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Abstract

In this paper, we introduce the generalized hyperbolic Jacobsthal numbers. As special cases, we deal with hyperbolic
Jacobsthal and hyperbolic Jacobsthal-Lucas numbers. We present Binet’s formulas, generating functions and the
summation formulas for these numbers. Moreover, we give Catalan’s, Cassini’s, d’Ocagne’s, Gelin-Cesàro’s, Melham’s
identities and present matrices related with these sequences.
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1 Introduction

Jacobsthal sequence {Jn}n≥0 (OEIS: A001045, [30]) and Jacobsthal-Lucas sequence {Kn}n≥0 (OEIS: A014551,
[30]) are defined by the second-order recurrence relations

Jn = Jn−1 + 2Jn−2, J0 = 0, J1 = 1 (1.1)

and
Kn = Kn−1 + 2Kn−2, K0 = 2,K1 = 1. (1.2)

The sequences {Jn}n≥0 and {Kn}n≥0 can be extended to negative subscripts by defining

J−n = −1

2
J−(n−1) +

1

2
J−(n−2)

and

K−n = −1

2
K−(n−1) +

1

2
K−(n−2)

for n = 1, 2, 3, ... respectively. Therefore, recurrences (1.1) and (1.2) hold for all integer n.
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A generalized Jacobsthal sequence {Vn}n≥0 = {Vn(V0, V1)}n≥0 is defined by the second-order recurrence relations

Vn = Vn−1 + 2Vn−2; V0 = a, V1 = b, (n ≥ 2) (1.3)

with the initial values V0, V1 not all being zero. The sequence {Vn}n≥0 can be extended to negative subscripts by
defining

V−n = −1

2
V−(n−1) +

1

2
V−(n−2)

for n = 1, 2, 3, .... Therefore, recurrence (1.3) holds for all integer n.

Note that if we set V0 = 0, V1 = 1 then {Vn} is the well-known Jacobsthal sequence and if we set V0 = 2, V1 = 1
then {Vn} is the well-known Jacobsthal-Lucas sequence. The first few generalized Jacobsthal numbers with positive
subscript and negative subscript are given in the following Table 1.

Table 1. A few generalized Jacobsthal numbers

n Vn V−n

0 V0 ...
1 V1 − 1

2V0 +
1
2V1

2 2V0 + V1
3
4V0 − 1

4V1

3 2V0 + 3V1 − 5
8V0 +

3
8V1

4 6V0 + 5V1
11
16V0 − 5

16V1

5 10V0 + 11V1 − 21
32V0 +

11
32V1

6 22V0 + 21V1
43
64V0 − 21

64V1

Jacobsthal sequence has been studied by many authors and more detail can be found in the extensive literature
dedicated to these sequences, see for example, [2], [3], [7], [8], [9], [12], [13], [16], [18], [19], [24], [25], [27], [37].

We can list some important properties of generalized Jacobsthal numbers that are needed.

� Binet’s formula of generalized Jacobsthal sequence can be calculated using its characteristic equation which is
given as

t2 − t− 2 = 0.

The roots of characteristic equation are
α = 2, β = −1

and the roots satisfy the following
α+ β = 1, αβ = −2, α− β = 3.

Using these roots and the recurrence relation, Binet formula can be given as

Vn =
Aαn −Bβn

α− β
=

A2n −B(−1)n

3
(1.4)

where A = V1 − V0β = V1 + V0 and B = V1 − V0α = V1 − 2V0.

� Binet’s formula of Jacobsthal and Jacobsthal-Lucas sequences are

Jn =
αn − βn

α− β
=

2n − (−1)n

3

and
Kn = αn + βn = 2n + (−1)n

respectively.

� The generating function for generalized Jacobsthal numbers is

g(t) =
V0 + (V1 − V0) t

1− t− 2t2
. (1.5)

� The Cassini identity for generalized Jacobsthal numbers is

Vn+1Vn−1 − V 2
n = 2n−1(V0V1 − V 2

1 − 2V 2
0 ) (1.6)
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�

Aαn = αVn + Vn−1, (1.7)

Bβn = βVn + Vn−1. (1.8)

There are some extensions (generalizations) of real numbers into real algebras of dimension 2 which are the
followings: complex numbers,

C = {z = a+ ib : a, b ∈ R, i2 = −1},
hyperbolic (double, split-complex) numbers, [31],

H = {h = a+ hb : a, b ∈ R, h2 = 1},

and dual numbers, [15],
D = {d = a+ εb : a, b ∈ R, ε2 = 0}.

In fact, each possible system can be reduced to one of the above and there exist essentially three possible ways to
generalize real numbers into real algebras of dimension 2 (see, for example, [22] for details).

There are also other extensions (generalizations) of real numbers into real algebras of higher dimension. The
hypercomplex numbers systems, [22], are extensions of real numbers. Some commutative examples of hypercomplex
number systems are complex numbers, hyperbolic numbers, [31], and dual numbers, [15]. Some non-commutative
examples of hypercomplex number systems are quaternions [17], octonions [5] and sedenions [33]. The algebras
C (complex numbers), HQ (quaternions), O (octonions) and S (sedenions) are real algebras obtained from the real
numbers R by a doubling procedure called the Cayley-Dickson Process. This doubling process can be extended beyond
the sedenions to form what are known as the 2n-ions (see for example [6], [20], [28]).

