Convergence theorems of new three-step iterations scheme for I-asymptotically nonexpansive mappings

Seyit Temir

Department of Mathematics, Art and Science Faculty, Adıyaman University, 02040, Adıyaman, Turkey
(Communicated by Madjid Eshaghi Gordji)

Abstract

The purpose of this paper is to establish weak and strong convergence theorems of new three-step iterations for I asymptotically nonexpansive mappings in Banach space.Also we introduce and study convergence theorems of the three-step iterative sequence for three I-asymptotically nonexpansive mappings in an uniformly convex Banach space. The results obtained in this paper extend and improve the recent ones announced by Chen and Guo [1], S. Temir [14], Yao and Noor [16] and many others.

Keywords: I-Asymptotically nonexpansive, common fixed point, iteration process, convergence theorems 2020 MSC: Primary 47H09, Secondary 47H10

1 Introduction

Let K be a nonempty closed convex subset of a real normed space X. Let $T: K \rightarrow K$ be a mapping . Let $F(T)=\{x \in K: T x=x\}$ be denoted as the set of fixed points of a mapping T.
$T: K \rightarrow K$ is called asymptotically nonexpansive mapping if there exist a sequence $\left\{\kappa_{n}\right\} \subset[1, \infty)$ with $\lim _{n \rightarrow \infty} \kappa_{n}=1$ such that

$$
\left\|T^{n} x-T^{n} y\right\| \leq \kappa_{n}\|x-y\|
$$

for all $x, y \in K$ and $n \geq 1$. The mapping $T: K \rightarrow K$ is said to be uniformly Lipschitz with a Lipschitzian constant $L>0$ if

$$
\left\|T^{n} x-T^{n} y\right\| \leq L\|x-y\|
$$

holds for all $x, y \in K$ and $n \geq 1$. Note that every asymptotically nonexpansive mapping is uniformly L-Lipschitzian with $L=\sup \left\{\kappa_{n}: n \geq 1\right\}$.

In [2], Goebel and Kirk proved that, if K is a nonempty closed convex bounded subset of a uniformly convex Banach space X and T is an asymptotically nonexpansive self-mapping of K, then T has a fixed point in K.

Recently, in [9], [13] and [14], the convergence theorems for I-nonexpansive and I-asymptotically quasi-nonexpansive mapping defined for some iterative schemes in Banach spaces were proved. In [17, Yao and Wang established the

[^0]strong convergence of an iterative scheme with errors involving I-asymptotically quasi-nonexpansive mappings in a uniformly convex Banach space. Recently, in [13] and [14] I-asymptotically nonexpansive mapping was introduced. Namely, T is called I - asymptotically nonexpansive on K if there exists a sequence $\left\{v_{n}\right\} \subset[1, \infty)$ with $\lim _{n \rightarrow \infty} v_{n}=1$ such that
$$
\left\|T^{n} x-T^{n} y\right\| \leq v_{n}\left\|I^{n} x-I^{n} y\right\|
$$
for all $x, y \in K$ and $n \geq 1$. The mapping $T, I: K \rightarrow K$ is said to be I-uniformly Lipschitz with a Lipschitzian constant $\Gamma>0$ if
$$
\left\|T^{n} x-T^{n} y\right\| \leq \Gamma\left\|I^{n} x-I^{n} y\right\|
$$
holds for all $x, y \in K$ and $n \geq 1$. It is obvious that, an I-asymptotically nonexpansive mapping is I-uniformly Lipschitz with Lipschitz constant $\Gamma=\sup \left\{v_{n}: n \geq 1\right\}$.

The class of asymptotically nonexpansive maps which an important generalization of the class nonexpansive maps was introduced by Goebel and Kirk [2]. In 2000, Noor [7] introduced a three-step iterative scheme and studied the approximate solutions of variational inclusion in Hilbert spaces. Glowinski and Le Tallec [3] used three-step iterative schemes to find the approximate solutions of the elastoviscoplasticity problem, liquid crystal theory, and eigenvalue computation. It has been shown in [3] that the three-step iterative scheme gives better numerical results than the Mann-type [6 (one-step) and the Ishikawa-type [5] (two-step) approximate iterations. Xu and Noor [15] introduced and studied a three-step iterative for asymptotically nonexpansive mappings and they proved weak and strong convergence theorems for asymptotically nonexpansive mappings in a Banach space.

Recently, Suantai [11 introduced the following iterative scheme which is an extension of Xu and Noor [15] iterations and used it for the weak and strong convergence of fixed points in an uniformly convex Banach space. The scheme is defined as follows.

$$
\left\{\begin{array}{l}
x_{1}=x \in K \tag{1.1}\\
z_{n}=a_{n} T^{n} x_{n}+\left(1-a_{n}\right) x_{n} \\
y_{n}=b_{n} T^{n} z_{n}+c_{n} T^{n} x_{n}+\left(1-b_{n}-c_{n}\right) x_{n} \\
x_{n+1}=\alpha_{n} T^{n} y_{n}+\beta_{n} T^{n} z_{n}+\left(1-\alpha_{n}-\beta_{n}\right) x_{n}, \forall n \geq 1
\end{array}\right.
$$

where $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\},\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ in $[0,1]$ satisfy certain conditions. The iterative scheme (1.1) is called the modified Noor iterative scheme for asymptotically nonexpansive mappings. If $\left\{c_{n}\right\}=\left\{\beta_{n}\right\}=0$, then (1.1) reduces to Noor iterations defined by Xu and Noor [15] as follows:

$$
\left\{\begin{array}{l}
x_{1}=x \in K \tag{1.2}\\
z_{n}=a_{n} T^{n} x_{n}+\left(1-a_{n}\right) x_{n} \\
y_{n}=b_{n} T^{n} z_{n}+\left(1-b_{n}\right) x_{n} \\
x_{n+1}=\alpha_{n} T^{n} y_{n}+\left(1-\alpha_{n}\right) x_{n}, \forall n \geq 1
\end{array}\right.
$$

If $\left\{a_{n}\right\}=\left\{c_{n}\right\}=\left\{\beta_{n}\right\}=0$, then reduces to Ishikawa iterations [5] as follows:

$$
\left\{\begin{array}{l}
x_{1}=x \in K \tag{1.3}\\
y_{n}=b_{n} T^{n} x_{n}+\left(1-b_{n}\right) x_{n} \\
x_{n+1}=\alpha_{n} T^{n} y_{n}+\left(1-\alpha_{n}\right) x_{n}, \forall n \geq 1
\end{array}\right.
$$

If $\left\{a_{n}\right\}=\left\{b_{n}\right\}=\left\{c_{n}\right\}=\left\{\beta_{n}\right\}=0$, then 1.1] reduces to Mann iterative process [6] as follows:

$$
\left\{\begin{array}{l}
x_{1}=x \in K \tag{1.4}\\
x_{n+1}=\alpha_{n} T^{n} x_{n}+\left(1-\alpha_{n}\right) x_{n}, \forall n \geq 1
\end{array}\right.
$$

Inspired by the preceding iteration schemes, we define a new iteration scheme as follows. Let X be a real uniformly convex Banach space and K be a nonempty closed, bounded and convex subset of X. Let $T: K \rightarrow K$ be a I-asymptotically nonexpansive mapping and $I: K \rightarrow K$ be an asymptotically nonexpansive mapping. We shall consider the following iteration scheme:

$$
\left\{\begin{array}{l}
x_{1}=x \in K \tag{1.5}\\
z_{n}=a_{n} T^{n} x_{n}+\left(1-a_{n}\right) I^{n} x_{n} \\
y_{n}=b_{n} T^{n} z_{n}+c_{n} T^{n} x_{n}+\left(1-b_{n}-c_{n}\right) I^{n} x_{n} \\
x_{n+1}=\alpha_{n} T^{n} y_{n}+\beta_{n} T^{n} z_{n}+\left(1-\alpha_{n}-\beta_{n}\right) I^{n} x_{n}, \forall n \geq 1
\end{array}\right.
$$

where $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\},\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{b_{n}+c_{n}\right\}$ and $\left\{\alpha_{n}+\beta_{n}\right\}$ are appropriate sequences in $[0,1]$.
The iterative scheme 1.5 is called the modified Noor iterative scheme for asymptotically nonexpansive mappings. If I is identity mapping then (1.5) reduces to the (1.1) defined by [11].

The aim of this paper is to introduce and study convergence problem of iterative process 1.5 to a common fixed point of T and I. Also we introduce and study convergence problem of three-step iterative sequence for three I-asymptotically nonexpansive mappings in an uniformly convex Banach space. The convergence theorems presented in this paper improve and generalize many results in the current literature.

2 Preliminaries and Notations

Let X be a Banach space with dimension $X \geq 2$. The modulus of X is function $\delta_{X}:(0,2] \rightarrow[0,1]$ defined by

$$
\delta_{X}(\varepsilon)=\inf \left\{1-\frac{\|x+y\|}{2}:\|x\|=1,\|y\|=1,\|x-y\|=\varepsilon\right\} .
$$

A Banach space X is uniformly convex if and only if $\delta(\varepsilon)>0$ for all $\varepsilon \in(0,2]$. Recall that a Banach space X is said to satisfy Opial's condition [8] if, for each sequence $\left\{x_{n}\right\}$ in X, the condition $x_{n} \rightharpoonup x$ implies that

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|
$$

for all $y \in X$ with $y \neq x$.
A mapping $T: K \rightarrow K$ is said to be demiclosed at p if whenever $\left\{x_{n}\right\}$ is a sequence in K such that $x_{n} \rightarrow x * \in K$ and $T x_{n} \rightarrow p$ then $T x *=p$.

