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Abstract

Let A be a unital Banach algebra and X be a unital A-bimodule. In this paper, among other things, we characterize
n-multipliers T : A −→ X by applying zero products preserving bilinear maps. We also describe n-multipliers from
C∗-algebra A into X through the action on zero products.
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1 Introduction and Preliminaries

Let A be a Banach algebra and X be an A-bimodule. A linear map T : A −→ X is called left n-multiplier [right
n-multiplier ] if for all a1, a2, ..., an ∈ A,

T (a1a2...an) = T (a1a2...an−1)an, [T (a1a2...an) = a1T (a2...an)],

and T is called an n-multiplier if it is both left and right n-multiplier.

The concept of n-multiplier was introduced and studied by Laali and Fozouni in [15]. A 2-multiplier is called
simply a multiplier. One may refer to [14] and the monograph [16] for the additional fundamental results in the theory
of multipliers.

Clearly, every left (right) multiplier is a left (right) n-multiplier, but the converse is not true in general. The next
example illustrates this fact.

Example 1.1. Let

A =


0 a b
0 0 c
0 0 0

 : a, b, c ∈ C

 ,

and define T : A −→ A by

T

0 a b
0 0 c
0 0 0

 =

0 a 0
0 0 c
0 0 0

 .
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Then, T (x)y = xT (y) ̸= T (xy) = 0 for all x, y ∈ A, , hence T is not left (right) multiplier, in general, but for all
n ≥ 3 and for every x1, x2, ..., xn ∈ A,

T (x1x2...xn) = T (x1x2...xn−1)xn = x1T (x2...xn).

Therefore, T is an n-multiplier for every n ≥ 3.

Suppose that A is a unital (Banach) algebra with unit eA. An A-bimodule X is called unital if eAx = xeA = x,
for all x ∈ X.

The following characterization of n-multiplier presented by the author in [18].

Theorem 1.2. [18, Corollary 2.10] Suppose that A is a unital Banach algebra and X is a unital Banach A-bimodule.
Let T : A −→ X be a continuous linear map such that

a, b ∈ A, ab = eA =⇒ T (ab) = aT (b). (1.1)

Then T is a right n-multiplier.

The set of idempotents of given Banach algebra A is denoted by I(A) and let J(A) be the subalgebra of A generated
by idempotents. We say that the Banach algebra A is generated by idempotents, if A = J(A).

Recall that a C∗-algebra A is called aW ∗-algebra (or von-Neumann algebra) if it is a dual space as a Banach space
[8], [17].

Let A be a W ∗-algebra, then the linear span of projections is norm dense in A, hence A = J(A). Moreover, it
turned out in [2] that the group algebra L1(G) for a compact group G and topologically simple Banach algebras
containing a non-trivial idempotent are generated by idempotents. For more examples of Banach algebra A with the
property that A = J(A), see [2].

Let A be a Banach algebra and X be a Banach space. Then the continuous bilinear mapping ϕ : A × A −→ X
preserves zero products if

ab = 0 =⇒ ϕ(a, b) = 0, a, b ∈ A. (1.2)

Definition 1.3. [2] A Banach algebra A has the property (B) if for every continuous bilinear mapping ϕ : A×A −→ X,
where X is an arbitrary Banach space, the condition (1.2) implies that ϕ(ab, c) = ϕ(a, bc), for all a, b, c ∈ A.

It follows from [2, Theorem 2.11] that C∗-algebras, group algebras and Banach algebras that generated by idem-
potents have the property (B).

Characterizing (Jordan) homomorphisms, derivations, Jordan derivations on (Banach) algebras and C∗-algebras
through the action on zero products have been studied by many authors, see for example [1, 3, 6, 9, 10, 11, 12, 13, 19]
and the references therein.

In this paper we consider the subsequent conditions on a linear map T from a Banach algebra A into an A-bimodule
X:

(M1) a, b ∈ A, ab = 0 =⇒ aT (b) = 0,

(M2) a, b ∈ A, ab = ba = 0 =⇒ aT (b) + bT (a) = 0,

(M3) a, b ∈ A, a ◦ b = 0 =⇒ aT (b) + bT (a) = 0,

where a ◦ b = ab+ ba is a Jordan product in A.

We investigate whether these conditions characterizes n-multipliers on Banach algebras and C∗-algebras. We prove
that Theorem 1.2 is remain valid for C∗-algebras if (1.1) replaced by any of the above conditions.

2 Characterizing n-multipliers on Banach algebras

In this section, we characterizes n-multipliers from unital Banach algebra A into unital A-bimodule X, that satisfy
one of the conditions (M1)-(M3).
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Theorem 2.1. [7, Theorem 4.1] If ϕ is a bilinear mapping from A×A into a vector space X such that

a, b ∈ A, ab = 0 =⇒ ϕ(a, b) = 0,

then
ϕ(a, x) = ϕ(ax, eA), and ϕ(x, a) = ϕ(eA, xa),

for all a ∈ A and x ∈ J(A).

