Characterizing n-multipliers on Banach algebras through zero products

Abbas Zivari-Kazempour
Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran

(Communicated by Abasalt Bodaghi)

Abstract

Let A be a unital Banach algebra and X be a unital A-bimodule. In this paper, among other things, we characterize n-multipliers $T: A \longrightarrow X$ by applying zero products preserving bilinear maps. We also describe n-multipliers from C^{*}-algebra A into X through the action on zero products.

Keywords: n-multiplier, Bilinear maps, W^{*}-algebra, unital A-bimodule 2020 MSC: Primary 47B47, 47B49; Secondary 15A86, 46H25

1 Introduction and Preliminaries

Let A be a Banach algebra and X be an A-bimodule. A linear map $T: A \longrightarrow X$ is called left n-multiplier [right n-multiplier $]$ if for all $a_{1}, a_{2}, \ldots, a_{n} \in A$,

$$
T\left(a_{1} a_{2} \ldots a_{n}\right)=T\left(a_{1} a_{2} \ldots a_{n-1}\right) a_{n}, \quad\left[T\left(a_{1} a_{2} \ldots a_{n}\right)=a_{1} T\left(a_{2} \ldots a_{n}\right)\right]
$$

and T is called an n-multiplier if it is both left and right n-multiplier.
The concept of n-multiplier was introduced and studied by Laali and Fozouni in [15]. A 2-multiplier is called simply a multiplier. One may refer to 14 and the monograph [16] for the additional fundamental results in the theory of multipliers.

Clearly, every left (right) multiplier is a left (right) n-multiplier, but the converse is not true in general. The next example illustrates this fact.

Example 1.1. Let

$$
A=\left\{\left[\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right]: \quad a, b, c \in \mathbb{C}\right\}
$$

and define $T: A \longrightarrow A$ by

$$
T\left(\left[\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right]\right)=\left[\begin{array}{lll}
0 & a & 0 \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right]
$$

[^0]Then, $T(x) y=x T(y) \neq T(x y)=0$ for all $x, y \in A$, hence T is not left (right) multiplier, in general, but for all $n \geq 3$ and for every $x_{1}, x_{2}, \ldots, x_{n} \in A$,

$$
T\left(x_{1} x_{2} \ldots x_{n}\right)=T\left(x_{1} x_{2} \ldots x_{n-1}\right) x_{n}=x_{1} T\left(x_{2} \ldots x_{n}\right) .
$$

Therefore, T is an n-multiplier for every $n \geq 3$.
Suppose that A is a unital (Banach) algebra with unit e_{A}. An A-bimodule X is called unital if $e_{A} x=x e_{A}=x$, for all $x \in X$.

The following characterization of n-multiplier presented by the author in 18 .

Theorem 1.2. [18, Corollary 2.10] Suppose that A is a unital Banach algebra and X is a unital Banach A-bimodule. Let $T: A \longrightarrow X$ be a continuous linear map such that

$$
\begin{equation*}
a, b \in A, \quad a b=e_{A} \quad \Longrightarrow \quad T(a b)=a T(b) . \tag{1.1}
\end{equation*}
$$

Then T is a right n-multiplier.
The set of idempotents of given Banach algebra A is denoted by $\mathcal{I}(A)$ and let $\mathfrak{J}(A)$ be the subalgebra of A generated by idempotents. We say that the Banach algebra A is generated by idempotents, if $A=\overline{\mathfrak{J}(A)}$.

Recall that a C^{*}-algebra A is called a W^{*}-algebra (or von-Neumann algebra) if it is a dual space as a Banach space [8, 17.

Let A be a W^{*}-algebra, then the linear span of projections is norm dense in A, hence $A=\overline{\mathfrak{J}(A)}$. Moreover, it turned out in [2] that the group algebra $L^{1}(G)$ for a compact group G and topologically simple Banach algebras containing a non-trivial idempotent are generated by idempotents. For more examples of Banach algebra A with the property that $A=\overline{\mathfrak{J}}(A)$, see [2].