Quaternions were invented by Irish mathematician W. R. Hamilton (1805-1865) [17] as an extension to the complex
numbers. Hyperbolic numbers with complex coefficients are introduced by J. Cockle in 1848, [11]. H. H. Cheng and
S. Thompson [10] introduced dual numbers with complex coefficients and called complex dual numbers. Akar, Yüce
and Şahin [1] introduced dual hyperbolic numbers.

Here we use the set of hyperbolic numbers. The set of hyperbolic numbers H can be described as

H = {z = x+ hy | h /∈ R, h2 = 1, x, y ∈ R}.

The hyperbolic ring H is a bidimensional Clifford algebra, see [23] for details. Hyperbolic numbers has been called in
the mathematical literature with different names: Lorentz numbers, double numbers, duplex numbers, split complex
numbers and perplex numbers. Hyperbolic numbers are useful for measuring distances in the Lorentz space-time plane
(see Sobczyk [31]). For more information on hyperbolic numbers, see also [21], [26], [29], [32].

Addition, substraction and multiplication of any two hyperbolic numbers z1 and z2 are defined by

z1 ± z2 = (x1 + hy1)± (x2 + hy2) = (x1 ± x2) + h (y1 ± y2) ,

z1 × z2 = (x1 + hy1)× (x2 + hy2) = x1x2 + y1y2 + h (x1y2 + y1x2) .

and the division of two hyperbolic numbers are given by

z1
z2

=
x1 + hy1
x2 + hy2

=
(x1 + hy1) (x2 − hy2)

(x2 + hy2) (x2 − hy2)
=

x1x2 + y1y2
x2
2 − y22

+ h
x1y2 + y1x2

x2
2 − y22

.

It is easy to see that this algebra of hyperbolic numbers is commutative and contains zero divisors. The hyperbolic
conjugation of z = x+ hy is defined by

z = z† = x− hy.

Note that z = z. Note also that for any hyperbolic numbers z1, z2, z we have

z1 + z2 = z1 + z2,

z1 × z2 = z1 × z2,

∥z∥2 = z × z = x2 − y2.

In this paper, we define the hyperbolic generalized Jacobsthal numbers in the next section and give some properties
of them.
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2 Hyperbolic Generalized Jacobsthal Numbers and their Generating Functions and
Binet’s Formulas

In this section, we define hyperbolic generalized Jacobsthal numbers and present generating functions and Binet
formulas for them.

In [4], the author defined hyperbolic Fibonacci numbers and Dikmen [14] defined hyperbolic Jacobsthal numbers.
Soykan [36], defined hyperbolic generalized Fibonacci numbers.

We now define hyperbolic generalized Jacobsthal numbers over HD. The nth hyperbolic generalized Jacobsthal
number is

Ṽn = Vn + hVn+1. (2.1)

As special cases, the nth hyperbolic Jacobsthal numbers and the nth hyperbolic Jacobsthal-Lucas numbers are given
as

J̃n = Jn + hJn+1

and
K̃n = Kn + hKn+1

respectively. It can be easily shown that
Ṽn = Ṽn−1 + 2Ṽn−2. (2.2)

The sequence {Ṽn}n≥0 can be extended to negative subscripts by defining

Ṽ−n = −1

2
Ṽ−(n−1) +

1

2
Ṽ−(n−2).

for n = 1, 2, 3, ... respectively. Therefore, recurrence (2.2) holds for all integer n. Note that

Ṽnh = Vn+1 + Vnh.

The first few hyperbolic generalized Jacobsthal numbers with positive subscript and negative subscript are given in
the following Table 2.

Table 2. A few hyperbolic generalized Jacobsthal numbers

n Ṽn Ṽ−n

0 V0 + hV1 ...
1 V1 + h (2V0 + V1) − 1

2a+ 1
2b =

1
2V1 − 1

2V0 + hV0

2 2V0 + V1 + h(2V0 + 3V1)
3
4V0 − 1

4V1 + h(− 1
2V0 +

1
2V1)

3 2V0 + 3V1 + h(6V0 + 5V1)
3
8V1 − 5

8V0 + h( 34V0 − 1
4V1)

4 6V0 + 5V1 + h(10V0 + 11V1)
11
16V0 − 5

16V1 + h(− 5
8V0 +

3
8V1)

5 10V0 + 11V1 + h(22V0 + 21V1)
11
32V1 − 21

32V0 + h( 1116V0 − 5
16V1)

6 22V0 + 21V1 + h(42V0 + 43V1)
43
64V0 − 21

64V1 + h(− 21
32V0 +

11
32V1)

Note that

Ṽ0 = V0 + hV1 = V0 + hV1,

Ṽ1 = V1 + hV2 = V1 + h(2V0 + V1).

For hyperbolic Jacobsthal numbers (taking Vn = Jn, J0 = 0, J1 = 1) we get

J̃0 = h,

J̃1 = 1 + h.

and for hyperbolic Jacobsthal-Lucas numbers (taking Vn = Kn, K0 = 2,K1 = 1) we get

K̃0 = 2 + h,

K̃1 = 1 + 5h.