Proposition 2.2. Suppose that T : A −→ X is a linear mapping such that the condition (M1) holds. Then T (xa) =
xT (a) for all a ∈ A and x ∈ J(A).

Proof . Define a bilinear mapping ϕ : A×A −→ X by

ϕ(a, b) = aT (b)− abT (eA), a, b ∈ A.

Then ϕ(a, b) = 0, whenever ab = 0. Applying Theorem 2.1, we obtain

pT (a)− paT (eA) = ϕ(p, a) = ϕ(eA, pa) = eAT (pa)− paT (eA), a ∈ A, p ∈ I(A).

Therefore T (pa) = pT (a) for each a ∈ A and p ∈ I(A). Now from definition of J(A) it follows that T (xa) = xT (a) for
all a ∈ A and x ∈ J(A). □

As a consequence of Proposition 2.2, we have the next result.

Corollary 2.3. Let T : A −→ X be a [continuous] linear mapping such that the condition (M1) holds. If A = J(A)
[A = J(A)], then T is a right n-multiplier.

We say that w ∈ A is a left (right) separating point of A-bimodule X if the condition wx = 0 [xw = 0] for all
x ∈ X implies that x = 0. An ideal I of A is called left (right) separating set if every w ∈ I is a left (right) separating
point of X.

Theorem 2.4. Let T : A −→ X be a linear map satisfying (M1). If X has a right separating set I ⊆ J(A), then T is
a right n-multiplier.

Proof . It follows from Proposition 2.2 that T (wab) = wT (ab) and

T (wab) = T ((wa)b) = waT (b), a, b ∈ A, w ∈ I.

Thus, w
(
T (ab)− aT (b)

)
= 0 for all a, b ∈ A and every w ∈ I. Since I is a right separating set of X, T (ab) = aT (b) for

all a, b ∈ A. Consequently, T is a right multiplier and hence it is a right n-multiplier. □

Theorem 2.5. [5, Lemma 2.2] If ϕ is a bilinear mapping from A×A into a vector space X such that

a, b ∈ A, ab = ba = 0 =⇒ ϕ(a, b) = 0,

then
ϕ(a, x) + ϕ(x, a) = ϕ(ax, eA) + ϕ(eA, xa),

for all a ∈ A and x ∈ J(A).

Our first main theorem is the following.

Theorem 2.6. Suppose that T is a linear mapping from A into X such that the condition (M2) holds. Then
T (xa) = xT (a) for all a ∈ A and every x ∈ J(A).
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Proof . Define a bilinear mapping ϕ : A×A −→ X by

ϕ(a, b) = aT (b) + bT (a)− abT (eA)− baT (eA),

for all a, b ∈ A. Then ab = ba = 0 implies that ϕ(a, b) = 0. Hence by Theorem 2.5,

ϕ(a, p) + ϕ(p, a) = ϕ(ap, eA) + ϕ(eA, pa), (2.1)

for all a ∈ A and each p ∈ I(A). Define ψ : A −→ X via ψ(a) = T (a)− aT (eA). Since p(eA − p) = (eA − p)p = 0, we
have ψ(p) = 0. Indeed,

pT (eA − p) + (eA − p)T (p) = 0,

which implies that pT (eA) = T (p) = pT (p), for every p ∈ I(A). Now by (2.1) we obtain

ψ(ap) + ψ(pa) = ϕ(ap, eA) + ϕ(eA, pa)

= ϕ(a, p) + ϕ(p, a)

= 2a
(
T (p)− pT (eA)

)
+ 2p

(
T (a)− aT (eA)

)
= 2pψ(a).

Therefore

2pψ(a) = ψ(ap) + ψ(pa). (2.2)

Replacing a by ap and pa in (2.2), respectively, we get

2pψ(ap) = ψ(ap) + ψ(pap), (2.3)

and

2pψ(pa) = ψ(pap) + ψ(pa). (2.4)

Multiplying the relation (2.3) by p from the left hand side, gives

pψ(ap) = pψ(pap). (2.5)

Similarly, from (2.4) we arrive at

pψ(pa) = pψ(pap). (2.6)

Replacing a by a− ap in (2.2), we get

2pψ(a− ap) = ψ(pa− pap). (2.7)

It follows from (2.6) and (2.7) that

pψ(a) = pψ(ap), and ψ(pa) = ψ(pap). (2.8)

By (2.4) and (2.8),

pψ(pa) = ψ(pa) = ψ(pap). (2.9)

Multiplying the relation (2.2) by p from the left hand side, we obtain

2pψ(a) = pψ(ap) + pψ(pa). (2.10)

From (2.8), (2.9) and (2.10), we arrive at
pψ(a) = pψ(pa) = ψ(pa),

for all a ∈ A and every idempotent p ∈ A. This means that

p
(
T (a)− aT (eA)

)
= T (pa)− paT (eA).