Let A be a Banach algebra and X be a Banach space. Then the continuous bilinear mapping $\phi: A \times A \longrightarrow X$ preserves zero products if

$$
\begin{equation*}
a b=0 \quad \Longrightarrow \quad \phi(a, b)=0, \quad a, b \in A . \tag{1.2}
\end{equation*}
$$

Definition 1.3. [2] A Banach algebra A has the property (\mathbb{B}) if for every continuous bilinear mapping $\phi: A \times A \longrightarrow X$, where X is an arbitrary Banach space, the condition (1.2) implies that $\phi(a b, c)=\phi(a, b c)$, for all $a, b, c \in A$.

It follows from [2, Theorem 2.11] that C^{*}-algebras, group algebras and Banach algebras that generated by idempotents have the property (\mathbb{B}).

Characterizing (Jordan) homomorphisms, derivations, Jordan derivations on (Banach) algebras and C^{*}-algebras through the action on zero products have been studied by many authors, see for example [1, 3, 6, 1, 10, 11, 12, 13, 19, and the references therein.

In this paper we consider the subsequent conditions on a linear map T from a Banach algebra A into an A-bimodule X :
(M1) $a, b \in A, \quad a b=0 \Longrightarrow a T(b)=0$,
$(\mathbb{M} 2) a, b \in A, \quad a b=b a=0 \Longrightarrow a T(b)+b T(a)=0$,
$(\mathbb{M} 3) a, b \in A, \quad a \circ b=0 \Longrightarrow a T(b)+b T(a)=0$,
where $a \circ b=a b+b a$ is a Jordan product in A.
We investigate whether these conditions characterizes n-multipliers on Banach algebras and C^{*}-algebras. We prove that Theorem 1.2 is remain valid for C^{*}-algebras if 1.1 replaced by any of the above conditions.

2 Characterizing \boldsymbol{n}-multipliers on Banach algebras

In this section, we characterizes n-multipliers from unital Banach algebra A into unital A-bimodule X, that satisfy one of the conditions ($\mathbb{M} 1$)-($\mathbb{M} 3$).

Theorem 2.1. [7, Theorem 4.1] If ϕ is a bilinear mapping from $A \times A$ into a vector space X such that

$$
a, b \in A, \quad a b=0 \Longrightarrow \quad \phi(a, b)=0
$$

then

$$
\phi(a, x)=\phi\left(a x, e_{A}\right), \quad \text { and } \phi(x, a)=\phi\left(e_{A}, x a\right)
$$

for all $a \in A$ and $x \in \mathfrak{J}(A)$.
Proposition 2.2. Suppose that $T: A \longrightarrow X$ is a linear mapping such that the condition ($\mathbb{M} 1$) holds. Then $T(x a)=$ $x T(a)$ for all $a \in A$ and $x \in \mathfrak{J}(A)$.

Proof . Define a bilinear mapping $\phi: A \times A \longrightarrow X$ by

$$
\phi(a, b)=a T(b)-a b T\left(e_{A}\right), \quad a, b \in A
$$

Then $\phi(a, b)=0$, whenever $a b=0$. Applying Theorem 2.1, we obtain

$$
p T(a)-p a T\left(e_{A}\right)=\phi(p, a)=\phi\left(e_{A}, p a\right)=e_{A} T(p a)-p a T\left(e_{A}\right), \quad a \in A, p \in \mathcal{I}(A)
$$

Therefore $T(p a)=p T(a)$ for each $a \in A$ and $p \in \mathcal{I}(A)$. Now from definition of $\mathfrak{J}(A)$ it follows that $T(x a)=x T(a)$ for all $a \in A$ and $x \in \mathfrak{J}(A)$.

As a consequence of Proposition 2.2, we have the next result.

Corollary 2.3. Let $T: A \longrightarrow X$ be a [continuous] linear mapping such that the condition ($\mathbb{M} 1$) holds. If $A=\mathfrak{J}(A)$ $[A=\overline{\mathfrak{J}(A)}]$, then T is a right n-multiplier.

We say that $w \in A$ is a left (right) separating point of A-bimodule X if the condition $w x=0[x w=0]$ for all $x \in X$ implies that $x=0$. An ideal I of A is called left (right) separating set if every $w \in I$ is a left (right) separating point of X.