A few hyperbolic Jacobsthal numbers and hyperbolic Jacobsthal-Lucas numbers with positive subscript and neg-
ative subscript are given in the following Table 3 and Table 4.
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Table 3. Hyperbolic Jacobsthal Table 4. Hyperbolic Jacobsthal-
numbers Lucas numbers

n J̃n J̃−n

0 h ...
1 1 + h 1

2
2 1 + 3h − 1

4 + 1
2h

3 3 + 5h 3
8 − 1

4h
4 5 + 11h − 5

16 + 3
8h

5 11 + 21h 11
32 − 5

16h
6 21 + 43h − 21

64 + 11
32h

n K̃n K̃−n

0 2 + h ...
1 1 + 5h − 1

2 + 2h
2 5 + 7h 5

4 − 1
2h

3 7 + 17h − 7
8 + 5

4h
4 17 + 31h 17

16 − 7
8h

5 31 + 65h − 31
32 + 17

16h
6 65 + 127h 65

64 − 31
32h

Now, we will state Binet’s formula for the hyperbolic generalized Jacobsthal numbers and in the rest of the paper, we
fix the following notations:

α̃ = 1 + hα = 1 + 2h,

β̃ = 1 + hβ = 1− h.

Note that we have the following identities:

α̃ = 1 + 2h,

β̃ = 1− h,

α̃β̃ = −1 + h,

α̃2 = 5 + 4h,

β̃2 = 2− 2h,

α̃2β̃ = 1− h,

α̃β̃2 = −2 + 2h,

α̃3 = 13 + 14h,

β̃3 = 4− 4h,

α̃2β̃2 = 2− 2h,

α̃3β̃ = −1 + h,

α̃β̃3 = −4 + 4h.

Theorem 2.1. (Binet’s Formula) For any integer n, the nth hyperbolic generalized Jacobsthal number is

Ṽn =
Aα̃αn −Bβ̃βn

α− β
=

Aα̃2n −Bβ̃(−1)n

3
(2.3)

where

A = V1 − V0β = V1 + V0,

B = V1 − V0α = V1 − 2V0.

Proof . Using Binet’s formula (1.4) and the recurrence relation (2.1)

Vn =
Aαn −Bβn

α− β
=

A2n −B(−1)n

3

we obtain

Ṽn = Vn + hVn+1 =
A2n −B(−1)n

3
+ h

A2n+1 −B(−1)n+1

3

=
A(1 + 2h)2n −B(1− h)(−1)n

3
.
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This proves (2.3). □
As special cases, for any integer n, the Binet Formula of nth hyperbolic Jacobsthal number is

J̃n =
α̃αn − β̃βn

α− β
=

α̃2n − β̃(−1)n

3
(2.4)

and the Binet Formula of nth hyperbolic Jacobsthal-Lucas number is

K̃n = α̃αn + β̃βn = α̃2n + β̃(−1)n. (2.5)

Next, we present generating function.

Theorem 2.2. The generating function for the hyperbolic generalized Jacobsthal numbers is

∞∑
n=0

Ṽnx
n =

Ṽ0 + (Ṽ1 − Ṽ0)x

1− x− 2x2
. (2.6)

Proof .Let

g(x) =

∞∑
n=0

Ṽnx
n

be generating function of the hyperbolic generalized Jacobsthal numbers. Then, using the definition of the hyperbolic
generalized Jacobsthal numbers, and substracting xg(x) and 2x2g(x) from g(x), we obtain (note the shift in the index
n in the third line)

(1− x− 2x2)g(x) =

∞∑
n=0

Ṽnx
n − x

∞∑
n=0

Ṽnx
n − 2x2

∞∑
n=0

Ṽnx
n

=

∞∑
n=0

Ṽnx
n −

∞∑
n=0

Ṽnx
n+1 − 2

∞∑
n=0

Ṽnx
n+2

=

∞∑
n=0

Ṽnx
n −

∞∑
n=1

Ṽn−1x
n − 2

∞∑
n=2

Ṽn−2x
n

= (Ṽ0 + Ṽ1x)− Ṽ0x+

∞∑
n=2

(Ṽn − Ṽn−1 − 2Ṽn−2)x
n

= (Ṽ0 + Ṽ1x)− Ṽ0x = Ṽ0 + (Ṽ1 − Ṽ0)x.

Note that we used the recurrence relation Ṽn = Ṽn−1 + 2Ṽn−2. Rearranging above equation, we get

g(x) =
Ṽ0 + (Ṽ1 − Ṽ0)x

1− x− 2x2
.

□

As special cases, the generating functions for the hyperbolic Jacobsthal and hyperbolic Jacobsthal-Lucas numbers
are

∞∑
n=0

J̃nx
n =

h+ x

1− x− 2x2

and
∞∑

n=0

K̃nx
n =

(2 + h) + (−1 + 4h)x

1− x− 2x2

respectively.
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3 Obtaining Binet’s Formula From Generating Function

We next find Binet’s formula of hyperbolic generalized Jacobsthal number {Ṽn} by the use of generating function

for Ṽn.

Theorem 3.1. (Binet’s formula of hyperbolic generalized Jacobsthal numbers)

Ṽn =
d1α

n

3
− d2β

n

3
(3.1)

where

d1 = Ṽ0α+ (Ṽ1 − Ṽ0),

d2 = Ṽ0β + (Ṽ1 − Ṽ0).

Proof .Let
h(x) = 1− x− 2x2.