A mapping $T: K \rightarrow K$ is said to be semi-compact if, for any bounded sequence $\left\{x_{n}\right\}$ in K such that $\left\|x_{n}-T x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{x_{n_{k}}\right\}$ converges strongly $x * \in K$.

A mapping $T: K \rightarrow K$ is said to be completely continuous if for every bounded sequence $\left\{x_{n}\right\}$ in K converges weakly $x *$ implies that $T x_{n}$ converges to strongly to $T x *$.

Let $\left\{u_{n}\right\}$ in K be a given sequence. $T: K \rightarrow X$ with the nonempty fixed point set $\mathrm{F}(\mathrm{T})$ in K is said to satisfy Condition(A) [10] with respect to the $\left\{u_{n}\right\}$ if there is a nondecreasing function $f:[0, \infty) \rightarrow[0, \infty)$ with $f(0)=0$ and $f(r)>0$ for all $r \in(0, \infty)$ such that $\left\|u_{n}-T u_{n}\right\| \geq f\left(d\left(u_{n}, F(T)\right)\right)$ for all $n \geq 1$. Senter and Dotson [10] pointed out that every continuous and demi-compact must satisfying Condition (A). In order to obtain strong convergence of common fixed points of I- asymptotically nonexpansive mappings and finite numbers of these mappings, we introduce the following condition (B) : The mappings $T_{i}, I_{i},(i=1,2,3)$ are said to satisfy condition (B) if there exists a nondecreasing function $f:[0, \infty) \rightarrow[0, \infty)$ with $f(0)=0$ and $f(r)>0$ for all $r \in(0, \infty)$ such that $\max _{1 \leq i \leq 3}\left\{\frac{1}{2}\left(\left\|x-T_{i} x\right\|+\left\|x-I_{i} x\right\|\right)\right\} \geq f\left(d\left(x, F\left(T_{i} \cap I_{i}\right)\right)\right)$ for all $x \in K$, where $F\left(T_{i} \cap I_{i}\right) \neq \emptyset$ and $d\left(x, F\left(T_{i} \cap I_{i}\right)\right)=\inf \left\{d(x, p): p \in F\left(T_{i} \cap I_{i}\right)\right\}$.

In what follows, we shall make use of the following lemmas.
Lemma 2.1. 4 Let X be a uniformly convex Banach space, K a nonempty closed convex subset of X and $T: K \longrightarrow K$ be a asymptotically nonexpansive mapping with a sequence $k_{n} \subset[1, \infty)$ and $k_{n} \rightarrow 1$ as $n \rightarrow \infty$, Then $E-T(\mathrm{E}$ is identity mapping) is demiclosed at zero, i.e., if $x_{n} \rightarrow x$ weakly and $x_{n}-T x_{n} \rightarrow 0$ strongly, then $x \in F(T)$.

Lemma 2.2. 12 Let $\left\{s_{n}\right\},\left\{t_{n}\right\}$ and $\left\{\sigma_{n}\right\}$ be sequences of nonnegative real sequences satisfying the following conditions: $\forall n \geq 1, s_{n+1} \leq\left(1+\sigma_{n}\right) s_{n}+t_{n}$, where $\sum_{n=0}^{\infty} \sigma_{n}<\infty$ and $\sum_{n=0}^{\infty} t_{n}<\infty$. Then $\lim _{n \rightarrow \infty} s_{n}$ exists.

Lemma 2.3. 10 Let X be a uniformly convex Banach space and b,c be two constants with $0<b<c<1$. suppose that t_{n} is a sequence in $[b, c]$ and x_{n} and y_{n} are two sequences of X such that $\lim _{n \rightarrow \infty}\left\|t_{n} x_{n}+\left(1-t_{n}\right) y_{n}\right\|=d$, $\limsup _{n \rightarrow \infty}\left\|x_{n}\right\| \leq d, \limsup _{n \rightarrow \infty}\left\|y_{n}\right\| \leq d$, holds some $d \geq 0$, Then $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$.

Lemma 2.4. 16 Let X be a uniformly convex Banach space. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are sequences in $(0,1)$ satisfying $\alpha_{n}+\beta_{n}+\gamma_{n}=1$ and $0<\lim _{n \rightarrow \infty} \alpha_{n}<\liminf _{n \rightarrow \infty}\left(\alpha_{n}+\beta_{n}\right) \leq \limsup _{n \rightarrow \infty}\left(\alpha_{n}+\beta_{n}\right)<1$. Suppose that x_{n}, y_{n} and z_{n} are three sequences in X . Then

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|x_{n}\right\| & \leq d, \\
\limsup _{n \rightarrow \infty}\left\|y_{n}\right\| & \leq d, \\
\limsup _{n \rightarrow \infty}\left\|z_{n}\right\| & \leq d, \\
\lim _{n \rightarrow \infty}\left\|\alpha_{n} x_{n}+\beta_{n} y_{n}+\gamma_{n} z_{n}\right\| & =d,
\end{aligned}
$$

imply that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|y_{n}-z_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|z_{n}-y_{n}\right\|=0
$$

where $d \geq 0$ is some constant.
Lemma 2.5. (See [11,Lemma 2.7) Let X be a Banach space which satisfies Opial's condition and let x_{n} be a sequence in X. Let $q_{1}, q_{2} \in X$ be such that $\lim _{n \rightarrow \infty}\left\|x_{n}-q_{1}\right\|$ and $\lim _{n \rightarrow \infty}\left\|x_{n}-q_{2}\right\|$ exist.If $\left\{x_{n_{k}}\right\},\left\{x_{n_{j}}\right\}$ are the subsequences of $\left\{x_{n}\right\}$ which converge weakly to $q_{1}, q_{2} \in X$, respectively. Then $q_{1}=q_{2}$.

3 Convergence Theorems For I-Asymptotically Nonexpansive

Lemma 3.1. Let X be a real uniformly convex Banach space and K be a nonempty closed, bounded and convex subset of X. Let $T: K \rightarrow K$ be a I-asymptotically nonexpansive mapping with $\left\{k_{n}\right\}$ a sequence of real numbers such that $k_{n} \geq 1$ and $\sum_{n=0}^{\infty}\left(k_{n}-1\right)<\infty$ and $I: K \rightarrow K$ be an asymptotically nonexpansive mapping with $\left\{\ell_{n}\right\}$ a sequence of real numbers such that $\ell_{n} \geq 1$ and $\sum_{n=1}^{\infty}\left(\ell_{n}-1\right)<\infty$. Suppose further that the set $F(T) \cap F(I)$ (i.e., $F(T):=\{x \in K: x=T x\}, F(I):=\{x \in K: x=I x\})$ is nonempty. Let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\},\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ be real sequences in $[0,1]$ such that $\left\{b_{n}+c_{n}\right\}$ and $\left\{\alpha_{n}+\beta_{n}\right\}$ in $[0,1]$ for all $n \geq 1$. Let $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\}$ be the sequences in K defined by (1.5). If q is a common fixed point of T and I, then $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|$ exists.

Proof . Let $q \in F(T) \cap F(I)$. Using 1.5), we have

$$
\begin{align*}
\left\|z_{n}-q\right\| & =\left\|a_{n} T^{n} x_{n}+\left(1-a_{n}\right) I^{n} x_{n}-q\right\| \\
& =\left\|a_{n}\left(T^{n} x_{n}-q\right)+\left(1-a_{n}\right)\left(I^{n} x_{n}-q\right)\right\| \\
& \leq a_{n}\left\|T^{n} x_{n}-q\right\|+\left(1-a_{n}\right)\left\|I^{n} x_{n}-q\right\| \\
& \leq a_{n} k_{n}\left\|I^{n} x_{n}-q\right\|+\left(1-a_{n}\right) \ell_{n}\left\|x_{n}-q\right\| \\
& \leq a_{n} k_{n} \ell_{n}\left\|x_{n}-q\right\|+\left(1-a_{n}\right) \ell_{n}\left\|x_{n}-q\right\| \\
& \leq \ell_{n}\left(1+a_{n}\left(k_{n}-1\right)\right)\left\|x_{n}-q\right\| \tag{3.1}
\end{align*}
$$