Theorem 2.4. Let $T: A \longrightarrow X$ be a linear map satisfying (M1). If X has a right separating set $I \subseteq \mathfrak{J}(A)$, then T is a right n-multiplier.

Proof . It follows from Proposition 2.2 that $T(w a b)=w T(a b)$ and

$$
T(w a b)=T((w a) b)=w a T(b), \quad a, b \in A, w \in I
$$

Thus, $w(T(a b)-a T(b))=0$ for all $a, b \in A$ and every $w \in I$. Since I is a right separating set of $X, T(a b)=a T(b)$ for all $a, b \in A$. Consequently, T is a right multiplier and hence it is a right n-multiplier.

Theorem 2.5. [5, Lemma 2.2] If ϕ is a bilinear mapping from $A \times A$ into a vector space X such that

$$
a, b \in A, \quad a b=b a=0 \Longrightarrow \quad \phi(a, b)=0
$$

then

$$
\phi(a, x)+\phi(x, a)=\phi\left(a x, e_{A}\right)+\phi\left(e_{A}, x a\right)
$$

for all $a \in A$ and $x \in \mathfrak{J}(A)$.
Our first main theorem is the following.

Theorem 2.6. Suppose that T is a linear mapping from A into X such that the condition ($\mathbb{M} 2)$ holds. Then $T(x a)=x T(a)$ for all $a \in A$ and every $x \in \mathfrak{J}(A)$.

Proof. Define a bilinear mapping $\phi: A \times A \longrightarrow X$ by

$$
\phi(a, b)=a T(b)+b T(a)-a b T\left(e_{A}\right)-b a T\left(e_{A}\right),
$$

for all $a, b \in A$. Then $a b=b a=0$ implies that $\phi(a, b)=0$. Hence by Theorem 2.5.

$$
\begin{equation*}
\phi(a, p)+\phi(p, a)=\phi\left(a p, e_{A}\right)+\phi\left(e_{A}, p a\right), \tag{2.1}
\end{equation*}
$$

for all $a \in A$ and each $p \in \mathcal{I}(A)$. Define $\psi: A \longrightarrow X$ via $\psi(a)=T(a)-a T\left(e_{A}\right)$. Since $p\left(e_{A}-p\right)=\left(e_{A}-p\right) p=0$, we have $\psi(p)=0$. Indeed,

$$
p T\left(e_{A}-p\right)+\left(e_{A}-p\right) T(p)=0
$$

which implies that $p T\left(e_{A}\right)=T(p)=p T(p)$, for every $p \in \mathcal{I}(A)$. Now by 2.1 we obtain

$$
\begin{aligned}
\psi(a p)+\psi(p a) & =\phi\left(a p, e_{A}\right)+\phi\left(e_{A}, p a\right) \\
& =\phi(a, p)+\phi(p, a) \\
& =2 a\left(T(p)-p T\left(e_{A}\right)\right)+2 p\left(T(a)-a T\left(e_{A}\right)\right) \\
& =2 p \psi(a) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
2 p \psi(a)=\psi(a p)+\psi(p a) . \tag{2.2}
\end{equation*}
$$

Replacing a by $a p$ and $p a$ in (2.2), respectively, we get

$$
\begin{equation*}
2 p \psi(a p)=\psi(a p)+\psi(p a p) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
2 p \psi(p a)=\psi(p a p)+\psi(p a) \tag{2.4}
\end{equation*}
$$

Multiplying the relation (2.3) by p from the left hand side, gives

$$
\begin{equation*}
p \psi(a p)=p \psi(p a p) . \tag{2.5}
\end{equation*}
$$

Similarly, from (2.4) we arrive at

$$
\begin{equation*}
p \psi(p a)=p \psi(p a p) \tag{2.6}
\end{equation*}
$$

Replacing a by $a-a p$ in 2.2 , we get

$$
\begin{equation*}
2 p \psi(a-a p)=\psi(p a-p a p) . \tag{2.7}
\end{equation*}
$$

