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Abstract

In this paper, by using the Schauder fixed point theorem, we obtain the existence of positive solutions for discrete
fractional boundary value problem. Also, we establish upper and lower solution for this problem. Our results extend
some recent works in the literature.
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1 Introduction

In his 1695 letter to Leibniz, L’Hospital posed the question, what does it mean to take a half- derivative
of a function? This question is said to have launched fractional calculus, which has since developed many ways
of extending derivatives to be of any complex order. Basic background in fractional calculus can be found in [16].
Fractional calculus has recently developed into a relatively vibrant research area. It also provides an excellent tool to
describe the hereditary properties of materials and processes. Many successful new applications of fractional calculus
in various fields have also been reported recently. For example, Nieto and Pimentel [14] extended a second order
thermostat model to the fractional model; Ding and Jiang [5] used waveform relaxation methods to study some
fractional functional differential equation models. Also, fractional differential systems have been used in 3D printing
and oil drilling [4]. For the basic theories of fractional calculus and some recent work in application, the reader
is referred to references [10, 13, 15, 16, 17]. Discrete fractional calculus consists of studying fractional derivatives
of functions defined on a discrete domain. Discrete fractional calculus has attracted slowly but steadily increasing
attention in the past seven years or so . In particular, several recent papers by Atici and Eloe as well as other recent
papers by the present authors have addressed some basic theory of both discrete fractional initial value problems and
discrete fractional boundary value problems (DFBVPs). More specially, Atici and Eloe [3] have already analyzed a
transform method in discrete fractional calculus. Goodrich [8] considered a discrete right-focal fractional boundary
value problem. All of the fundamental background in discrete fractional calculus can be found in [9] which is written
by Goodrich and Peterson. Other recent works have considered DFBVPs with a variety of boundary conditions, see
[11, 12] and the references therein.
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The purpose of this paper is to establish a method of lower and upper solutions for the following discrete fractional
boundary value problem, as shown

−∇µ
a∗x(t) = f(t, x(t− 1))), t ∈ Nb−1

a+1 (1.1)

αx(a− 1)− β∇x(a) = 0,

γx(b) + δ∇x(b) = 0
(1.2)

in the context of discrete nabla fractional calculus, where 1 < µ ≤ 2, α, γ, β, δ > 0 such that
β

α
> 1, b − a ≥ 2, f :

Nb−1
a+1 −→ R and x are defined on Nb

a−1.

In this paper we will consider the Green’s function for this DFBVP (1.1)-(1.2) and give some properties and bounds
of this Green’s function in Section 3. Also in this section, using these bounds we establish upper and lower solutions
and existence results for DFBVP (1.1)-(1.2).

2 Preliminaries

In this section, we collect some basic definitions and lemmas for manipulating discrete fractional operators. These
can be found in the references [16].

For any real number β, let Nβ = {β, β + 1, β + 2, ...} and we define tk =
Γ(t+ k)

Γ(t)
for any t, k ∈ R. If n ∈ N then

tn := t(t+ 1)...(t+ n− 1).

Remark 2.1. Let n and N be nonnegative integers. Then

Γ(−n)

Γ(−N)
= (−1)N−nN !

n!
.

Also, if t is a nonpositive integer and t + r is not a nonpositive integer, then

tr =
Γ(t+ r)

Γ(t)
= 0.

Theorem 2.2. The following equality hold

∇(t+ a)n = n(t+ a)n−1, t ∈ R

for values of n ∈ N and a ∈ R.

Definition 2.3. We define the nabla Taylor monomials, Hn(t, a), n ∈ N0 by H0(t, a) = 1, t ∈ Na and

Hn(t, a) =
(t− a)n

n!
, t ∈ Na−n+1

for n ∈ N0.

Definition 2.4. Let µ ̸= −1,−2, ... we define µ-th order nabla fractional Taylor monomial Hµ(t, a), by

Hµ(t, a) =
(t− a)µ

Γ(µ+ 1)
(2.1)

whenever the right hand side of the equation (2.1) makes sense.

Definition 2.5. Let f : Na+1 −→ R be given and µ ∈ R+, then

∇−µ
a f(t) :=

t∫
a

Hµ−1(t, ρ(s))f(s)∇s

for t ∈ Na, where by convention ∇µ
a(a) = 0.
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Definition 2.6. Let f : Na+1 −→ R, µ ∈ R+ and N − 1 < µ ≤ N . Then we define µ-th nabla fractional difference
∇µ

af(t) by

∇µ
af(t) := ∇N∇−(N−µ)

a f(t).