$$
\begin{align*}
\left\|y_{n}-q\right\| & =\left\|\left(b_{n} T^{n} z_{n}+c_{n} T^{n} x_{n}+\left(1-b_{n}-c_{n}\right) I^{n} x_{n}\right)-q\right\| \\
& \leq b_{n}\left\|T^{n} z_{n}-q\right\|+c_{n}\left\|T^{n} x_{n}-q\right\|+\left(1-b_{n}-c_{n}\right)\left\|I^{n} x_{n}-q\right\| \\
& \leq b_{n} k_{n}\left\|I^{n} z_{n}-q\right\|+c_{n} k_{n}\left\|I^{n} x_{n}-q\right\|+\left(1-b_{n}-c_{n}\right) \ell_{n}\left\|x_{n}-q\right\| \\
& \leq b_{n} k_{n} \ell_{n}\left\|z_{n}-q\right\|+c_{n} k_{n} \ell_{n}\left\|x_{n}-q\right\|+\left(1-b_{n}-c_{n}\right) \ell_{n}\left\|x_{n}-q\right\| \\
& \leq\left(b_{n} k_{n} \ell_{n}^{2}\left(1+a_{n}\left(k_{n}-1\right)\right)+c_{n} k_{n} \ell_{n}+\left(1-b_{n}-c_{n}\right) \ell_{n}\right)\left\|x_{n}-q\right\| \\
& \leq \ell_{n}\left(1+b_{n} a_{n} \ell_{n}\left(k_{n}-1\right)+b_{n} k_{n}\left(k_{n}-1\right)+b_{n}\left(\ell_{n}-1\right)+c_{n}\left(k_{n}-1\right)\right)\left\|x_{n}-q\right\| \tag{3.2}\\
\left\|x_{n+1}-q\right\| & =\left\|\alpha_{n} T^{n} y_{n}+\beta_{n} T^{n} z_{n}+\left(1-\alpha_{n}-\beta_{n}\right) I^{n} x_{n}-q\right\| \\
& \leq \alpha_{n}\left\|T^{T} y_{n}-q\right\|+\beta_{n}\left\|T^{n} z_{n}-q\right\|+\left(1-\alpha_{n}-\beta_{n}\right)\left\|I^{n} x_{n}-q\right\| \\
& \leq \alpha_{n} k_{n}\left\|I^{n} y_{n}-q\right\|+\beta_{n} k_{n}\left\|I^{n} z_{n}-q\right\|+\left(1-\alpha_{n}-\beta_{n}\right) \ell_{n}\left\|x_{n}-q\right\| \\
& \leq \alpha_{n} k_{n} \ell_{n}\left\|y_{n}-q\right\|+\beta_{n} k_{n} \ell_{n}\left\|z_{n}-q\right\|+\left(1-\alpha_{n}-\beta_{n}\right) \ell_{n}\left\|x_{n}-q\right\|
\end{align*}
$$

Thus we obtain

$$
\begin{align*}
\left\|x_{n+1}-q\right\| & \leq \ell_{n}\left(1+\alpha_{n} b_{n} a_{n} k_{n} \ell_{n}^{2}\left(k_{n}-1\right)+\alpha_{n} k_{n} \ell_{n}^{2}\left(k_{n}-1\right)\right. \\
& +\alpha_{n} k_{n} \ell_{n} b_{n}\left(\ell_{n}-1\right)+\alpha_{n} k_{n}\left(k_{n}-1\right)+\beta_{n} a_{n} k_{n} \ell_{n}\left\{k_{n}-1\right\} \\
& \left.+\alpha_{n} \ell_{n}\left(k_{n}-1\right)+\beta_{n} \ell_{n}\left(k_{n}-1\right)+\alpha_{n}\left(\ell_{n}-1\right)+\beta_{n}\left(\ell_{n}-1\right)\right\}\left\|x_{n}-q\right\| \tag{3.3}
\end{align*}
$$

Since $\sum_{n=0}^{\infty}\left(k_{n}-1\right)<\infty, \sum_{n=1}^{\infty}\left(\ell_{n}-1\right)<\infty$, it follows from Lemma 2.2 that $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|$ exists.
Lemma 3.2. Under assumptions of Lemma 3.1, if $\lim _{n \rightarrow \infty}\left\|I^{n} x_{n}-x_{n}\right\|=0$, then $\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|I x_{n}-x_{n}\right\|=0$.
Proof. By Lemma 3.1, we can assume that $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|=d$
for $q \in F(T \cap I)$. If $d=0$ by continuity T and I then the proof is completed. Now suppose $d>0$.

$$
\begin{gather*}
\underset{n \rightarrow \infty}{\limsup \left\|I^{n} x_{n}-q\right\|} \leq \underset{n \rightarrow \infty}{\limsup \ell_{n}\left\|x_{n}-q\right\| \leq d,} \tag{3.4}\\
\underset{n \rightarrow \infty}{\limsup \left\|T^{n} x_{n}-q\right\|} \leq \underset{n \rightarrow \infty}{\limsup k_{n} \ell_{n}\left\|x_{n}-q\right\| \leq d,} \tag{3.5}
\end{gather*}
$$

From (3.2), we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|y_{n}-q\right\| \leq d, \tag{3.6}
\end{equation*}
$$

and from (3.1), we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|z_{n}-q\right\| \leq d, \tag{3.7}
\end{equation*}
$$

$$
\left\|T^{n} y_{n}-q\right\| \leq k_{n}\left\|I^{n} y_{n}-q\right\| \leq k_{n} \ell_{n}\left\|y_{n}-q\right\|,
$$

taking the limsup on both sides in this inequality, we have

$$
\begin{gather*}
\limsup _{n \rightarrow \infty}\left\|T^{n} y_{n}-q\right\| \leq d . \tag{3.8}\\
\left\|T^{n} z_{n}-q\right\| \leq k_{n}\left\|I^{n} z_{n}-q\right\| \leq k_{n} \ell_{n}\left\|z_{n}-q\right\|,
\end{gather*}
$$

taking the limsup on both sides in this inequality, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|T^{n} z_{n}-q\right\| \leq d \tag{3.9}
\end{equation*}
$$

From (1.5), we have

$$
\begin{aligned}
d & =\lim _{n \rightarrow \infty}\left\|x_{n+1}-q\right\| \leq \lim _{n \rightarrow \infty}\left\|\alpha_{n} T^{n} y_{n}+\beta_{n} T^{n} z_{n}+\left(1-\alpha_{n}-\beta_{n}\right) I^{n} x_{n}-q\right\| \\
& =\lim _{n \rightarrow \infty}\left\|\alpha_{n}\left(T^{n} y_{n}-q\right)+\beta_{n}\left(T^{n} z_{n}-q\right)+\left(1-\alpha_{n}-\beta_{n}\right)\left(I^{n} x_{n}-q\right)\right\|
\end{aligned}
$$

From (3.4), (3.8), (3.9) and Lemma 2.4, we have

$$
\left\{\begin{align*}
\lim _{n \rightarrow \infty}\left\|T^{n} y_{n}-T^{n} z_{n}\right\| & =0 \tag{3.10}\\
\lim _{n \rightarrow \infty}\left\|T^{n} z_{n}-I^{n} x_{n}\right\| & =0 \\
\lim _{n \rightarrow \infty}\left\|I^{n} x_{n}-T^{n} y_{n}\right\| & =0
\end{align*}\right.
$$

From (1.5), we have

$$
\begin{aligned}
\left\|x_{n+1}-q\right\| & \leq\left\|\alpha_{n} T^{n} y_{n}+\beta_{n} T^{n} z_{n}+\left(1-\alpha_{n}-\beta_{n}\right) I^{n} x_{n}-q\right\| \\
& \leq\left\|\alpha_{n}\left(T^{n} y_{n}-I^{n} x_{n}\right)+\beta_{n}\left(T^{n} z_{n}-I^{n} x_{n}\right)+\left(I^{n} x_{n}-q\right)\right\|
\end{aligned}
$$

Taking the liminf on both sides in this inequality and using (3.4) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|I^{n} x_{n}-q\right\|=d \tag{3.11}
\end{equation*}
$$

$$
\begin{aligned}
\left\|I^{n} x_{n}-q\right\| & \leq\left\|I^{n} x_{n}-T^{n} y_{n}\right\|+\left\|T^{n} y_{n}-q\right\| \\
& \leq\left\|I^{n} x_{n}-T^{n} y_{n}\right\|+k_{n} \ell_{n}\left\|y_{n}-q\right\|
\end{aligned}
$$

Taking the liminf on both sides in this inequality and using 3.6 we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-q\right\|=d \tag{3.12}
\end{equation*}
$$

Also, from (1.5 ,we have

$$
\begin{aligned}
d & =\lim _{n \rightarrow \infty}\left\|y_{n}-q\right\| \leq \lim _{n \rightarrow \infty}\left\|b_{n} T^{n} z_{n}+c_{n} T^{n} x_{n}+\left(1-b_{n}-c_{n}\right) I^{n} x_{n}-q\right\| \\
& =\lim _{n \rightarrow \infty}\left\|b_{n}\left(T^{n} z_{n}-q\right)+c_{n}\left(T^{n} x_{n}-q\right)+\left(1-b_{n}-c_{n}\right)\left(I^{n} x_{n}-q\right)\right\|
\end{aligned}
$$

From (3.4), (3.5), (3.9) and Lemma 2.4, we have

$$
\left\{\begin{align*}
\lim _{n \rightarrow \infty}\left\|T^{n} z_{n}-T^{n} x_{n}\right\| & =0 \tag{3.13}\\
\lim _{n \rightarrow \infty}\left\|T^{n} x_{n}-I^{n} x_{n}\right\| & =0 \\
\lim _{n \rightarrow \infty}\left\|I^{n} x_{n}-T^{n} z_{n}\right\| & =0
\end{align*}\right.
$$