It follows from 2.6) and 2.7) that

$$
\begin{equation*}
p \psi(a)=p \psi(a p), \text { and } \psi(p a)=\psi(p a p) . \tag{2.8}
\end{equation*}
$$

By (2.4) and 2.8,

$$
\begin{equation*}
p \psi(p a)=\psi(p a)=\psi(p a p) \tag{2.9}
\end{equation*}
$$

Multiplying the relation (2.2) by p from the left hand side, we obtain

$$
\begin{equation*}
2 p \psi(a)=p \psi(a p)+p \psi(p a) . \tag{2.10}
\end{equation*}
$$

From 2.8, 2.9) and 2.10, we arrive at

$$
p \psi(a)=p \psi(p a)=\psi(p a)
$$

for all $a \in A$ and every idempotent $p \in A$. This means that

$$
p\left(T(a)-a T\left(e_{A}\right)\right)=T(p a)-p a T\left(e_{A}\right) .
$$

Consequently, $T(p a)=p T(a)$ for all $a \in A$ and each $p \in \mathcal{I}(A)$. Now from definition of $\mathfrak{J}(A)$ we get $T(x a)=x T(a)$ for all $a \in A$ and $x \in \mathfrak{J}(A)$. This finishes the proof.

Corollary 2.7. Let $T: A \longrightarrow X$ be a [continuous] linear mapping such that the condition (M2) holds. If $A=\mathfrak{J}(A)$ $[A=\overline{\mathfrak{J}(A)}]$, then T is a right n-multiplier.

Similar to the proof of Theorem 2.4, we have the next result.
Theorem 2.8. Suppose that $T: A \longrightarrow X$ is a linear map satisfying (M2). If X has a right separating set $I \subseteq \mathfrak{J}(A)$, then T is a right n-multiplier.

Theorem 2.9. [4, Theorem 2.1] If ϕ is a bilinear mapping from $A \times A$ into a vector space X such that

$$
a, b \in A, \quad a \circ b=0 \Longrightarrow \quad \phi(a, b)=0
$$

then

$$
\phi(a, x)=\frac{1}{2}\left(\phi\left(a x, e_{A}\right)+\phi\left(x a, e_{A}\right)\right)
$$

for all $a \in A$ and $x \in \mathfrak{J}(A)$.
Theorem 2.10. Let $T: A \longrightarrow X$ be a linear mapping such that the condition ($\mathbb{M} 3$) holds. Then $T(x a)=x T(a)$ for all $a \in A$ and every $x \in \mathfrak{J}(A)$.

Proof . By applying Theorem 2.9 to the bilinear mapping $\phi: A \times A \longrightarrow X$ defined by

$$
\phi(a, b)=a T(b)+b T(a)-(a \circ b) T\left(e_{A}\right), \quad a, b \in A,
$$

we obtain

$$
\begin{equation*}
2 \phi(a, p)=\phi\left(a p, e_{A}\right)+\phi\left(p a, e_{A}\right) \tag{2.11}
\end{equation*}
$$

for all $a \in A$ and each $p \in \mathcal{I}(A)$. Define $\psi: A \longrightarrow X$ via $\psi(a)=T(a)-a T\left(e_{A}\right)$. As $p \circ\left(e_{A}-p\right)=0$, we have $\psi(p)=0$. Thus, from 2.11) we get

$$
\begin{aligned}
\psi(a p)+\psi(p a) & =\phi\left(a p, e_{A}\right)+\phi\left(p a, e_{A}\right) \\
& =2 \phi(a, p) \\
& =2 a\left(T(p)-p T\left(e_{A}\right)\right)+2 p\left(T(a)-a T\left(e_{A}\right)\right) \\
& =2 p \psi(a)
\end{aligned}
$$

Now the rest of proof is similar to the proof of Theorem 2.6.

3 Characterizing n-multipliers on C^{*}-algebras

In this section, by using zero products preserving bilinear maps, we prove that each linear mapping T from unital C^{*}-algebra A into unital Banach A-bimodule X which satisfies one of the conditions ($\left.\mathbb{M} 1\right)-(\mathbb{M} 3)$ is an n-multiplier.