Then for α = 2 and β = −1 we write
h(x) = (1− αx)(1− βx)

i.e.,
1− x− 2x2 = (1− αx)(1− βx) (3.2)

Hence 1
α = 1

2 and 1
β = −1 are the roots of h(x). This gives α and β as the roots of

h(
1

x
) = 1− 1

x
− 2

x2
= 0.

This implies x2 − x− 2 = 0. Now, by (2.6) and (3.2), it follows that

∞∑
n=0

Ṽnx
n =

Ṽ0 + (Ṽ1 − Ṽ0)x

(1− αx)(1− βx)
.

Then we write
Ṽ0 + (Ṽ1 − Ṽ0)x

(1− αx)(1− βx)
=

A1

(1− αx)
+

A2

(1− βx)
. (3.3)

So
Ṽ0 + (Ṽ1 − Ṽ0)x = A1(1− βx) +A2(1− αx).

If we consider x = 1
α , we get Ṽ0 + (Ṽ1 − Ṽ0)

1
α = A1(1− β 1

α ). This gives

A1 =
Ṽ0α+ (Ṽ1 − Ṽ0)

(α− β)
=

d1
3
.

Similarly, we obtain

Ṽ0 + (Ṽ1 − Ṽ0)
1

β
= A2(1− α

1

β
) ⇒ Ṽ0β + (Ṽ1 − Ṽ0) = A2(β − α)

and so

A2 = − Ṽ0β + (Ṽ1 − Ṽ0)

(α− β)
= −d2

3
.

Thus (3.3) can be written as
∞∑

n=0

Ṽnx
n = A1(1− αx)−1 +A2(1− βx)−1.

This gives
∞∑

n=0

Ṽnx
n = A1

∞∑
n=0

αnxn +A2

∞∑
n=0

βnxn =

∞∑
n=0

(A1α
n +A2β

n)xn.
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Therefore, comparing coefficients on both sides of the above equality, we obtain

Ṽn = A1α
n +A2β

n

and then we get (3.1). □

Note that from (2.3) and (3.1) we have

(V1 − V0β)α̃ = Ṽ0α+ (Ṽ1 − Ṽ0),

(V1 − V0α)β̃ = Ṽ0β + (Ṽ1 − Ṽ0),

i.e.,

(V1 + V0)α̃ = 2Ṽ0 + (Ṽ1 − Ṽ0),

(V1 − 2V0)β̃ = −Ṽ0 + (Ṽ1 − Ṽ0).

Next, using Theorem 3.1, we present the Binet formulas of hyperbolic Jacobsthal and hyperbolic Jacobsthal-Lucas
numbers.

Corollary 3.2. Binet’s formulas of hyperbolic Jacobsthal and hyperbolic Jacobsthal-Lucas numbers are

J̃n =
α̃2n − β̃(−1)n

3

and
K̃n = α̃2n + β̃(−1)n

respectively.

4 Some Identities

We now present a few special identities for the hyperbolic generalized Jacobsthal sequence {Ṽn}. The following
theorem presents the Catalan identity for the hyperbolic generalized Jacobsthal numbers.

Theorem 4.1. (Catalan identity) For all integers n and m, the following identity holds

Ṽn+mṼn−m − Ṽ 2
n =

1

9
AB2n−m (−1)

n−m+1
((−1)

m − 2m)
2
(−1 + h).

Proof . Using the Binet formula (2.3)

Ṽn =
Aα̃2n −Bβ̃(−1)n

3
(4.1)

where

A = V1 + V0,

B = V1 − 2V0,

we get

Ṽn+mṼn−m − Ṽ 2
n =

Aα̃2n+m −Bβ̃(−1)n+m

3

Aα̃2n−m −Bβ̃(−1)n−m

3

−

(
Aα̃2n −Bβ̃(−1)n

3

)2

=
1

9
AB2n−m (−1)

n−m+1
((−1)

m − 2m)
2
α̃β̃

=
1

9
AB2n−m (−1)

n−m+1
((−1)

m − 2m)
2
(−1 + h).
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□

As special cases of the above theorem, we give Catalan’s identity of hyperbolic Jacobsthal and hyperbolic Jacobsthal-
Lucas numbers. Firstly, we present Catalan’s identity of hyperbolic Jacobsthal numbers.

Corollary 4.2. (Catalan’s identity for the hyperbolic Jacobsthal numbers) For all integers n and m, the following
identity holds

J̃n+mJ̃n−m − J̃2
n =

1

9
2n−m (−1)

n−m+1
((−1)

m − 2m)
2
(−1 + h).

Proof . Taking Vn = Jn in Theorem 4.1 we get the required result. □

Secondly, we give Catalan’s identity of hyperbolic Jacobsthal-Lucas numbers.

Corollary 4.3. (Catalan’s identity for the hyperbolic Jacobsthal-Lucas numbers) For all integers n and m, the fol-
lowing identity holds

K̃n+mK̃n−m − K̃2
n = 2n−m (−1)

n−m
((−1)

m − 2m)
2
(−1 + h).

Proof .Taking Vn = Kn in Theorem 4.1, we get the required result. □

Note that for m = 1 in Catalan’s identity, we get the Cassini’s identity for the hyperbolic generalized Jacobsthal
sequence.