Consequently, T (pa) = pT (a) for all a ∈ A and each p ∈ I(A). Now from definition of J(A) we get T (xa) = xT (a) for
all a ∈ A and x ∈ J(A). This finishes the proof. □
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Corollary 2.7. Let T : A −→ X be a [continuous] linear mapping such that the condition (M2) holds. If A = J(A)
[A = J(A)], then T is a right n-multiplier.

Similar to the proof of Theorem 2.4, we have the next result.

Theorem 2.8. Suppose that T : A −→ X is a linear map satisfying (M2). If X has a right separating set I ⊆ J(A),
then T is a right n-multiplier.

Theorem 2.9. [4, Theorem 2.1] If ϕ is a bilinear mapping from A×A into a vector space X such that

a, b ∈ A, a ◦ b = 0 =⇒ ϕ(a, b) = 0,

then

ϕ(a, x) =
1

2

(
ϕ(ax, eA) + ϕ(xa, eA)

)
,

for all a ∈ A and x ∈ J(A).

Theorem 2.10. Let T : A −→ X be a linear mapping such that the condition (M3) holds. Then T (xa) = xT (a) for
all a ∈ A and every x ∈ J(A).

Proof . By applying Theorem 2.9 to the bilinear mapping ϕ : A×A −→ X defined by

ϕ(a, b) = aT (b) + bT (a)− (a ◦ b)T (eA), a, b ∈ A,

we obtain

2ϕ(a, p) = ϕ(ap, eA) + ϕ(pa, eA), (2.11)

for all a ∈ A and each p ∈ I(A). Define ψ : A −→ X via ψ(a) = T (a)−aT (eA). As p◦ (eA−p) = 0, we have ψ(p) = 0.
Thus, from (2.11) we get

ψ(ap) + ψ(pa) = ϕ(ap, eA) + ϕ(pa, eA)

= 2ϕ(a, p)

= 2a
(
T (p)− pT (eA)

)
+ 2p

(
T (a)− aT (eA)

)
= 2pψ(a).

Now the rest of proof is similar to the proof of Theorem 2.6. □

3 Characterizing n-multipliers on C∗-algebras

In this section, by using zero products preserving bilinear maps, we prove that each linear mapping T from unital
C∗-algebra A into unital Banach A-bimodule X which satisfies one of the conditions (M1)-(M3) is an n-multiplier.

Theorem 3.1. Let A be a unital C∗-algebra and let T : A −→ X be a continuous linear map satisfying (M1). Then
T is a right n-multiplier.

Proof . Let us define a continuous bilinear mapping ϕ : A × A −→ X by ϕ(a, b)aT (b). Then ϕ(a, b) = 0 whenever
ab = 0. Hence by [2, Theorem 2.11],

abT (c) = ϕ(ab, c) = ϕ(a, bc) = aT (bc),

for all a, b, c ∈ A. Taking a = eA, we get T (bc) = bT (c) for all b, c ∈ A. Therefore T is a right multiplier and hence it
is a right n-multiplier. □

The following remark generalize [1, Lemma 2.1] for every commutative C∗-algebras.
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Remark 3.2. Let A be a commutative C∗-algebra and ϕ : A × A −→ X be a continuous bilinear mapping. Then
by [3, Theorem 2.1], if ϕ preserving zero products, then there is a continuous linear mapping f : A −→ X such that
ϕ(a, b) = f(ab), for all a, b ∈ A. Thus,

ϕ(a, b) = f(ab) = f(ba) = ϕ(b, a), a, b ∈ A.

On the other hand, ϕ is symmetric.

From Theorem 3.1, we get the next result.

Corollary 3.3. Let A be a commutative unital C∗-algebra. If T : A −→ X is a continuous linear mapping such that
the condition (M1) holds, then aT (b) = bT (a) for all a, b ∈ A.

Next we show that Theorem 3.1 is true if condition (M1) replaced by (M2). First we prove it for W ∗-algebras.
Note that every W ∗-algebra is unital [8].

Theorem 3.4. Let A be a W ∗-algebra and let T : A −→ X is a continuous linear mapping such that the condition
(M2) holds. Then T is a right n-multiplier.