From (3.13) and by assumption we have

$$
\begin{align*}
\left\|y_{n}-x_{n}\right\| & \leq\left\|b_{n} T^{n} z_{n}+c_{n} T^{n} x_{n}+\left(1-b_{n}-c_{n}\right) I^{n} x_{n}-x_{n}\right\| \\
& \leq b_{n}\left\|T^{n} z_{n}-I^{n} x_{n}\right\|+c_{n}\left\|T^{n} x_{n}-I^{n} x_{n}\right\|+\left\|I^{n} x_{n}-x_{n}\right\| \underset{n \rightarrow \infty}{\rightarrow 0} . \tag{3.14}
\end{align*}
$$

Next,

$$
\begin{aligned}
\left\|I^{n} x_{n}-q\right\| & \leq\left\|I^{n} x_{n}-T^{n} z_{n}\right\|+\left\|T^{n} z_{n}-q\right\| \\
& \leq\left\|I^{n} x_{n}-T^{n} z_{n}\right\|+k_{n} \ell_{n}\left\|z_{n}-q\right\| .
\end{aligned}
$$

Taking the liminf on both sides in this inequality and using (3.7), 3.13) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-q\right\|=d \tag{3.15}
\end{equation*}
$$

From (3.13 and by assumption we have

$$
\begin{align*}
\left\|z_{n}-x_{n}\right\| & \leq\left\|a_{n} T^{n} x_{n}+\left(1-a_{n}\right) I^{n} x_{n}-x_{n}\right\| \\
& \leq a_{n}\left\|T^{n} x_{n}-I^{n} x_{n}\right\|+\left\|I^{n} x_{n}-x_{n}\right\| \underset{n \rightarrow \infty}{\rightarrow 0} . \tag{3.16}
\end{align*}
$$

Also from (1.5, 3.13, 3.16) and by assumption

$$
\begin{align*}
\left\|y_{n}-z_{n}\right\| & \leq\left\|b_{n} T^{n} z_{n}+c_{n} T^{n} x_{n}+\left(1-b_{n}-c_{n}\right) I^{n} x_{n}-z_{n}\right\| \\
& \leq b_{n}\left\|T^{n} z_{n}-I^{n} x_{n}\right\|+c_{n}\left\|T^{n} x_{n}-I^{n} x_{n}\right\|+\left\|I^{n} x_{n}-x_{n}\right\|+\left\|x_{n}-z_{n}\right\| \underset{n \rightarrow \infty}{\rightarrow 0} \tag{3.17}
\end{align*}
$$

Using (1.5, 3.10 and by assumption,

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\| & \leq\left\|\alpha_{n} T^{n} y_{n}+\beta_{n} T^{n} z_{n}+\left(1-\alpha_{n}-\beta_{n}\right) I^{n} x_{n}-x_{n}\right\| \\
& \leq \alpha_{n}\left\|T y_{n}-I^{n} x_{n}\right\|+\beta_{n}\left\|T^{n} z_{n}-I^{n} x_{n}\right\|+\left\|I^{n} x_{n}-x_{n}\right\| \underset{n \rightarrow \infty}{\rightarrow 0} . \tag{3.18}
\end{align*}
$$

If $\lim _{n \rightarrow \infty}\left\|I^{n} x_{n}-x_{n}\right\|=0$, then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T^{n} x_{n}-x_{n}\right\| \leq \lim _{n \rightarrow \infty}\left\|T^{n} x_{n}-I^{n} x_{n}\right\|+\lim _{n \rightarrow \infty}\left\|I^{n} x_{n}-x_{n}\right\|=0 \tag{3.19}
\end{equation*}
$$

We consider

$$
\begin{align*}
\left\|x_{n}-I x_{n}\right\| & \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-I^{n+1} x_{n+1}\right\| \\
& +\left\|I^{n+1} x_{n+1}-I^{n+1} x_{n}\right\|+\left\|I^{n+1} x_{n}-I x_{n}\right\| \\
& \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-I^{n} x_{n+1}\right\| \\
& +\Gamma\left\|x_{n+1}-x_{n}\right\|+\Gamma\left\|I^{n} x_{n}-x_{n}\right\|, \tag{3.20}
\end{align*}
$$

and

$$
\begin{align*}
\left\|x_{n}-T x_{n}\right\| & \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-T^{n+1} x_{n+1}\right\| \\
& +\left\|T^{n+1} x_{n+1}-T^{n+1} x_{n}\right\|+\left\|T^{n+1} x_{n}-T x_{n}\right\| \\
& \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-T^{n} x_{n+1}\right\| \\
& +L \Gamma\left\|x_{n+1}-x_{n}\right\|+\Gamma\left\|I^{n} x_{n}-x_{n}\right\| . \tag{3.21}
\end{align*}
$$

Since $\left\|x_{n}-I^{n} x_{n}\right\| \rightarrow 0$ asn $\rightarrow \infty$ and $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$ asn $\rightarrow \infty$, by continuity of I and T, together with (3.20) and (3.21), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-I x_{n}\right\|=0 \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0 \tag{3.23}
\end{equation*}
$$

Theorem 3.3. Let the conditions of Lemma 3.2 be satisfied. If at least one of the mappings T and I is completely continuous and $F(T \cap I) \neq \emptyset$, then $\left\{x_{n}\right\}$ defined by converges strongly to a common fixed point of T and I.

Proof . By Lemma 3.2, we have $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-I x_{n}\right\|=0$. It follows by our assumption that T is completely continuous, and $\left\{x_{n}\right\} \subseteq K$ is bounded, there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{T x_{n_{k}}\right\}$
converges. Therefore from (3.23), $\left\{x_{n_{k}}\right\}$ converges. Let $\lim _{k \rightarrow \infty} x_{n_{k}}=q$. By continuity of T and (3.23) we have that $T q=q$. On the other hand, according to 3.22 and continuity of I , we obtain that $I q=q$, so q is a common fixed point T and I. By Lemma 3.1 $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|$ exists. But $\lim _{k \rightarrow \infty}\left\|x_{n_{k}}-q\right\|=0$. Thus $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|=0$, that is, $\left\{x_{n}\right\}$ converges strongly to a common fixed point q of T and I.

Also, from (3.14) and 3.16, it follows that $\lim _{n \rightarrow \infty}\left\|y_{n}-q\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|z_{n}-q\right\|=0$ that is, $\left\{y_{n}\right\},\left\{z_{n}\right\}$ converges strongly to a common fixed point q of T and I.

Theorem 3.4. Let the conditions of Lemma 3.2 be satisfied. If one of the mappings T and I is semi-compact and $F(T \cap I) \neq \emptyset$, then $\left\{x_{n}\right\}$ defined by 1.5 converges strongly to a common fixed point of T and I.

Proof. Since one of the mappings T and I is semi-compact, there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{x_{n_{k}}\right\}$ converges to a $q \in K$. Therefore from (3.22) and (3.23), $\lim _{k \rightarrow \infty}\left\|x_{n_{k}}-I x_{n_{k}}\right\|=\|q-I q\|=0$ and $\lim _{k \rightarrow \infty}\left\|x_{n_{k}}-T x_{n_{k}}\right\|=$ $\|q-T q\|=0$. It follows that $q \in F(T \cap I)$. Since $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|$ exists and the subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{x_{n_{k}}\right\}$ converges strongly to q, then $\left\{x_{n}\right\}$ converges to common fixed point $q \in F(T \cap I)$. Also, from (3.14) and (3.16), it follows that $\lim _{n \rightarrow \infty}\left\|y_{n}-q\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|z_{n}-q\right\|=0$ that is, $\left\{y_{n}\right\},\left\{z_{n}\right\}$ converges strongly to a common fixed point q of T and I. The proof is completed.

In the next result, we prove the strong convergence of the scheme 1.5 under condition (B) which is weaker than the compactness of the domain of the mappings.

Theorem 3.5. Let the conditions of Lemma 3.2 be satisfied. If T, I satisfy condition (B) and $F(T \cap I) \neq \emptyset$, then $\left\{x_{n}\right\}$ defined by 1.5 converges strongly to a common fixed point of T and I.