Corollary 4.4. (Cassini’s identity) For all integers n, the following identity holds

Ṽn+1Ṽn−1 − Ṽ 2
n = AB2n−1 (−1)

n
(−1 + h).

As special cases of Cassini’s identity, we give Cassini’s identity of hyperbolic Jacobsthal and hyperbolic Jacobsthal-
Lucas numbers. Firstly, we present Cassini’s identity of hyperbolic Jacobsthal numbers.

Corollary 4.5. (Cassini’s identity of hyperbolic Jacobsthal numbers) For all integers n, the following identity holds

J̃n+1J̃n−1 − J̃2
n = 2n−1 (−1)

n
(−1 + h)

Secondly, we give Cassini’s identity of hyperbolic Jacobsthal-Lucas numbers.

Corollary 4.6. (Cassini’s identity of hyperbolic Jacobsthal-Lucas numbers) For all integers n, the following identity
holds

K̃n+1K̃n−1 − K̃2
n = 9× 2n−1 (−1)

n+1
(−1 + h).

The d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities can also be obtained by using the Binet Formula of the
hyperbolic generalized Jacobsthal sequence:

Ṽn =
Aα̃2n −Bβ̃(−1)n

3
.

The next theorem presents d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of the hyperbolic generalized Jacob-
sthal sequence {Ṽn}.

Theorem 4.7. Let n and m be any integers. Then the following identities are true:

(a) (d’Ocagne’s identity)

Ṽm+1Ṽn − ṼmṼn+1 =
1

3
AB ((−1)

m
2n − (−1)

n
2m) (−1 + h).

(b) (Gelin-Cesàro’s identity)

Ṽn+2Ṽn+1Ṽn−1Ṽn−2 − Ṽ 4
n =

1

36
AB2n (−1)

n
(22nA2 + 4 (−1)

2n
B2

+13 (−1)
n
2nAB) (−1 + h) .
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(c) (Melham’s identity)

Ṽn+1Ṽn+2Ṽn+6 − Ṽ 3
n+3 =

1

3
AB (−1)

n+1
2n+2 (2× 2nA− 5 (−1)

n
B) (1− h) .

Proof .

(a) Using the Binet formula, we get

Ṽm+1Ṽn − ṼmṼn+1 =
Aα̃2m+1 −Bβ̃(−1)m+1

3

Aα̃2n −Bβ̃(−1)n

3

−Aα̃2m −Bβ̃(−1)m

3

Aα̃2n+1 −Bβ̃(−1)n+1

3

=
1

3
AB ((−1)

m
2n − (−1)

n
2m) (−1 + h).

(b) Using the identities

α̃3β̃ = (−1 + h)

α̃β̃3 = (−4 + 4h)

α̃2β̃2 = (2− 2h)

we obtain

Ṽn+2Ṽn+1Ṽn−1Ṽn−2 − Ṽ 4
n =

Aα̃2n+2 −Bβ̃(−1)n+2

3

Aα̃2n+1 −Bβ̃(−1)n+1

3

Aα̃2n−1 −Bβ̃(−1)n−1

3

Aα̃2n−2 −Bβ̃(−1)n−2

3

−

(
Aα̃2n −Bβ̃(−1)n

3

)4

=
1

72
AB2n (−1)

n
(22n+1A2α̃3β̃

+2 (−1)
2n

B2α̃β̃3 − 13 (−1)
n
2nABα̃2β̃2)

=
1

36
AB2n (−1)

n
(22nA2(−1 + h) + 4 (−1)

2n
B2(−1 + h)

−13 (−1)
n
2nAB(1− h))

=
1

36
AB2n (−1)

n
(22nA2 + 4 (−1)

2n
B2 + 13 (−1)

n
2nAB) (−1 + h) .

(c) Taking account of the identity

α̃2β̃ = 1− h,

α̃β̃2 = −2 + 2h,

and Binet formula of Ṽn, we get

Ṽn+1Ṽn+2Ṽn+6 − Ṽ 3
n+3 =

Aα̃2n+1 −Bβ̃(−1)n+1

3

Aα̃2n+2 −Bβ̃(−1)n+2

3

Aα̃2n+6 −Bβ̃(−1)n+6

3
−

(
Aα̃2n+3 −Bβ̃(−1)n+3

3

)3

= −1

3
AB (−1)

n
2n+1

(
2n+2Aα̃2β̃ + 5 (−1)

n
Bα̃β̃2

)
=

1

3
AB (−1)

n+1
2n+2(2n+1A(1− h) + 5 (−1)

n
B(−1 + h))

=
1

3
AB (−1)

n+1
2n+2 (2× 2nA− 5 (−1)

n
B) (1− h) .
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□

As special cases of the above theorem, we give the d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of hyperbolic
Jacobsthal and hyperbolic Jaco-bsthal-Lucas numbers. Firstly, we present the d’Ocagne’s, Gelin-Cesàro’s and Melham’
identities of hyperbolic Jacobsthal numbers.

Corollary 4.8. Let n and m be any integers. Then, for the hyperbolic Jacobsthal numbers, the following identities
are true:

(a) (d’Ocagne’s identity)

J̃m+1J̃n − J̃mJ̃n+1 =
1

3
((−1)

m
2n − (−1)

n
2m) (−1 + h).