Theorem 3.1. Let A be a unital C^{*}-algebra and let $T: A \longrightarrow X$ be a continuous linear map satisfying (M1). Then T is a right n-multiplier.

Proof . Let us define a continuous bilinear mapping $\phi: A \times A \longrightarrow X$ by $\phi(a, b) a T(b)$. Then $\phi(a, b)=0$ whenever $a b=0$. Hence by [2, Theorem 2.11],

$$
a b T(c)=\phi(a b, c)=\phi(a, b c)=a T(b c)
$$

for all $a, b, c \in A$. Taking $a=e_{A}$, we get $T(b c)=b T(c)$ for all $b, c \in A$. Therefore T is a right multiplier and hence it is a right n-multiplier.

The following remark generalize [1, Lemma 2.1] for every commutative C^{*}-algebras.

Remark 3.2. Let A be a commutative C^{*}-algebra and $\phi: A \times A \longrightarrow X$ be a continuous bilinear mapping. Then by [3, Theorem 2.1], if ϕ preserving zero products, then there is a continuous linear mapping $f: A \longrightarrow X$ such that $\phi(a, b)=f(a b)$, for all $a, b \in A$. Thus,

$$
\phi(a, b)=f(a b)=f(b a)=\phi(b, a), \quad a, b \in A .
$$

On the other hand, ϕ is symmetric.

From Theorem 3.1, we get the next result.

Corollary 3.3. Let A be a commutative unital C^{*}-algebra. If $T: A \longrightarrow X$ is a continuous linear mapping such that the condition (M1) holds, then $a T(b)=b T(a)$ for all $a, b \in A$.

Next we show that Theorem 3.1 is true if condition ($\mathbb{M} 1$) replaced by ($\mathbb{M} 2$). First we prove it for W^{*}-algebras. Note that every W^{*}-algebra is unital [8].

Theorem 3.4. Let A be a W^{*}-algebra and let $T: A \longrightarrow X$ is a continuous linear mapping such that the condition (M2) holds. Then T is a right n-multiplier.

Proof . By Theorem 2.6, $T(p b)=p T(b)$ for all $b \in A$ and $p \in \mathcal{I}(A)$. Let $A_{\text {sa }}$ denote the set of self-adjoint elements of A and let $x \in A_{s a}$. Then by Lemma 1.7.5 and Proposition 1.3.1 of [17], x is the limit of a sequence of linear combinations of projections in A, i.e., self-adjoint idempotents. Thus,

$$
x=\lim _{n} \sum_{k=1}^{n} \lambda_{k} p_{k},
$$

and hence for all $b \in A$,

$$
T(x b)=\lim _{n} T\left(\sum_{k=1}^{n} \lambda_{k} p_{k} b\right)=\lim _{n} \sum_{k=1}^{n} \lambda_{k} T\left(p_{k} b\right)=\lim _{n} \sum_{k=1}^{n} \lambda_{k} p_{k} T(b)=x T(b) .
$$

Now let $a \in A$ be arbitrary. Then $a=x+i y$ for $x, y \in A_{s a}$ and thus we get

$$
\begin{aligned}
T(a b) & =T((x+i y) b) \\
& =x T(b)+i y T(b)=a T(b) .
\end{aligned}
$$

Consequently, $T(a b)=a T(b)$ for all $a, b \in A$ and hence T is a right n-multiplier.
It is well-known that on the second dual space $A^{* *}$ of a Banach algebra A there are two multiplications, called the first and second Arens products which make $A^{* *}$ into a Banach algebra [8]. If these products coincide on $A^{* *}$, then A is said to be Arens regular. It is shown [8] that every C^{*}-algebra A is Arens regular.

For each Banach A-bimodule X, the second dual $X^{* *}$ turns into a Banach $A^{* *}$-bimodule where $A^{* *}$ equipped with the first Arens product. The module actions are defined by

$$
\Phi \cdot u=w^{*}-\lim _{i} \lim _{j} a_{i} \cdot x_{j}, \quad u \cdot \Phi=w^{*}-\lim _{j} \lim _{i} x_{j} \cdot a_{i}, \quad \Phi \in A^{* *}, u \in X^{* *},
$$

where $\left\{a_{i}\right\}_{i \in I}$ and $\left\{x_{i}\right\}_{j \in I}$ are nets in A and X that converge, in w^{*}-topologies, to Φ and u, respectively. One may refer to the monograph of Dales [8] for a full account of Arens product and w^{*}-continuity of the above structures.