Proof . By Lemma 3.1, we have $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|$ exists and so $\lim _{n \rightarrow \infty} d\left(x_{n}, q\right)$ exists for all $q \in F(T \cap I)$. Also by Lemma 3.2, $\lim _{n \rightarrow \infty}\left\|x_{n}-I x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$. It follows from condition (B) that $\lim _{n \rightarrow \infty} f\left(d\left(x_{n}, F(T \cap I)\right)\right) \leq$ $\lim _{n \rightarrow \infty}\left\{\frac{1}{2}\left(\left\|x_{n}-T x_{n}\right\|+\left\|x_{n}-I x_{n}\right\|\right)\right\}$. That is, $\lim _{n \rightarrow \infty} f\left(d\left(x_{n}, F(T \cap I)\right)\right)=0$. Since $f:[0, \infty) \rightarrow[0, \infty)$ is a nondecreasing function satisfying $f(0)=0$ and $f(r)>0$ for all $r \in(0, \infty)$, we have $\lim _{n \rightarrow \infty} d\left(x_{n}, F(T \cap I)\right)=0$. Next we show that $\left\{x_{n}\right\}$ is a Cauchy sequence in K. for given $\epsilon>0$, there exists a natural number n_{0} such that $d\left(x_{n}, F(T \cap I)\right)<\frac{\epsilon}{2}$. We can find $q * \in F(T \cap I)$ such that $\left\|x_{n}-q *\right\|<\frac{\epsilon}{2}$. For $n, m \geq n_{0}$, we have

$$
\begin{aligned}
\left\|x_{n}-x_{m}\right\| & \leq\left\|x_{n}-q *\right\|+\left\|x_{m}-q *\right\| \\
& \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

Thus shows that $\left\{x_{n}\right\}$ is a Cauchy sequence and so is convergent since X complete. Suppose $\lim _{n \rightarrow \infty}\left\{x_{n}\right\}=q$. Since K is closed, we get $q \in K$. Now we prove that $q \in F(T \cap I)$. Since $\lim _{n \rightarrow \infty}\left\{x_{n}\right\}=q$ and $\lim _{n \rightarrow \infty} d\left(x_{n}, F(T \cap I)\right)=0$, we obtain $d(q, F(T \cap I))=0$. Thus $q \in F(T \cap I)$. Also, from (3.14) and (3.16), it follows that $\lim _{n \rightarrow \infty}\left\|y_{n}-q\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|z_{n}-q\right\|=0$ that is, $\left\{y_{n}\right\},\left\{z_{n}\right\}$ converges strongly to a common fixed point q of T and I. The proof is completed.

Finally, we prove the weak convergence of the iterative scheme 1.5 for I-asymptotically nonexpansive mappings in a uniformly convex Banach space satisfying Opial's condition.

Theorem 3.6. Let X be a real uniformly convex Banach space satisfying Opial's condition and K be a nonempty closed, bounded and convex subset of X. Let $T: K \rightarrow K$ be a I-asymptotically nonexpansive mapping with $\left\{k_{n}\right\}$ a sequence of real numbers such that $k_{n} \geq 1$ and $\sum_{n=0}^{\infty}\left(k_{n}-1\right)<\infty$ and $I: K \rightarrow K$ be an asymptotically nonexpansive mapping with $\left\{\ell_{n}\right\}$ a sequence of real numbers such that $\ell_{n} \geq 1$ and $\sum_{n=1}^{\infty}\left(\ell_{n}-1\right)<\infty$. Let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\},\left\{\alpha_{n}\right\}$, $\left\{\beta_{n}\right\}$ be sequences of real numbers in $[0,1]$, such that $\left\{b_{n}+c_{n}\right\}$ and $\left\{\alpha_{n}+\beta_{n}\right\}$ in $[0,1]$ for all $n \geq 1$. Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$, $\left\{z_{n}\right\}$ be the sequences in K defined by (1.5). If $F(T) \cap F(I) \neq \emptyset$, then $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\}$ converge weakly to a common fixed point of T and I.

Proof. Let $q \in F(T) \cap F(I)$. Then as in Lemma 3.1, $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|$ exists. We prove that $\left\{x_{n}\right\}$ has a unique weak subsequential limit in $F(T) \cap F(I)$. We assume that q_{1} and q_{2} are weak limits of the subsequences $\left\{x_{n_{k}}\right\},\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$, respectively. By 3.22 and (3.23, $\lim _{n \rightarrow \infty}\left\|x_{n}-I x_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$ and $E-T$ and $E-I$ are demiclosed by Lemma 2.1, $T q_{1}=q_{1}, I q_{1}=q_{1}$ and in the same way, $T q_{2}=q_{2}, I q_{2}=q_{2}$. Therefore, we have $q_{1}, q_{2} \in F(T) \cap F(I)$. It follows from Lemma 2.5 that $q_{1}=q_{2}$. This completes the proof.

4 Convergence Theorems For Three I-Asymptotically Nonexpansive Mappings

Here we give the theorems for three $I_{i},(i=1,2,3)$-asymptotically nonexpansive mapping which can be proved in similar way as the above theorems.

Let X be a real uniformly convex Banach space and K be a nonempty closed, bounded and convex subset of X. Let $T_{i}: K \rightarrow K,(i=1,2,3)$ be $I_{i},(i=1,2,3)$-asymptotically nonexpansive mapping with $k_{n}=\max \left\{k_{n}^{1}, k_{n}^{2}, k_{n}^{3}\right\}$ a sequence of real numbers such that $k_{n} \geq 1$ and $\sum_{n=0}^{\infty}\left(k_{n}-1\right)<\infty$ and $I_{i}: K \rightarrow K,(i=1,2,3)$ be an asymptotically nonexpansive mapping with $\ell_{n}=\max \left\{\ell_{n}^{1}, \ell_{n}^{2}, \ell_{n}^{3}\right\}$ a sequence of real numbers such that $\ell_{n} \geq 1$ and $\sum_{n=1}^{\infty}\left(\ell_{n}-1\right)<\infty$. We shall consider the following iteration scheme:

$$
\left\{\begin{array}{l}
x_{1}=x \in K \tag{4.1}\\
z_{n}=a_{n} T_{1}^{n} x_{n}+\left(1-a_{n}\right) I_{1}^{n} x_{n} \\
y_{n}=b_{n} T_{2}^{n} z_{n}+c_{n} T_{2}^{n} x_{n}+\left(1-b_{n}-c_{n}\right) I_{2}^{n} x_{n} \\
x_{n+1}=\alpha_{n} T_{3}^{n} y_{n}+\beta_{n} T_{3}^{n} z_{n}+\left(1-\alpha_{n}-\beta_{n}\right) I_{3}^{n} x_{n}, \forall n \geq 1
\end{array}\right.
$$

where $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\},\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{b_{n}+c_{n}\right\}$ and $\left\{\alpha_{n}+\beta_{n}\right\}$ are appropriate sequences in $[0,1]$.
The iterative scheme 4.1) is called the modified Noor iterative scheme for asymptotically nonexpansive mappings. If $T_{i}=T,(i=1,2,3)$, and $I_{i},(i=1,2,3)$, are identity mappings then (4.1) reduces to the (1.1) defined by [11].

Lemma 4.1. Let X be a real uniformly convex Banach space and K be a nonempty closed, bounded and convex subset of X. Let $T_{i}: K \rightarrow K,(i=1,2,3)$ be $I_{i},(i=1,2,3)$-asymptotically nonexpansive mappings with $k_{n}=\max \left\{k_{n}^{1}, k_{n}^{2}, k_{n}^{3}\right\}$ a sequence of real numbers such that $k_{n} \geq 1$ and $\sum_{n=0}^{\infty}\left(k_{n}-1\right)<\infty$ and $I_{i}: K \rightarrow K,(i=1,2,3)$ be asymptotically nonexpansive mappings with $\ell_{n}=\max \left\{\ell_{n}^{1}, \ell_{n}^{2}, \ell_{n}^{3}\right\}$ a sequence of real numbers such that $\ell_{n} \geq 1$ and $\sum_{n=1}^{\infty}\left(\ell_{n}-1\right)<\infty$. Suppose further that the set $\bigcap_{i=1}^{3} F\left(T_{i}\right) \cap F\left(I_{i}\right)$ is nonempty. Let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\},\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ be real sequences in $[0,1]$ such that $\left\{b_{n}+c_{n}\right\}$ and $\left\{\alpha_{n}+\beta_{n}\right\}$ in $[0,1]$ for all $n \geq 1$. Let $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\}$ be the sequences in K defined by (4.1). If q is a common fixed point of T_{i} and $I_{i},(i=1,2,3)$, then
(1) $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|$ exists.
(2) For $i=1,2,3$, if $\lim _{n \rightarrow \infty}\left\|I_{i}^{n} x_{n}-x_{n}\right\|=0$, then $\lim _{n \rightarrow \infty}\left\|T_{i} x_{n}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|I_{i} x_{n}-x_{n}\right\|=0$.