(b) (Gelin-Cesàro’s identity)

J̃n+2J̃n+1J̃n−1J̃n−2 − J̃4
n =

1

36
2n (−1)

n
(4 (−1)

2n
+ 22n + 13 (−1)

n
2n) (−1 + h) .

(c) (Melham’s identity)

J̃n+1J̃n+2J̃n+6 − J̃3
n+3 =

1

3
(−1)

n+1
2n+2(2n+1 − 5 (−1)

n
) (1− h) .

Secondly, we present the d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of hyperbolic Jacobsthal-Lucas num-
bers.

Corollary 4.9. Let n and m be any integers. Then, for the hyperbolic Jacobsthal-Lucas numbers, the following
identities are true:

(a) (d’Ocagne’s identity)

K̃m+1K̃n − K̃mK̃n+1 = 3 ((−1)
n
2m − (−1)

m
2n) (−1 + h).

(b) (Gelin-Cesàro’s identity)

K̃n+2K̃n+1K̃n−1K̃n−2 − K̃4
n = 9× 2n−2 (−1)

n+1
(4 (−1)

2n
+ 22n − 13 (−1)

n
2n) (−1 + h) .

(c) (Melham’s identity)

K̃n+1K̃n+2K̃n+6 − K̃3
n+3 = 9 (−1)

n
2n+2 (5 (−1)

n
+ 2× 2n) (1− h) .

5 Linear Sums

In this section, we give the summation formulas of the hyperbolic generalized Jacobsthal numbers with positive
and negative subscripts. Now, we present the summation formulas of the generalized Jacobsthal numbers.

Proposition 5.1. For the generalized Jacobsthal numbers, for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 Vk = 1
2 (Vn+2 − V1).

(b)
∑n

k=0 V2k = 1
3 (2V2n+2 − 2V2n+1 − V0 + (−V1 + 2V0)n).

(c)
∑n

k=0 V2k+1 = 1
6 (−V2n+2 + 10V2n+1 − 3V1 + 2V0 + (2V1 − 4V0)n).

Proof . For the proof, see Soykan [34]. □

Note that we can write (c) of the above proposition as

n∑
k=0

V2k+1 =
1

3
(2V2n+3 − 2V2n+2 − V1 + (V1 − 2V0)n)
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by using (a) and (b) of Proposition 5.1 and the identities

n∑
k=0

V2k+1 =

2n+1∑
k=0

Vk −
n∑

k=0

V2k,

V2n+3 − 2V2n+2 = V1 − 2V0.

Next, we present the formulas which give the summation of the first n dual hyperbolic generalized Jacobsthal
numbers.

Theorem 5.2. For n ≥ 0, dual hyperbolic generalized Jacobsthal numbers have the following formulas:.

(a)
∑n

k=0 Ṽk = 1
2 (Ṽn+2 − Ṽ1).

(b)
∑n

k=0 Ṽ2k = 1
3 (2Ṽ2n+2 − 2Ṽ2n+1 − Ṽ0 + (−Ṽ1 + 2Ṽ0)n).

(c)
∑n

k=0 Ṽ2k+1 = 1
3 (2Ṽ2n+3 − 2Ṽ2n+2 − Ṽ1 + (Ṽ1 − 2Ṽ0)n).

Proof . Note that using Proposition 5.1 (a) we get

n∑
k=0

Vk+1 =
1

2
(Vn+3 − V1 − 2V0).

Then it follows that

n∑
k=0

Ṽk =

n∑
k=0

Vk + h

n∑
k=0

Vk+1

=
1

2
(Vn+2 − V1) + h

1

2
(Vn+3 − V1 − 2V0)

=
1

2
(Ṽn+2 − (V1 + hV2))

=
1

2
(Ṽn+2 − Ṽ1).

This proves (a).

(b) Note that using Proposition 5.1 (b) and (c) we get

n∑
k=0

Ṽ2k =

n∑
k=0

V2k + h

n∑
k=0

V2k+1

=
1

3
(2V2n+2 − 2V2n+1 − V0 + (−V1 + 2V0)n) + h

1

3
(2V2n+3 − 2V2n+2 − V1 + (V1 − 2V0)n)

=
1

3
(2(V2n+2 + hV2n+3)− 2(V2n+1 + hV2n+2)− (V0 + hV1) + ((−V1 + 2V0) + h(V1 − 2V0))n)

=
1

3
(2Ṽ2n+2 − 2Ṽ2n+1 − Ṽ0 + ((−V1 + 2V0) + h(−V2 + 2V1))n)

=
1

3
(2Ṽ2n+2 − 2Ṽ2n+1 − Ṽ0 + (−(V1 + hV2) + 2(V0 + hV1)n)

=
1

3
(2Ṽ2n+2 − 2Ṽ2n+1 − Ṽ0 + (−Ṽ1 + 2Ṽ0)n).