Proof . By Theorem 2.6, T (pb) = pT (b) for all b ∈ A and p ∈ I(A). Let Asa denote the set of self-adjoint elements
of A and let x ∈ Asa. Then by Lemma 1.7.5 and Proposition 1.3.1 of [17], x is the limit of a sequence of linear
combinations of projections in A, i.e., self-adjoint idempotents. Thus,

x = lim
n

n∑
k=1

λkpk,

and hence for all b ∈ A,

T (xb) = lim
n
T (

n∑
k=1

λkpkb) = lim
n

n∑
k=1

λkT (pkb) = lim
n

n∑
k=1

λkpkT (b) = xT (b).

Now let a ∈ A be arbitrary. Then a = x+ iy for x, y ∈ Asa and thus we get

T (ab) = T
(
(x+ iy)b

)
= xT (b) + iyT (b) = aT (b).

Consequently, T (ab) = aT (b) for all a, b ∈ A and hence T is a right n-multiplier. □

It is well-known that on the second dual space A∗∗ of a Banach algebra A there are two multiplications, called the
first and second Arens products which make A∗∗ into a Banach algebra [8]. If these products coincide on A∗∗, then A
is said to be Arens regular. It is shown [8] that every C∗-algebra A is Arens regular.

For each Banach A-bimodule X, the second dual X∗∗ turns into a Banach A∗∗-bimodule where A∗∗ equipped with
the first Arens product. The module actions are defined by

Φ · u = w∗ − lim
i

lim
j
ai · xj , u · Φ = w∗ − lim

j
lim
i
xj · ai, Φ ∈ A∗∗, u ∈ X∗∗,

where {ai}i∈I and {xi}j∈I are nets in A and X that converge, in w∗-topologies, to Φ and u, respectively. One may
refer to the monograph of Dales [8] for a full account of Arens product and w∗-continuity of the above structures.

Since the second dual of each C∗-algebra is a W ∗-algebra [8], hence by extending the continuous linear map
T : A −→ X to the second adjoint T ∗∗ : A∗∗ −→ X∗∗ and applying Theorem 3.4, we get the following result.

Corollary 3.5. Let A be a unital C∗-algebra and let T : A −→ X be a continuous linear mapping such that the
condition (M2) holds. Then T is a right n-multiplier.

It should be note that the condition (M3) implies (M2) and therefore Theorem 3.4 and Corollary 3.5 still works
with condition (M2) replaced by (M3).
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Example 3.6. Let

A =

{[
z w
0 0

]
: z, w ∈ C

}
.

We make X = C an A-bimodule by defining

aλ = 0, λa = λz, λ ∈ C, a ∈ A.

Define T : A −→ X by T (

[
z w
0 0

]
) = w. Then neither T is a left multiplier nor right multiplier. However, T (ab) =

T (b)a for all a, b ∈ A. This example leads us to define the following concept.

Definition 3.7. A linear operator T from Banach algebra A into an A-bimodule X is called left anti n-multiplier
[right anti n-multiplier ] if for all a1, a2, ..., an ∈ A.

T (a1a2...an) = anT (a1a2...an−1), [T (a1a2...an) = T (a2...an)a1],

and T is called anti n-multiplier if it is both left and right anti n-multiplier.

Next we show that every anti n-multiplier from C∗-algebra A into an A-bimodule X is exact an n-multiplier. The
idea of the proof can be found in [3].

Theorem 3.8. Let A be a C∗-algebra and X be an A-bimodule. Suppose that T : A −→ X is a continuous right anti
n-multiplier. Then T is a left n-multiplier.

Proof . By assumption
T (a1a2...an) = T (a2...an)a1,

for all a1, a2, ..., an ∈ A. If A is unital, then by taking a2 = ... = an = eA, we conclude that T (a) = T (eA)a for all
a ∈ A. Therefore

T (a1a2...an) = T (eA)a1a2...an = T (a1a2...an−1)an, a1, a2, ..., an ∈ A.

Hence T is a left n-multiplier. For nonunital case we extending T : A −→ X to the second adjoint T ∗∗ : A∗∗ −→ X∗∗

and based on the Arens regularity of A, the w∗-w∗-continuity of T ∗∗ and the separate weak continuity of the module
operations on X∗∗, we get

T ∗∗(a1a2...an) = T ∗∗(a2...an)a1,

for all a1, a2, ..., an ∈ A∗∗. Setting ξ = T ∗∗(eA∗∗) ∈ X∗∗. Then it follows from the above equality with a2 = ... = an =
eA∗∗ that

T ∗∗(a) = ξa,

for all a ∈ A∗∗. In particular, we have

T (a) = ξa, a ∈ A. (3.1)

Note that ξa ∈ X for all a ∈ A. Of course, it suffices to prove it for each positive element a ∈ A. Suppose that a ∈ A
be a positive element and let b ∈ A with a = b2. According to (3.1),

ξa = ξb2 = T (b2) ∈ X.

Consequently, from (3.1) it follows that T is a left n-multiplier. □
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