Proof . Let $q \in \bigcap_{i=1}^{3} F\left(T_{i}\right) \cap F\left(I_{i}\right)$. Using 4.1), Similar way as Lemma 3.1

$$
\begin{align*}
\left\|z_{n}-q\right\| \| & \leq a_{n} T_{1}^{n} x_{n}+\left(1-a_{n}\right) I_{1}^{n} x_{n}-q \| \\
& \leq \ell_{n}\left(1+a_{n}\left(k_{n}-1\right)\right)\left\|x_{n}-q\right\| \tag{4.2}\\
\left\|y_{n}-q\right\| & \leq\left\|b_{n} T_{2}^{n} z_{n}+c_{n} T_{2}^{n} x_{n}+\left(1-b_{n}-c_{n}\right) I_{2}^{n} x_{n}-q\right\| \\
& \leq \ell_{n}\left(1+b_{n} a_{n} \ell_{n}\left(k_{n}-1\right)+b_{n} k_{n}\left(k_{n}-1\right)+b_{n}\left(\ell_{n}-1\right)+c_{n}\left(k_{n}-1\right)\right)\left\|x_{n}-q\right\| \tag{4.3}
\end{align*}
$$

Thus we obtain

$$
\begin{align*}
\left\|x_{n+1}-q\right\| & \leq\left\|\alpha_{n} T_{3}^{n} y_{n}+\beta_{n} T_{3}^{n} z_{n}+\left(1-\alpha_{n}-\beta_{n}\right) I_{3}^{n} x_{n}\right\| \\
& \leq \ell_{n}\left(1+\alpha_{n} b_{n} a_{n} k_{n} \ell_{n}^{2}\left(k_{n}-1\right)+\alpha_{n} k_{n} \ell_{n}^{2}\left(k_{n}-1\right)\right. \\
& +\alpha_{n} k_{n} \ell_{n} b_{n}\left(\ell_{n}-1\right)+\alpha_{n} k_{n}\left(k_{n}-1\right)+\beta_{n} a_{n} k_{n} \ell_{n}\left\{k_{n}-1\right\} \\
& \left.+\alpha_{n} \ell_{n}\left(k_{n}-1\right)+\beta_{n} \ell_{n}\left(k_{n}-1\right)+\alpha_{n}\left(\ell_{n}-1\right)+\beta_{n}\left(\ell_{n}-1\right)\right\}\left\|x_{n}-q\right\| \tag{4.4}
\end{align*}
$$

Since $\sum_{n=0}^{\infty}\left(k_{n}-1\right)<\infty, \sum_{n=1}^{\infty}\left(\ell_{n}-1\right)<\infty$, it follows from Lemma 2.2 that $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|$ exists and the first part of lemma is over.

Next, we prove that for $i=1,2,3, \lim _{n \rightarrow \infty}\left\|T_{i} x_{n}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|I_{i} x_{n}-x_{n}\right\|=0$. We can assume that $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|=d$, for $q \in F(T \cap I)$. If $d=0$ by continuity T and I then the proof is completed. Now suppose $d>0$. For $i=1,2,3$

$$
\begin{gather*}
\limsup _{n \rightarrow \infty}\left\|I_{i}^{n} x_{n}-q\right\| \leq \limsup _{n \rightarrow \infty} \ell_{n}\left\|x_{n}-q\right\| \leq d \tag{4.5}\\
\limsup _{n \rightarrow \infty}\left\|T_{1}^{n} x_{n}-q\right\| \leq \limsup _{n \rightarrow \infty} k_{n} \ell_{n}\left\|x_{n}-q\right\| \leq d, \tag{4.6}
\end{gather*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|T_{2}^{n} x_{n}-q\right\| \leq \limsup _{n \rightarrow \infty} k_{n} \ell_{n}\left\|x_{n}-q\right\| \leq d \tag{4.7}
\end{equation*}
$$

From (4.2), we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|z_{n}-q\right\| \leq d \tag{4.8}
\end{equation*}
$$

and from (4.3), we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|y_{n}-q\right\| \leq d \tag{4.9}
\end{equation*}
$$

Further,

$$
\left\|T_{3}^{n} y_{n}-q\right\| \leq k_{n}\left\|I_{3}^{n} y_{n}-q\right\| \leq k_{n} \ell_{n}\left\|y_{n}-q\right\|
$$

taking the limsup on both sides in this inequality, we have

$$
\begin{gather*}
\limsup _{n \rightarrow \infty}\left\|T_{3}^{n} y_{n}-q\right\| \leq d \tag{4.10}\\
\left\|T_{3}^{n} z_{n}-q\right\| \leq k_{n}\left\|I_{3}^{n} z_{n}-q\right\| \leq k_{n} \ell_{n}\left\|z_{n}-q\right\|
\end{gather*}
$$

taking the limsup on both sides in this inequality, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|T_{3}^{n} z_{n}-q\right\| \leq d \tag{4.11}
\end{equation*}
$$

From (4.1), we have

$$
\begin{aligned}
d & =\lim _{n \rightarrow \infty}\left\|x_{n+1}-q\right\| \leq \lim _{n \rightarrow \infty}\left\|\alpha_{n} T_{3}^{n} y_{n}+\beta_{n} T_{3}^{n} z_{n}+\left(1-\alpha_{n}-\beta_{n}\right) I_{3}^{n} x_{n}-q\right\| \\
& =\lim _{n \rightarrow \infty}\left\|\alpha_{n}\left(T_{3}^{n} y_{n}-q\right)+\beta_{n}\left(T_{3}^{n} z_{n}-q\right)+\left(1-\alpha_{n}-\beta_{n}\right)\left(I_{3}^{n} x_{n}-q\right)\right\|
\end{aligned}
$$

From (4.5), 4.10, 4.11) and Lemma 2.4, we have

$$
\left\{\begin{align*}
\lim _{n \rightarrow \infty}\left\|T_{3}^{n} y_{n}-T_{3}^{n} z_{n}\right\| & =0 \tag{4.12}\\
\lim _{n \rightarrow \infty}\left\|T_{3}^{n} z_{n}-I_{3}^{n} x_{n}\right\| & =0 \\
\lim _{n \rightarrow \infty}\left\|I_{3}^{n} x_{n}-T_{3}^{n} y_{n}\right\| & =0
\end{align*}\right.
$$

From (4.1), we have

$$
\begin{aligned}
\left\|x_{n+1}-q\right\| & \leq\left\|\alpha_{n} T_{3}^{n} y_{n}+\beta_{n} T_{3}^{n} z_{n}+\left(1-\alpha_{n}-\beta_{n}\right) I_{3}^{n} x_{n}-q\right\| \\
& \leq\left\|\alpha_{n}\left(T_{3}^{n} y_{n}-I_{3}^{n} x_{n}\right)+\beta_{n}\left(T_{3}^{n} z_{n}-I^{n} x_{n}\right)+\left(I_{3}^{n} x_{n}-q\right)\right\|
\end{aligned}
$$

Taking the liminf on both sides in this inequality and using 4.5 we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|I_{3}^{n} x_{n}-q\right\|=d \tag{4.13}
\end{equation*}
$$

$$
\begin{aligned}
\left\|I_{3}^{n} x_{n}-q\right\| & \leq\left\|I_{3}^{n} x_{n}-T_{3}^{n} y_{n}\right\|+\left\|T_{3}^{n} y_{n}-q\right\| \\
& \leq\left\|I_{3}^{n} x_{n}-T_{3}^{n} y_{n}\right\|+k_{n} \ell_{n}\left\|y_{n}-q\right\|
\end{aligned}
$$

Taking the liminf on both sides in this inequality and using 4.8 we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-q\right\|=d \tag{4.14}
\end{equation*}
$$

$$
\begin{array}{r}
d=\lim _{n \rightarrow \infty}\left\|y_{n}-q\right\| \leq \lim _{n \rightarrow \infty}\left\|b_{n} T_{2}^{n} z_{n}+c_{n} T_{2}^{n} x_{n}+\left(1-b_{n}-c_{n}\right) I_{2}^{n} x_{n}-q\right\| \\
=\lim _{n \rightarrow \infty}\left\|b_{n}\left(T_{2}^{n} z_{n}-q\right)+c_{n}\left(T_{2}^{n} x_{n}-q\right)+\left(1-b_{n}-c_{n}\right)\left(I_{2}^{n} x_{n}-q\right)\right\| \\
\left\|T_{2}^{n} z_{n}-q\right\| \leq k_{n}\left\|I_{2}^{n} z_{n}-q\right\| \leq k_{n} \ell_{n}\left\|z_{n}-q\right\|,
\end{array}
$$

taking the limsup on both sides in this inequality, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|T_{2}^{n} z_{n}-q\right\| \leq d \tag{4.15}
\end{equation*}
$$

From (4.5, 4.7), 4.15 and Lemma 2.4 , we have

$$
\left\{\begin{align*}
\lim _{n \rightarrow \infty}\left\|T^{n} z_{n}-T^{n} x_{n}\right\| & =0 \tag{4.16}\\
\lim _{n \rightarrow \infty}\left\|T^{n} x_{n}-I^{n} x_{n}\right\| & =0 \\
\lim _{n \rightarrow \infty}\left\|I^{n} x_{n}-T^{n} z_{n}\right\| & =0
\end{align*}\right.
$$

From 4.16 and by assumption we have

$$
\begin{align*}
\left\|y_{n}-x_{n}\right\| & \leq\left\|b_{n} T_{2}^{n} z_{n}+c_{n} T_{2}^{n} x_{n}+\left(1-b_{n}-c_{n}\right) I_{2}^{n} x_{n}-x_{n}\right\| \\
& \leq b_{n}\left\|T_{2}^{n} z_{n}-I_{2}^{n} x_{n}\right\|+c_{n}\left\|T_{2}^{n} x_{n}-I_{2}^{n} x_{n}\right\|+\left\|I_{2}^{n} x_{n}-x_{n}\right\| \underset{n \rightarrow \infty}{\rightarrow 0} \tag{4.17}
\end{align*}
$$

Next,

$$
\begin{aligned}
\left\|I_{2}^{n} x_{n}-q\right\| & \leq\left\|I_{2}^{n} x_{n}-T_{2}^{n} z_{n}\right\|+\left\|T_{2}^{n} z_{n}-q\right\| \\
& \leq\left\|I_{2}^{n} x_{n}-T^{n} z_{n}\right\|+k_{n} \ell_{n}\left\|z_{n}-q\right\|
\end{aligned}
$$