(c) Note that using Proposition 5.1 (b) and (c) we get

n∑
k=0

V2k+2 =
1

3
(2V2n+4 − 2V2n+3 − V1 − 2V0 + (−V1 + 2V0)n).
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Then it follows that

n∑
k=0

Ṽ2k+1 =

n∑
k=0

V2k+1 + h

n∑
k=0

V2k+2

=
1

3
(2V2n+3 − 2V2n+2 − V1 + (V1 − 2V0)n) + h

1

3
(2V2n+4 − 2V2n+3 − V1 − 2V0 + (−V1 + 2V0)n)

=
1

3
(2(V2n+3 + hV2n+4)− 2(V2n+2 + hV2n+3)− (V1 + h(V1 + 2V0)) + ((V1 − 2V0)

+h(−V1 + 2V0))n)

=
1

3
(2Ṽ2n+3 − 2Ṽ2n+2 − (V1 + hV2) + ((2V1 − 4V0) + h(2V2 − 4V1))n)

=
1

3
(2Ṽ2n+3 − 2Ṽ2n+2 − Ṽ1 + (Ṽ1 − 2Ṽ0)n).

□

As a first special case of the above theorem, we have the following summation formulas for dual hyperbolic
Jacobsthal numbers:

Corollary 5.3. For n ≥ 0, dual hyperbolic Jacobsthal numbers have the following properties:

(a)
∑n

k=0 J̃k = 1
2 (J̃n+2 − J̃1).

(b)
∑n

k=0 J̃2k = 1
3 (2J̃2n+2 − 2J̃2n+1 − J̃0 + (−J̃1 + 2J̃0)n).

(c) −
∑n

k=0 J̃2k+1 = 1
3 (2J̃2n+3 − 2J̃2n+2 − J̃1 + (J̃1 − 2J̃0)n).

As a second special case of the above theorem, we have the following summation formulas for dual hyperbolic
Jacobsthal-Lucas numbers:

Corollary 5.4. For n ≥ 0, dual hyperbolic Jacobsthal-Lucas numbers have the following properties.

(a)
∑n

k=0 K̃k = 1
2 (K̃n+2 − K̃1).

(b)
∑n

k=0 K̃2k = 1
3 (2K̃2n+2 − 2K̃2n+1 − K̃0 + (−K̃1 + 2K̃0)n).

(c)
∑n

k=0 K̃2k+1 = 1
3 (2K̃2n+3 − 2K̃2n+2 − K̃1 + (K̃1 − 2K̃0)n).

Now, we present the formula which give the summation formulas of the generalized Jacobsthal numbers with
negative subscripts.

Proposition 5.5. For n ≥ 1 we have the following formulas:

(a)
∑n

k=1 V−k = 1
2 (−3V−n−1 − 2V−n−2 + V1).

(b)
∑n

k=1 V−2k = 1
3 (2V−2n − 6V−2n−1 + (3V1 − 5V0) + (−V1 + 2V0)n).

(c)
∑n

k=1 V−2k+1 = 1
3 (2V−2n+1 − 6V−2n + (−2V1 + 6V0) + (V1 − 2V0)n).

Proof . This is given in Soykan [35]. See also Soykan [34]. □

Next, we present the formulas which give the summation of the first n dual hyperbolic generalized Jacobsthal
numbers with negative subscripts

Theorem 5.6. For n ≥ 1, dual hyperbolic generalized Jacobsthal numbers have the following formulas:

(a)
∑n

k=1 Ṽ−k = 1
2 (−3Ṽ−n−1 − 2Ṽ−n−2 + Ṽ1).
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(b)
∑n

k=1 Ṽ−2k = 1
3 (2Ṽ−2n − 6Ṽ−2n−1 + (3Ṽ1 − 5Ṽ0) + (−Ṽ1 + 2Ṽ0)n).

(c)
∑n

k=1 Ṽ−2k+1 = 1
3 (2Ṽ−2n+1 − 6Ṽ−2n + (−2Ṽ1 + 6Ṽ0) + (Ṽ1 − 2Ṽ0)n).

Proof . We prove (a). (b) and (c) can be proved similarly. Note that using Proposition 5.1 (a) we get

n∑
k=1

V−k+1 =
1

2
(−3V−n − 2V−n−1 + V1 + 2V0).

Then it follows that

n∑
k=1

Ṽ−k =

n∑
k=1

V−k + h

n∑
k=1

V−k+1

=
1

2
(−3V−n−1 − 2V−n−2 + V1) + h

1

2
(−3V−n − 2V−n−1 + V1 + 2V0)

=
1

2
(3(V−n−1 + hV−n)− (V−n−2 + hV−n−1) + V1 + h(V1 + 2V0))

=
1

2
(−3Ṽ−n−1 − 2Ṽ−n−2 + (V1 + hV2)

=
1

2
(−3Ṽ−n−1 − 2Ṽ−n−2 + Ṽ1)

This proves (a).

(b) Note that using Proposition 5.1 (b) and (c) we get

n∑
k=1

Ṽ−2k =

n∑
k=1

V−2k + h

n∑
k=1

V−2k+1

=
1

3
(2V−2n − 6V−2n−1 + (3V1 − 5V0) + (−V1 + 2V0)n)

+h
1

3
(2V−2n+1 − 6V−2n + (−2V1 + 6V0) + (V1 − 2V0)n)

=
1

3
(2(V−2n + hV−2n+1)− 6(V−2n−1 + hV−2n) + ((3V1 − 5V0)

+h(−2V1 + 6V0)) + ((−V1 + 2V0) + h(V1 − 2V0))n)

=
1

3
(2Ṽ−2n − 6Ṽ−2n−1 + (3Ṽ1 − 5Ṽ0) + (−Ṽ1 + 2Ṽ0)n)

(c) Note that using Proposition 5.1 (b) and (c) we get

n∑
k=1

V−2k+2 =
1

3
(2V−2n+2 − 6V−2n+1 + (4V1 − 4V0) + (−V1 + 2V0)n).

