
y(t)− yn(t))

)
ds. (5.6)
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Therefore, we can write:

|y(t)− yn(t)| ≤ |Iδp(t)
(
y(t)− yn(t)

)
|+ |λ1|

∣∣∣Iδ ∫ t

0

(t− s)−β
(
ym(s)− ymn (s)

)
ds
∣∣∣

+ |λ2|
∣∣∣Iδ ∫ t

0

sα(t− s)−β
(
y(t)− yn(t)

)
ds
∣∣∣

≤ Iδ|p(t)|
∣∣(y(t)− yn(t))

∣∣+ |λ1|Iδ
∫ t

0

(t− s)−β |
(
ym(s)− ymn (s)

)
|ds

+ |λ2|Iδ
∫ t

0

sα(t− s)−β
∣∣(y(t)− yn(t)

)∣∣ds
≤ Iδ|p(t)||y − yn|+ |λ1|Iδ

∫ t

0

(t− s)−β |y − yn|ds

+ |λ2|Iδ
∫ t

0

sα(t− s)−β |y − yn|ds

≤ ∥p(t)∥∞∥y − yn∥∞Iδ1 + |λ1|Iδ
∫ t

0

(t− s)−β∥y − yn∥∞ds

+ |λ2|Iδ
∫ t

0

sα(t− s)−β∥y − yn∥∞ds. (5.7)

Hence

|y(t)− yn(t)| ≤ ∥p(t)∥∞∥y − yn∥∞Iδ1 + |λ1|Iδ
∫ t

0

(t− s)−β∥y − yn∥∞ds+ |λ2|Iδ
∫ t

0

sα(t− s)−β∥y − yn∥∞ds

≤ ∥y − yn∥∞

(
∥p(t)∥∞Iδ1 + |λ1|Iδ

∫ t

0

(t− s)−βds+ |λ2|Iδ
∫ t

0

sα(t− s)−βds

)

= ∥y − yn∥∞

(
∥p(t)∥∞Iδ1 + |λ1|

Γ(1− β)Γ(1)

Γ(−β + 2)
Iδt−β+1 + |λ2|B(1− β, 1 + α)Iδt1−β+α

)

≤ ∥y − yn∥∞

(
∥p(t)∥∞

1

Γ(δ + 1)
+ |λ1|

Γ(1− β)Γ(1)

Γ(−β + α+ δ + 1)
t−β+1+δ + |λ2|B(1− β, 1 + α)

Γ(2− β + α)

Γ(2− β + α+ δ)
t1−β+α+δ

)

≤ ∥y − yn∥∞

(
∥p(t)∥∞

1

Γ(δ + 1)
+ |λ1|

Γ(1− β)Γ(1)

Γ(−β + α+ δ + 1)
+ |λ2|B(1− β, 1 + α)

Γ(2− β + α)

Γ(2− β + α+ δ)

)
(5.8)

So, we have the following inequality

∥y − yn∥∞ ≤ ∥y − yn∥∞
(
∥p∥∞ 1

Γ(δ+1) + |λ1| Γ(1−β)Γ(1)
Γ(−β+δ+1) + |λ2|B(1− β, 1 + α) Γ(2−β+α)

Γ(2−β+α+δ)

)
, (5.9)

and hence

∥y − yn∥∞
(
∥p∥∞ 1

Γ(δ+1) + |λ1| Γ(1−β)Γ(1)
Γ(−β+δ+1) + |λ2|B(1− β, 1 + α) Γ(2−β+α)

Γ(2−β+α+δ)

)
≤ 0. (5.10)

By considering (5.2), we conclude that

∥y − yn∥∞ = max
0≤t≤1

|y(t)− yn(t)| → 0, (5.11)

as n → ∞. □

6 Illustrative examples

In this section, some numerical examples are presented to illustrate the accuracy and the applicability of the
proposed method. Also, in this section, we consider the following errors:

∥y − yn∥∞ = max
0≤t≤1

|y(t)− yn(t)|,

en = max
0≤i≤1

|y(ti)− yn(ti)|,

ζn = log2(
en
e2n

), (6.1)
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where ti = ih, y and yn are the exact solution and the approximate solution, respectively. ζn is an estimate of the
convergence order [21].

Example 6.1. [21] As the first example, we consider a nonlinear fractional order integro-differential equation with
weakly singular kernel as follows:

C
0 D

2
3
t y(t) = g(t) + p(t)y(t) + λ1

∫ t

0

(t− s)−
1
2 y2(s)ds, 0 ≤ t ≤ 1,

where

p(t) = t, g(t) =
3Γ( 12 )

4Γ( 116 )
t
5
6 − t

5
2 − 32

35
t
7
2 ,

with initial condition y(0) = 0 and the exact solution y(t) = t
3
2 .