Definition 2.7. Assume f : Na−N+1 −→ R, µ ∈ R+ and N − 1 < µ ≤ N . Then we define µ-th Caputo nabla
fractional difference of f is defined by

∇µ
a∗f(t) := ∇−(N−µ)

a ∇Nf(t), t ∈ Na+1

where N := ⌈µ⌉.

The following propositions will be used in the theorem that follows stating the bounds of the Green’s function.

Proposition 2.8. [1] Let f, g be real-valued functions on a set S, such that f(t), g(t) ≥ 0 for all t ∈ S. Moreover,
assume there exists s0, s1 ∈ S where maxs∈S f(s) = f(s0) and maxs∈S g(s) = g(s1), i.e. f and g attain their maximum
in S. Then for each fixed t ∈ S,

|f(t)− g(t)| ≤ max{f(t), g(t)} ≤ max{max
t∈S

f(t),max
t∈S

g(t)}.

Proposition 2.9. [6] Let g(τ, s) := (τ − ρ(s))a where a > 0, s ∈ Nb
a+1, and τ ∈ Nb

s−1.
(i) g(t, s) ≥ 0,
(ii) g is decreasing function of s,
(iii) g is increasing function of τ .

Theorem 2.10. Let a, µ ∈ R, 1 < µ ≤ 2, N := ⌈µ⌉ = 2 and f : Nb
a −→ R. Then a general solution to the nabla

Caputo fractional equation

−∇µ
a∗x(t) = f(t), t ∈ Na+1 (2.2)

is given by

x(t) = c0(t− a)0 + c1(t− a)1 −∇−µ
a f(t)

= c0 + c1(t− a)1 −∇−µ
a f(t)

(2.3)

for c0, c1 ∈ R and t ∈ Na−1.

Proof. First, we will show that x(t) given by (2.3), is a solution to (2.2) on Na−1. For t ∈ Na−1, consider

−∇µ
a∗x(t) = −∇µ

a∗ [c0 + c1(t− a)1] +∇µ
a∗∇−µ

a f(t)

where we have made use of the linearity of −∇µ
a∗ . Now,

∇µ
a∗(t− a) = ∇−(2−µ)

a ∇2(t− a) = ∇−(2−µ)
a ∇1 = ∇−(2−µ)

a 0 = 0,

for t ∈ Na−1. Hence

−∇µ
a∗ [c0 + c1(t− a)] +∇µ

a∗∇−µ
a f(t) = f(t),

which shows that x(t) is a solution to (2.2). Next, we will show that any solution, y(t) of (2.2) is of the form (2.3).
We will show that we can express y in the form (2.3) for fixed given constants c0, c1 ∈ R.
First, define Ak := ∇ky(a), for k ∈ {0, 1}. Then note that y(t) is a solution to the IVP

−∇µ
a∗y(t) = f(t), t ∈ Na+1

∇ky(a) = Ak.
(2.4)

Using Theorem 3.12 in [5], the unique solution y(t) to the IVP (2.4) is

y(t) = H0(t, a)A0 +H1(t, a)A1 −∇−µ
a f(t)

= A0 + (t− a)A1.

Then, taking c0 := A0 c1 := A1, we shown that y is of the form (2.3). ⊓⊔
□

The following fixed point theorems are fundamental and important to the proof of our main results.
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Theorem 2.11. Consider the DFBVP (1.1)-(1.2) with 1 < µ ≤ 2, N = 2 and f : Nb−1
a+1 −→ R. Then x : Na−1 −→ R

is a solution of the DFBVP (1.1)-(1.2) if and only if x(t) satisfies the integral equation

x(t) =

∫ b

a

Gµ(t, s)f(s)∇s, (2.5)

for t ∈ Nb
a−1, where Gµ(t, s) is the Green’s function for the homogeneous equation

−∇µ
a∗x(t) = 0, t ∈ Na+1

with the boundary conditions (1.2) and is given by

Gµ(t, s) :=

{
u(t, s), t ≤ ρ(s)

v(t, s), ρ(s) ≤ t
(2.6)

where u(t, s) =
α(t− a− 1) + β

d

(
γHµ−1

(
b, ρ(s)

)
+ δHµ−2

(
b, ρ(s)

))
, v(t, s) = u(t, s) +Hµ−1(t, ρ(s)) and d = γ

(
α(b−

a+ 1) + β
)
+ δα.

Note that Gµ : Nb
a−1 −→ R.