Then it follows that

n∑
k=0

Ṽ−2k+1 =

n∑
k=0

V−2k+1 + h

n∑
k=0

V−2k+2

=
1

3
(2V−2n+1 − 6V−2n + (−2V1 + 6V0) + (V1 − 2V0)n)

+h
1

3
(2V−2n+2 − 6V−2n+1 + (4V1 − 4V0) + (−V1 + 2V0)n))

=
1

3
(2(V−2n+1 + hV−2n+2)− 6(V−2n + hV−2n+1) + ((6V0 − 2V1)

+h(4V1 − 4V0)) + ((V1 − 2V0) + h(−V1 + 2V0))n)

=
1

3
(2Ṽ−2n+1 − 6Ṽ−2n + (−2Ṽ1 + 6Ṽ0) + (Ṽ1 − 2Ṽ0)n).
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□

As a first special case of above theorem, we have the following summation formulas for dual hyperbolic Jacobsthal
numbers:

Corollary 5.7. For n ≥ 1, dual hyperbolic Jacobsthal numbers have the following properties:

(a)
∑n

k=1 J̃−k = 1
2 (−3J̃−n−1 − 2J̃−n−2 + J̃1).

(b)
∑n

k=1 J̃−2k = 1
3 (2J̃−2n − 6J̃−2n−1 + (3J̃1 − 5J̃0) + (−J̃1 + 2J̃0)n).

(c)
∑n

k=1 J̃−2k+1 = 1
3 (2J̃−2n+1 − 6J̃−2n + (−2J̃1 + 6J̃0) + (J̃1 − 2J̃0)n).

As a second special case of above theorem, we have the following summation formulas for dual hyperbolic
Jacobsthal-Lucas numbers:

Corollary 5.8. For n ≥ 1, dual hyperbolic Jacobsthal-Lucas numbers have the following properties.

(a)
∑n

k=1 K̃−k = 1
2 (−3K̃−n−1 − 2K̃−n−2 + K̃1).

(b)
∑n

k=1 K̃−2k = 1
3 (2K̃−2n − 6K̃−2n−1 + (3K̃1 − 5K̃0) + (−K̃1 + 2K̃0)n).

(c)
∑n

k=1 K̃−2k+1 = 1
3 (2K̃−2n+1 − 6K̃−2n + (−2K̃1 + 6K̃0) + (K̃1 − 2K̃0)n).

6 Matrices related with Hyperbolic Generalized Jacobsthal Numbers

We define the square matrix D of order 2 as:

D =

(
1 2
1 0

)
such that detD = −2. Induction proof may be used to establish

Dn =

(
Jn+1 2Jn
Jn 2Jn−1

)
(6.1)

and (the matrix formulation of Vn) (
Vn+1

Vn

)
=

(
1 2
1 0

)n(
V1

V0

)
. (6.2)

Now, we define the matrix DV as

DV =

(
Ṽ3 2Ṽ2

Ṽ2 2Ṽ1

)
.

This matrice DV is called hyperbolic generalized Jacobsthal matrix. As special cases, hyperbolic Jacobsthal matrix
and hyperbolic Jacobsthal-Lucas matrix are

DJ =

(
J̃3 2J̃2
J̃2 2J̃1

)

and

DK =

(
K̃3 2K̃2

K̃2 2K̃1

)

respectively.
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Theorem 6.1. For n ≥ 0, the following is valid:

Dn
V

(
1 2
1 0

)
=

(
Ṽn+3 2Ṽn+2

Ṽn+2 2Ṽn+1

)
. (6.3)

Proof .We prove by mathematical induction on n. If n = 0, then the result is clear. Now, we assume it is true for
n = k, that is

DV D
k =

(
Ṽk+3 2Ṽk+2

Ṽk+2 2Ṽk+1

)
.

If we use (2.1), then we have Ṽk+2 = Ṽk+1 + 2Ṽk. Then, by induction hypothesis, we obtain

DV D
k+1 = (DV D

k)D =

(
Ṽk+3 Ṽk+2

Ṽk+2 Ṽk+1

)(
1 2
1 0

)
=

(
Ṽk+3 + 2Ṽk+2 2Ṽk+3

Ṽk+2 + 2Ṽk+1 2Ṽk+2

)

=

(
Ṽk+4 2Ṽk+3

Ṽk+3 2Ṽk+2

)
.

Thus, (6.3) holds for all non-negative integers n.□

Remark 6.2. The above theorem is true for n ≤ −1. It can also be proved by induction.

Corollary 6.3. For all integers n, the following holds:

Ṽn+2 = Ṽ2Jn+1 + 2Ṽ1Jn.

Proof .The proof can be seen by the coefficient of the matrix DV and (6.1). □

Taking Vn = Jn and Vn = Kn, respectively, in the above corollary, we obtain the following results.

Corollary 6.4. For all integers n, the followings are true:

(a) J̃n+2 = J̃2Jn+1 + 2J̃1Jn.

(b) K̃n+2 = K̃2Jn+1 + 2K̃1Jn.
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