Taking the liminf on both sides in this inequality and using 4.9, 4.16) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-q\right\|=d \tag{4.18}
\end{equation*}
$$

$$
\begin{align*}
\left\|z_{n}-q\right\| & \leq\left\|a_{n} T_{1}^{n} x_{n}+\left(1-a_{n}\right) I_{1}^{n} x_{n}-q\right\| \\
& \leq\left\|a_{n}\left(T_{1}^{n} x_{n}-q\right)+\left(1-a_{n}\right)\left(I_{1}^{n} x_{n}-q\right)\right\| \tag{4.19}
\end{align*}
$$

By Lemma 2.3 we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{1}^{n} x_{n}-I_{1}^{n} x_{n}\right\|=0 \tag{4.20}
\end{equation*}
$$

Thus by assumption and from 4.20, we have

$$
\begin{align*}
\left\|z_{n}-x_{n}\right\| & \leq\left\|a_{n} T_{1}^{n} x_{n}+\left(1-a_{n}\right) I_{1}^{n} x_{n}-x_{n}\right\| \\
& \leq a_{n}\left\|T_{1}^{n} x_{n}-I_{1}^{n} x_{n}\right\|+\left\|I_{1}^{n} x_{n}-x_{n}\right\| \underset{n \rightarrow \infty}{\rightarrow 0} \tag{4.21}
\end{align*}
$$

Also from (4.1), 4.16, 4.21) and by assumption

$$
\begin{align*}
\left\|y_{n}-z_{n}\right\| & \leq\left\|b_{n} T_{2}^{n} z_{n}+c_{n} T_{2}^{n} x_{n}+\left(1-b_{n}-c_{n}\right) I_{2}^{n} x_{n}-z_{n}\right\| \\
& \leq b_{n}\left\|T_{2}^{n} z_{n}-I_{2}^{n} x_{n}\right\|+c_{n}\left\|T_{2}^{n} x_{n}-I_{2}^{n} x_{n}\right\|+\left\|I_{2}^{n} x_{n}-x_{n}\right\|+\left\|x_{n}-z_{n}\right\| \underset{n \rightarrow \infty}{\rightarrow 0} \tag{4.22}
\end{align*}
$$

Using 4.1, 4.12 and by assumption,

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\| & \leq\left\|\alpha_{n} T_{3}^{n} y_{n}+\beta_{n} T_{3}^{n} z_{n}+\left(1-\alpha_{n}-\beta_{n}\right) I^{n} x_{n}-x_{n}\right\| \\
& \leq \alpha_{n}\left\|T y_{n}-I^{n} x_{n}\right\|+\beta_{n}\left\|T^{n} z_{n}-I^{n} x_{n}\right\|+\left\|I^{n} x_{n}-x_{n}\right\| \underset{n \rightarrow \infty}{\rightarrow 0} \tag{4.23}
\end{align*}
$$

If for $i=1,2,3, \lim _{n \rightarrow \infty}\left\|I_{i}^{n} x_{n}-x_{n}\right\|=0$, then we have

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left\|T_{1}^{n} x_{n}-x_{n}\right\| & \leq \lim _{n \rightarrow \infty}\left\|T_{1}^{n} x_{n}-I_{1}^{n} x_{n}\right\|+\lim _{n \rightarrow \infty}\left\|I_{1}^{n} x_{n}-x_{n}\right\|=0 . \tag{4.24}\\
\lim _{n \rightarrow \infty}\left\|T_{2}^{n} x_{n}-x_{n}\right\| & \leq \lim _{n \rightarrow \infty}\left\|T_{2}^{n} x_{n}-I_{2}^{n} x_{n}\right\|+\lim _{n \rightarrow \infty}\left\|I_{2}^{n} x_{n}-x_{n}\right\|=0 . \tag{4.25}\\
\lim _{n \rightarrow \infty}\left\|T_{3}^{n} x_{n}-x_{n}\right\| & \leq \lim _{n \rightarrow \infty}\left(\left\|T_{3}^{n} x_{n}-T_{3}^{n} y_{n}\right\|+\left\|T_{3}^{n} y_{n}-I_{3}^{n} x_{n}\right\|+\left\|I_{3}^{n} x_{n}-x_{n}\right\|\right) \\
& =\lim _{n \rightarrow \infty} k_{n} \ell_{n}\left\|x_{n}-y_{n}\right\|+\lim _{n \rightarrow \infty}\left\|T_{3}^{n} y_{n}-I_{3}^{n} x_{n}\right\|+\lim _{n \rightarrow \infty}\left\|I_{3}^{n} x_{n}-x_{n}\right\|=0 . \tag{4.26}
\end{align*}
$$

Thus,For $i=1,2,3$, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{i}^{n} x_{n}-x_{n}\right\|=0 \tag{4.27}
\end{equation*}
$$

We consider

$$
\begin{align*}
\left\|x_{n}-I_{1} x_{n}\right\| & \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-I_{1}^{n+1} x_{n+1}\right\| \\
& +\left\|I_{1}^{n+1} x_{n+1}-I_{1}^{n+1} x_{n}\right\|+\left\|I_{1}^{n+1} x_{n}-I_{1} x_{n}\right\| \\
\leq & \left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-I_{1}^{n} x_{n+1}\right\| \\
& +\Gamma\left\|x_{n+1}-x_{n}\right\|+\Gamma\left\|I_{1}^{n} x_{n}-x_{n}\right\| \tag{4.28}
\end{align*}
$$

and

$$
\begin{align*}
&\left\|x_{n}-T_{1} x_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-T_{1}^{n+1} x_{n+1}\right\| \\
&+\left\|T_{1}^{n+1} x_{n+1}-T_{1}^{n+1} x_{n}\right\|+\left\|T_{1}^{n+1} x_{n}-T_{1} x_{n}\right\| \\
& \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-T_{1}^{n} x_{n+1}\right\| \\
&+L \Gamma\left\|x_{n+1}-x_{n}\right\|+\Gamma\left\|I_{1}^{n} x_{n}-x_{n}\right\| \tag{4.29}
\end{align*}
$$

Since $\left\|I_{1}^{n} x_{n}-x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty,\left\|T_{1}^{n} x_{n}-x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$ and $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, by continuity of T_{1} and I_{1}, together with 4.28 and 4.29 , we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-I_{1} x_{n}\right\|=0 \tag{4.30}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{1} x_{n}\right\|=0 \tag{4.31}
\end{equation*}
$$

Similarly, we can show that

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left\|x_{n}-I_{2} x_{n}\right\| & =0 . \tag{4.32}\\
\lim _{n \rightarrow \infty}\left\|x_{n}-I_{3} x_{n}\right\| & =0 . \tag{4.33}\\
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{2} x_{n}\right\| & =0 . \tag{4.34}\\
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{3} x_{n}\right\| & =0 . \tag{4.35}
\end{align*}
$$

Theorem 4.2. Let the conditions of Lemma 4.1 be satisfied. If for $i=1,2,3$, at least one of the mappings T_{i} and I_{i} is completely continuous and $\bigcap_{i=1}^{3} F\left(T_{i}\right) \cap F\left(I_{i}\right) \neq \emptyset$, then $\left\{x_{n}\right\}$ defined by 4.1 converges strongly to a common fixed point of T_{i} and I_{i}.

Proof . By Lemma 4.1, we have $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{i} x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-I_{i} x_{n}\right\|=0$. It follows by our assumption that T_{1} is completely continuous, and $\left\{x_{n}\right\} \subseteq K$ is bounded, there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{T_{1} x_{n_{k}}\right\}$ converges. Therefore from 4.31, $\left\{x_{n_{k}}\right\}$ converges. Let $\lim _{k \rightarrow \infty} x_{n_{k}}=q$. By continuity of T_{1} and 4.31 we have that $T_{1} q=q$. On the other hand, according to 4.30-4.35 and for $i=1,2,3$ continuity of T_{i} and I_{i}, we obtain that $T_{2} q=q, T_{3} q=q, I_{1} q=q, I_{2} q=q$ and $I_{3} q=q$, so for $i=1,2,3, \mathrm{q}$ is a common fixed point T_{i} and I_{i}. By Lemma 4.1(1), $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|$ exists. But $\lim _{k \rightarrow \infty}\left\|x_{n_{k}}-q\right\|=0$. Thus $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|=0$, that is, $\left\{x_{n}\right\}$ converges strongly to a common fixed point $q \in \bigcap_{i=1}^{3} F\left(T_{i}\right) \cap F\left(I_{i}\right)$.

Also, from 4.17) and 4.21, it follows that $\lim _{n \rightarrow \infty}\left\|y_{n}-q\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|z_{n}-q\right\|=0$ that is, $\left\{y_{n}\right\},\left\{z_{n}\right\}$ converges strongly to a common fixed point $q \in \bigcap_{i=1}^{3} F\left(T_{i}\right) \cap F\left(I_{i}\right)$.