First, we solved this example by the proposed method for different values of n.
The operational matrices of fractional integration and product are obtained for n = 2 in the following forms:

P (α) = P ( 2
3 ) =

 0.186597 0.516378 0.384617
−0.0415082 0.343871 0.64928
0.00571214 −0.0377001 0.439835

 ,

C̃m−1 = C̃1 =

 1
105 (195c0 + 25c1 + 9c2)

1
35 (25c0 + 5c1 − 8c2)

1
21 (9c0 − 8c1 + 3c2)

1
105 (25c0 + 5c1 − 8c2)

1
35 (5c0 + 15c1 + 11c2)

1
21 (−8c0 + 11c1 − 5c2)

1
105 (9c0 − 8c1 + 3c2)

1
35 (−8c0 + 11c1 − 5c2)

1
21 (3c0 − 5c1 + 15c2)


and

c0 = 0.0321013, c1 = 0.442571, c2 = 1.88036

Therefore, the approximate solution of this example in terms of ALPs is as follows:

y2(t) = −0.00491842 + 0.411169t+ 0.620983t2.

Figure 1, compares the exact solution with the approximate solution obtained by proposed method for n = 10. We
display the absolute error for n = 10 in Figure 2 over the interval [0, 1].

Figure 1: Comparison of the approximate and exact solutions with n = 10 and m = 2 for Example 6.1
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Figure 2: Plot of the absolute error with n = 10 and m = 2 for Example 6.1

In Table 1, the obtained results are compared with the method of [21] (MHFM) for different values of n at some
selected grid points.

Table 1: Comparison of the absolute errors between the proposed method and the method of [21] for different values
of n and m = 2 for Example 6.1.

The method of [21] Proposed method
n = 64 n = 32 n = 16 n = 8 t n = 8 n = 16
0.00000 0.00000 0.00000 0.00000 0.000 0.00000 0.00000

1.70440E − 5 5.782571E − 5 1.54710E − 4 1.59756E − 3 0.125 7.79604E − 5 1.18748E − 5
1.49408E − 5 5.27913E − 5 1.84256E − 4 5.69812E − 4 0.250 1.67278E − 4 1.15360E − 5
1.50946E − 5 5.38168E − 5 1.93902E − 4 6.53198E − 4 0.375 8.89137E − 5 1.47671E − 5
1.69314E − 5 6.05455E − 5 2.20346E − 4 8.56779E − 4 0.500 1.72782E − 4 1.61787E − 5
2.08999E − 5 7.47583E − 5 2.72394E − 4 8.88166E − 4 0.625 1.88116E − 4 1.74240E − 5
2.83408E − 5 1.01259E − 5 3.67651E − 4 1.42594E − 3 0.750 2.09224E − 4 2.54256E − 5
4.22319E − 5 1.50631E − 5 5.43833E − 4 1.81991E − 3 0.875 3.71892E − 4 3.89983E − 5
6.92324E − 5 2.46509E − 5 8.84780E − 4 3.30803E − 3 1.000 6.45901E − 4 6.83567E − 5

Table 2: Comparison of en between the proposed method and the method of [21] for different values of n and m = 2
for Example 6.1.

n en(The method of [21]) en(Proposed method) Computing time (Proposed method)
2 7.093035E − 2 2.72338E − 2 0.145
4 1.39991E − 2 5.17108E − 3 0.158
8 3.30803E − 3 6.45901E − 4 0.254
10 4.21471E − 3 3.18577E − 4 0.314
12 7.47821E − 4 1.76609E − 4 0.348
16 8.84780E − 4 6.84373E − 5 0.478

Example 6.2. [31] For the second example, consider the linear fractional order integro-differential equation with
weakly singular kernel as follows

C
0 D

1
3
t y(t) = g(t) + p(t)y(t) + λ1

∫ t

0

(t− s)−
1
2 y(s)ds, 0 ≤ t ≤ 1,

p(t) =
−32

35
t
1
2 , λ1 = 1, λ2 = 0, g(t) =

6

Γ( 113 )
t
8
3 +

(32
35

−
Γ( 12 )Γ(

7
3 )

Γ( 176 )

)
t
11
6 + Γ(

7

3
)t,

with initial condition y(0) = 0 and the exact solution y(t) = t3 + t
4
3 .



A numerical approach for solving a class of nonlinear fractional integro-differential equation 999

Table 3: Comparison of numerical results for different values of n for Example 6.2.

t y8 y10 y12 y16 Exact solution
0 −0.000903 −0.000524 −0.000333 −0.000161 0
0.2 0.125009 0.124972 0.124944 0.124965 0.124961
0.4 0.358674 0.358741 0.358713 0.358721 0.358723
0.6 0.722083 0.722053 0.722058 0.722057 0.72206
0.8 1.25466 1.25464 1.225466 1.25465 1.25465
1 2.00012 2.00006 2.00003 2.00001 2

Figure 3: Plots of the absolute errors for n = 8, 12, 16, λ1 = 1 and m = 1 for Example 6.2.

Table 4: Comparison of absolute errors between the proposed method and the method of [21] for different values of n
and m = 1 for Example 6.2.