Since the second dual of each C^{*}-algebra is a W^{*}-algebra [8, hence by extending the continuous linear map $T: A \longrightarrow X$ to the second adjoint $T^{* *}: A^{* *} \longrightarrow X^{* *}$ and applying Theorem 3.4, we get the following result.

Corollary 3.5. Let A be a unital C^{*}-algebra and let $T: A \longrightarrow X$ be a continuous linear mapping such that the condition ($\mathbb{M} 2$) holds. Then T is a right n-multiplier.

It should be note that the condition $(\mathbb{M} 3)$ implies $(\mathbb{M} 2)$ and therefore Theorem 3.4 and Corollary 3.5 still works with condition ($\mathbb{M} 2$) replaced by ($M 3$).

Example 3.6. Let

$$
A=\left\{\left[\begin{array}{cc}
z & w \\
0 & 0
\end{array}\right]: \quad z, w \in \mathbb{C}\right\}
$$

We make $X=\mathbb{C}$ an A-bimodule by defining

$$
a \lambda=0, \quad \lambda a=\lambda z, \quad \lambda \in \mathbb{C}, a \in A
$$

Define $T: A \longrightarrow X$ by $T\left(\left[\begin{array}{cc}z & w \\ 0 & 0\end{array}\right]\right)=w$. Then neither T is a left multiplier nor right multiplier. However, $T(a b)=$ $T(b) a$ for all $a, b \in A$. This example leads us to define the following concept.

Definition 3.7. A linear operator T from Banach algebra A into an A-bimodule X is called left anti n-multiplier [right anti n-multiplier] if for all $a_{1}, a_{2}, \ldots, a_{n} \in A$.

$$
T\left(a_{1} a_{2} \ldots a_{n}\right)=a_{n} T\left(a_{1} a_{2} \ldots a_{n-1}\right), \quad\left[T\left(a_{1} a_{2} \ldots a_{n}\right)=T\left(a_{2} \ldots a_{n}\right) a_{1}\right]
$$

and T is called anti n-multiplier if it is both left and right anti n-multiplier.
Next we show that every anti n-multiplier from C^{*}-algebra A into an A-bimodule X is exact an n-multiplier. The idea of the proof can be found in [3].

Theorem 3.8. Let A be a C^{*}-algebra and X be an A-bimodule. Suppose that $T: A \longrightarrow X$ is a continuous right anti n-multiplier. Then T is a left n-multiplier.

Proof . By assumption

$$
T\left(a_{1} a_{2} \ldots a_{n}\right)=T\left(a_{2} \ldots a_{n}\right) a_{1}
$$

for all $a_{1}, a_{2}, \ldots, a_{n} \in A$. If A is unital, then by taking $a_{2}=\ldots=a_{n}=e_{A}$, we conclude that $T(a)=T\left(e_{A}\right) a$ for all $a \in A$. Therefore

$$
T\left(a_{1} a_{2} \ldots a_{n}\right)=T\left(e_{A}\right) a_{1} a_{2} \ldots a_{n}=T\left(a_{1} a_{2} \ldots a_{n-1}\right) a_{n}, \quad a_{1}, a_{2}, \ldots, a_{n} \in A
$$

Hence T is a left n-multiplier. For nonunital case we extending $T: A \longrightarrow X$ to the second adjoint $T^{* *}: A^{* *} \longrightarrow X^{* *}$ and based on the Arens regularity of A, the $w^{*}-w^{*}$-continuity of $T^{* *}$ and the separate weak continuity of the module operations on $X^{* *}$, we get

$$
T^{* *}\left(a_{1} a_{2} \ldots a_{n}\right)=T^{* *}\left(a_{2} \ldots a_{n}\right) a_{1}
$$