Theorem 4.3. Let the conditions of Lemma 4.1 be satisfied. If one of the mappings T_{i} and $I_{i},(i=1,2,3)$, is semicompact and $\bigcap_{i=1}^{3} F\left(T_{i}\right) \cap F\left(I_{i}\right) \neq \emptyset$, for $i=1,2,3$, then $\left\{x_{n}\right\}$ defined by 4.1) converges strongly to a common fixed point of T_{i} and I_{i}

Proof . Since, for $i=1,2,3$, one of the mappings T_{i} and I_{i} is semi-compact, there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{x_{n_{k}}\right\}$ converges to a $q \in K$. Suppose that T_{1} is semi-compact. Therefore from 4.31), we obtain $\lim _{k \rightarrow \infty}\left\|x_{n_{k}}-T_{1} x_{n_{k}}\right\|=\left\|q-T_{1} q\right\|=0$. Now Lemma 4.1 guarantees that $\lim _{n \rightarrow \infty}\left\|T_{2} x_{n_{k}}-x_{n_{k}}\right\|=0, \lim _{n \rightarrow \infty}\left\|T_{3} x_{n_{k}}-x_{n_{k}}\right\|=0$ and so $\left\|T_{1} q *-q *\right\|=0,\left\|T_{2} q *-q *\right\|=0,\left\|T_{3} q *-q *\right\|=0$, and $\lim _{n \rightarrow \infty}\left\|I_{1} x_{n_{k}}-x_{n_{k}}\right\|=0, \lim _{n \rightarrow \infty}\left\|I_{2} x_{n_{k}}-x_{n_{k}}\right\|=0$, $\lim _{n \rightarrow \infty}\left\|I_{3} x_{n_{k}}-x_{n_{k}}\right\|=0$ and so $\left\|I_{1} q *-q *\right\|=0,\left\|I_{2} q *-q *\right\|=0,\left\|I_{3} q *-q *\right\|=0$. It follows that $q \in \bigcap_{i=1}^{3} F\left(T_{i}\right) \cap F\left(I_{i}\right)$. Since $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|$ exists and the subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{x_{n_{k}}\right\}$ converges strongly to q, then $\left\{x_{n}\right\}$ converges to common fixed point $q \in \bigcap_{i=1}^{3} F\left(T_{i}\right) \cap F\left(I_{i}\right)$. Also, from 4.17) and 4.21), it follows that $\lim _{n \rightarrow \infty}\left\|y_{n}-q\right\|=0$
 The proof is completed.

In the next result, we prove the strong convergence of the scheme (4.1) under condition (B) which is weaker than the compactness of the domain of the mappings.

Theorem 4.4. Let the conditions of Lemma 4.2 be satisfied. If, for $i=1,2,3, T_{i}$ and I_{i} satisfy condition (B) and $\bigcap_{i=1}^{3} F\left(T_{i}\right) \cap F\left(I_{i}\right) \neq \emptyset$, then $\left\{x_{n}\right\}$ defined by (4.1) converges strongly to a common fixed point of T_{i} and $I_{i},(i=1,2,3)$.

Proof. By Lemma 4.1(1), we have $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|$ exists and so $\lim _{n \rightarrow \infty} d\left(x_{n}, q\right)$ exists for all $q \in F(T \cap I)$. Also by Lemma 4.1(2), $\lim _{n \rightarrow \infty}\left\|x_{n}-I_{i} x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-T_{i} x_{n}\right\|=0$. It follows from condition (B) that $\lim _{n \rightarrow \infty} f\left(d\left(x_{n}, \bigcap_{i=1}^{3} F\left(T_{i}\right) \cap F\left(I_{i}\right)\right)\right) \leq$ $\lim _{n \rightarrow \infty}\left\{\frac{1}{2}\left(\left\|x_{n}-T_{i} x_{n}\right\|+\left\|x_{n}-I_{i} x_{n}\right\|\right)\right\}$. That is, $\lim _{n \rightarrow \infty} f\left(d\left(x_{n}, \bigcap_{i=1}^{3} F\left(T_{i}\right) \cap F\left(I_{i}\right)\right)\right)=0$. Since $f:[0, \infty) \rightarrow[0, \infty)$ is a nondecreasing function satisfying $f(0)=0$ and $f(r)>0$ for all $r \in(0, \infty)$, we have $\lim _{n \rightarrow \infty} d\left(x_{n}, \bigcap_{i=1}^{3} F\left(T_{i}\right) \cap F\left(I_{i}\right)\right)=0$. By the same method given in the proof of Theorem 3.5, the proof is completed.

Finally, we prove the weak convergence of the iterative scheme (4.1) for three I-asymptotically nonexpansive mappings in a uniformly convex Banach space satisfying Opial's condition.

Theorem 4.5. Let X be a real uniformly convex Banach space satisfying Opial's condition and K be a nonempty closed, bounded and convex subset of X. Let $T_{i}: K \rightarrow K,(i=1,2,3)$ be a I-asymptotically nonexpansive mapping with $\left\{k_{n}\right\}$ a sequence of real numbers such that $k_{n} \geq 1$ and $\sum_{n=0}^{\infty}\left(k_{n}-1\right)<\infty$ and $I_{i}: K \rightarrow K,(i=1,2,3)$ be an asymptotically nonexpansive mapping with $\left\{\ell_{n}\right\}$ a sequence of real numbers such that $\ell_{n} \geq 1$ and $\sum_{n=1}^{\infty}\left(\ell_{n}-1\right)<\infty$. Let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\},\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ be sequences of real numbers in $[0,1]$, such that $\left\{b_{n}+c_{n}\right\}$ and $\left\{\alpha_{n}+\beta_{n}\right\}$ in $[0,1]$ for all $n \geq 1$. Let $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\}$ be the sequences in K defined by 4.1). If $\bigcap_{i=1}^{3} F\left(T_{i}\right) \cap F\left(I_{i}\right) \neq \emptyset$, then $\left\{x_{n}\right\},\left\{y_{n}\right\}$, $\left\{z_{n}\right\}$ converge weakly to a common fixed point of T_{i} and $I_{i},(i=1,2,3)$.

Proof . Let $q \in \bigcap_{i=1}^{3} F\left(T_{i}\right) \cap F\left(I_{i}\right)$. Then as in Lemma 4.1(1), $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|$ exists. We prove that $\left\{x_{n}\right\}$ has a unique weak subsequential limit in $\bigcap_{i=1}^{3} F\left(T_{i}\right) \cap F\left(I_{i}\right)$. We assume that q_{1} and q_{2} are weak limits of the subsequences $\left\{x_{n_{k}}\right\}$, $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$, respectively. By 4.30-4.35, for $i=1,2,3, \lim _{n \rightarrow \infty}\left\|x_{n}-I_{i} x_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|x_{n}-T_{i} x_{n}\right\|=0$ and $E-T_{i}$ and $E-I_{i}$ are demiclosed by Lemma 2.1, for $i=1,2,3, T q_{1}=q_{1}, I_{i} q_{1}=q_{1}$ and in the same way, $T_{i} q_{2}=q_{2}, I_{i} q_{2}=q_{2}$. Therefore, we have $q_{1}, q_{2} \in \bigcap_{i=1}^{3} F\left(T_{i}\right) \cap F\left(I_{i}\right)$. It follows from Lemma 2.5 that $q_{1}=q_{2}$. This completes the proof.

References

[1] W. Chen and W Guo, Convergence theorems for two finite fimilies of asymptotically nonexpansive mappings, Math. Comp. Model. 54 (2011), 1311-1319.
[2] K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.
[3] R. Glowinski, P. Le Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM, Philadelphia, 1989.
[4] J. Gornicki, Weak convergence theorems for asymptotically nonexpansive mappings in uniformly Banach spaces, Comment. Math. Univ. Carolin. 301 (1989), 249-252.
[5] I. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150.
[6] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
[7] M.A. Noor, New approximation schemes for general variational inequalities, J. Math. Analy. Appl. 251 (2000), 217-229.
[8] Z. Opial, Weak convergence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
[9] B.E. Rhoades and S. Temir, Convergence theorems for I-nonexpansive mapping, Int. J. Math. Math. Sci. 2006 (2006), Article ID 63435, 1-4.
[10] J. Schu, Weak and strong convergence of fixed points of asymptotically nonexpansive mappings, Bull. Aust. Math. Soc. 43 (1991), 153-159.
[10] H.F. Senter, W.G. Dotson, Aproximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974), 375-380.
[11] S. Suantai, Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. Math. Analy. Appl. 311 (2005), no. 2, 506-517.
[12] K.K. Tan and H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iterative process, J. Math. Anal. Appl. 178 (1993), 301-308.
[13] S. Temir and O. Gul, Convergence theorem for I-asymptotically quasi-nonexpansive mapping in Hilbert space, J. Math. Anal. Appl. 329 (2007), 759-765.
[14] S. Temir, On the convergence theorems of implicit iteration process for a finite family of I-asymptotically nonexpansive mappings, J. Comp. Appl. Math. 225 (2009), 398-405.
[15] B.L. Xu and M.A. Noor, Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 267 (2002), 444-453.
[16] Y.Yao and M.A. Noor, Convergence of three-step iterations for asymptotically nonexpansive mappings, Appl. Math. Comput. 187 (2007), 883-892.
[17] S.Yao and L.Wang, Strong convergence theorems for nonself I-asymptotically quasi-nonexpansive mappings, Appl. Math. Sci. 2 (2008), 919-928.

[^0]: Email address: seyittemir@adiyaman.edu.tr (Seyit Temir)