The method of [21] Proposed method
n = 64 n = 32 n = 16 n = 8 t n = 8 n = 16
0.00000 0.00000 0.00000 0.00000 0.000 0.00000 0.00000

3.39892E − 6 1.25593E − 5 6.81733E − 5 9.44601E − 5 0.125 8.99379E − 5 7.54902E − 6
2.43485E − 6 1.23046E − 5 6.21373E − 5 3.14107E − 4 0.250 5.58767E − 5 4.25036E − 6
2.57556E − 6 1.27213E − 5 6.11849E − 5 1.40102E − 4 0.375 4.96901E − 5 1.63611E − 6
2.76220E − 6 1.34327E − 5 6.23334E − 5 2.53578E − 4 0.500 1.73906E − 5 1.49249E − 6
2.97850E − 6 1.43297E − 5 6.47637E − 5 2.32363E − 4 0.625 7.78011E − 6 2.93472E − 6
3.21794E − 6 1.53667E − 5 6.81214E − 5 2.38092E − 4 0.750 3.26190E − 5 8.29279E − 7
3.47739E − 6 1.65207E − 5 7.22219E − 5 3.15569E − 4 0.875 3.07487E − 5 1.04465E − 6
3.75521E − 6 1.77792E − 5 7.69578E − 5 2.43856E − 4 1.000 1.17337E − 4 1.14567E − 5

Figure 4: ζn on Logarithmic scale, λ1 = 1 and m = 1 for Example 6.2
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Table 5: Comparison of en between the proposed method and the method of [21] for different values of n and m = 2
for Example 6.2.

n en(The method of [21]) en(Proposed method) Computing time (Proposed method)
2 2.35051E − 2 1.90023E − 2 0.296
4 1.14967E − 3 1.21439E − 3 0.301
8 3.15569E − 4 1.17335E − 4 0.327
10 6.15412E − 4 5.61497E − 5 0.378
12 7.57810E − 5 3.05871E − 5 0.402
16 8.90424E − 5 1.14567E − 5 0.428

Example 6.3. As third example which was proposed in [21], consider the nonlinear fractional order integro-differential
equation with weakly singular kernel of the following form

C
0 D

α
t y(t) = g(t) + λ1

∫ t

0

(t− s)−
1
2 y2(s)ds, 0 ≤ t ≤ 1,

where

g(t) = 3t2 −
√
πΓ(7)

Γ( 152 )
t
13
2 , λ1 = 1, λ2 = 0,

with initial condition y(0) = 0 and the exact solution for α = 1 is y(t) = t3. The absolute error for n = 6 is shown in
Figure 5. Obviously, extremely high accuracy can be seen.

Figure 5: Plot of the absolute error for n = 6, with α = 1, λ1 = 1 and m = 2 for Example 6.3

Figure 6: Plot of the approximate solution y6(t) with α = 0.7, 0.8, 0.9, 1, λ1 = 1 and m = 2 for Example 6.3
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Table 6: Comparison of en between the proposed method and the method of [21] for different values of n, α = 1 and
m = 2 for Example 6.3.

n en(The method of [21]) en(Proposed method) Computing time (Proposed method)
2 3.52633E − 2 5.41208E − 2 0.178
4 4.81704E − 3 1.07462E − 4 0.245
5 7.10457E − 3 8.08607E − 6 0.312
6 3.12470E − 4 6.66134E − 16 0.345
8 3.15596E − 4 3.24185E − 16 0.379

Table 7: Comparison of absolute errors between the proposed method and the method of [21] for different values of
n, α = 1 and m = 2 for Example 6.3.

The proposed method The method of [21] The proposed method The method of [21] The proposed method
t n=6 n=8 n=8 n=16 n=16

0.000 0.00000 0.00000 0.00000 0.00000 0.00000
0.125 1.06252E − 16 3.14015E − 7 1.28283E − 15 4.75615E − 9 3.75003E − 11
0.250 1.66533E − 16 8.61334E − 7 6.97359E − 16 1.46318E − 7 3.09495E − 11
0.375 1.24900E − 16 3.91922E − 6 9.78384E − 16 7.47778E − 7 2.40549E − 11
0.500 5.55112E − 17 2.65040E − 5 8.60423E − 16 2.25373E − 6 3.83279E − 11
0.625 1.38778E − 16 5.09917E − 5 0.00000 5.19464E − 6 3.59824E − 11
0.750 4.44089E − 16 1.34129E − 4 2.72007E − 15 1.01464E − 5 1.68068E − 11
0.875 7.77156E − 16 2.09299E − 4 1.11022E − 16 1.76618E − 5 2.11803E − 10
1.000 4.44089E − 16 3.89313E − 4 3.24185E − 14 2.81379E − 5 4.94162E − 10

Figure 7: ζn on Logarithmic scale with α = 1, λ1 = 1 and m = 2 for Example 6.3

7 Conclusion and future work

In this articles a spectral method based on the operational matrices of integration and product of ALPs for solving
a class of nonlinear fractional integro- differential equation with weakly singular kernel is presented. Also, error
analysis is investigated and accuracy is shown in 3 numerical experiments. The convergence of the proposed method
is confirmed by the results presented in Tables 1–7 and Figures 1–7. It can be concluded that the method proposed
in this paper is a suitable method to solve such problems.
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For the next work, the proposed method can be used to solve for nonlinear fractional integro-differential equation
with weakly singular kernel in two-dimensional.
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