for all $a_{1}, a_{2}, \ldots, a_{n} \in A^{* *}$. Setting $\xi=T^{* *}\left(e_{A^{* *}}\right) \in X^{* *}$. Then it follows from the above equality with $a_{2}=\ldots=a_{n}=$ $e_{A^{* *}}$ that

$$
T^{* *}(a)=\xi a,
$$

for all $a \in A^{* *}$. In particular, we have

$$
\begin{equation*}
T(a)=\xi a, \quad a \in A . \tag{3.1}
\end{equation*}
$$

Note that $\xi a \in X$ for all $a \in A$. Of course, it suffices to prove it for each positive element $a \in A$. Suppose that $a \in A$ be a positive element and let $b \in A$ with $a=b^{2}$. According to (3.1),

$$
\xi a=\xi b^{2}=T\left(b^{2}\right) \in X
$$

Consequently, from (3.1) it follows that T is a left n-multiplier.

Acknowledgments

The author gratefully acknowledge the helpful comments of the anonymous referees.

References

[1] J. Alaminos, M. Brešar, J. Extremera and A.R. Villena, Characterizing homomorphisms and derivations on C^{*}-algebras, Proc. Roy. Soc. Edinb. A 137 (2007), 1-7.
[2] J. Alaminos, M. Brešar, J. Extremera and A.R. Villena, Maps preserving zero products, Studia Math. 193 (2009), 131-159.
[3] J. Alaminos, M. Brešar, J. Extremera and A.R. Villena, Characterizing Jordan maps on C ${ }^{*}$-algebras through zero products, Proc. Roy. Soc. Edinb. 53 (2010) 543-555.
[4] G. An, J. Li and J. He, Zero Jordan product determined algebras, Linear Algebra Appl. 475 (2015), 90-93.
[5] G. An and J. Li, Characterizations of linear mappings through zero products or zero Jordan products, Elect. J. Linear Algebra 31 (2016), 408-424.
[6] A. Bodaghi and H. Inceboz, n-Jordan homomorphisms on commutative algebras, Acta. Math. Univ. Comenianae 87 (2018), no. 1, 141-146.
[7] M. Brešar, Multiplication algebra and maps determined by zero products, Linear Multilinear Algebras 60 (2012), no.7, 763-768.
[8] H.G. Dales, Banach Algebras and Automatic Continuity, LMS Monographs 24, Clarenden Press, Oxford, 2000.
[9] H. Ghahramani, On derivations and Jordan derivations through zero products, Oper. Matrices 8 (2014), 759-771.
[10] H. Ghahramani, Additive maps on some operator algebras behaving like (α, β)-derivations or generalized (α, β) derivations at zero-product elements, Acta Math. Scientia 34 (2014), no. 4, 1287-1300.
[11] H. Ghahramani, On centralizers of Banach algebras, Bull. Malays. Math. Sci. Soc. 38 (2015), 155-164.
[12] H. Ghahramani, Characterizing Jordan maps on triangular rings through commutative zero products, Mediter. J. Math. 15(2) (2018) 1-10.
[13] H. Ghahramani and Z. Pan, Linear maps on \star-Algebras acting on orthogonal elements like derivations or antiderivations, Filomat 32 (2018), no. 13, 4543-4554.
[14] B.E. Johnson, An introduction to the theory of centralizers, Proc. London Math. Soc. 14 (1964), 299-320.
[15] J. Laali and M. Fozouni, n-multipliers and their relations with n-homomorphisms, Vietnam J. Math. 45 (2017), 451-457.
[16] R. Larsen, An introduction to the theory of multipliers, Berlin, New York, Springer-Verlag, 1971.
[17] S. Sakai, C^{*}-algebras and W^{*}-algebras, Springer, New York, 1971.
[18] A. Zivari-Kazempour, Characterization of n-Jordan multipliers, Vietnam J. Math. 50 (2022), 87-94.
[19] A. Zivari-Kazempour and M. Valaei, Characterization of n-Jordan multipliers through zero products, J. Anal. (2022) https://doi.org/10.1007/s41478-022-00395-0.

[^0]: * Corresponding author

 Email address: zivari@abru.ac.ir, zivari6526@gmail.com (Abbas Zivari-Kazempour)