Proof. Assume x(t) is a solution of the DFBVP (1.1)-(1.2). By Theorem 2.10, we have

x(t) = c0 + c1(t− a)1 −∇−µ
a f(t). (2.7)

Using the first boundary value condition, we get

αx(a− 1)− β∇x(a) = α
(
c0 + c1(a− 1− a)1 −∇−µ

a f(a− 1)
)
− β

(
c1 −∇∇−µ

a f(a)
)

= α
(
c0 − c1 −∇−µ

a f(a− 1)
)
− β

(
c1 −∇∇−µ

a−1f(a)
)

= α(c0 − c1)− βc1 −
(
∇−µ

a f(a)−∇∇−µ
a−1f(a)

)
,

For t ∈ Nb−1
a we know that −∇µ

a∗x(t) = f(t). So we have
α∇−µ

a f(a − 1) + β∇∇−µ
a f(a) = αx(a − 1) − β∇x(a). Using the first boundary condition we get α∇−µ

a f(a − 1) −
β∇∇−µa

a f(a) = 0. So,

α(c0 − c1)− βc1 = 0

and

c0 =
β + α

α
c1. (2.8)

Next, from the second boundary condition and (2.8) we get

γx(b) + δ∇x(b) = γ
(
c0 + c1(b− a)1 −∇−µ

a f(b)
)
+ δ

(
c1 −∇∇−µ

a f(b)
)
= 0

and also

γ
(β + α

α
c1 + c1(b− a)−∇−µ

a f(b)
)
+ δ

(
c1 −∇1−µ

a f(b)
)
= 0

γ
(β + α

α
c1 + c1(b− a)

)
+ δc1 −

(
γ∇−µ

a f(b) + δ∇1−µ
a f(b)

)
= 0

c1

(
γ
(β + α

α
+ b− a

)
+ δ

)
= γ∇−µ

a f(b) + δ∇1−µ
a f(b).

Then it follows that

c1 =
α
(
γ∇−µ

a f(b) + δ∇1−µ
a f(b)

)
d

.
(2.9)
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It is easy to see that d > 0 and now from (2.8), we have

c0 =
β + α

α
c1

=

(
β + α

)
d

(
γ∇−µ

a f(b) + δ∇1−µ
a f(b)

)
.

Hence from (2.7) and (2.9), we have

x(t) = c0 + c1(t− a)1 −∇−µ
a f(t)

=
β + α

d

(
γ∇−µ

a f(b) + δ∇1−µ
a f(b)

)
+

α

d

(
γ∇−µ

a f(b) + δ∇1−µ
a f(b)

)
(t− a)−∇−µ

a f(t)

=
β + α

d

(
γ

∫ b

a

Hµ−1(b, ρ(s))f(s)∇s+ δ

∫ b

a

Hµ−2(b, ρ(s))f(s)∇s
)

+
α

d

(
γ

∫ b

a

Hµ−1(b, ρ(s))f(s)∇s+ δ

∫ b

a

Hµ−2(b, ρ(s))f(s)∇s
)
(t− a)

−
∫ t

a

Hµ−1(t, ρ(s))f(s)∇s

=
α(t− a+ 1) + β

d

∫ b

a

(
γHµ−1(b, ρ(s)) + δHµ−2(b, ρ(s))

)
f(s)∇s−

∫ t

a

Hµ−1(t, ρ(s))f(s)∇s

=

∫ b

a

Gµ(t, s)f(s)∇s.

Hence for s ∈ Nt
a+1 and t ∈ Nb

s,

Gµ(t, s) = v(t, s) := u(t, s)−Hµ−1(t, ρ(s))

=
α(t− a+ 1) + β

d

(
γHµ−1

(
b, ρ(s)

)
+ δHµ−2

(
b, ρ(s)

))
− (t− ρ(s))µ−1

Γ(µ)
.

Also, for s ∈ Nb
t+1 and t ∈ Ns−1

a or s ∈ Nb
a+1,

Gµ(t, s) = u(t, s) :=
α(t− a− 1) + β

d

(
γHµ−1

(
b, ρ(s)

)
+ δHµ−2

(
b, ρ(s)

))
.

Noting that u(t, s) = v(t, s) when t = ρ(s), we can also write the Green’s function as v(t, s) for ρ(s) ≤ t and u(t, s)

for t ≤ ρ(s) for (t, s) ∈ Nb
a−1 × Nb

a+1. Thus, we have x(t) =

∫ b

a

Gµ(t, s)f(s)∇s, where Gµ(t, s) is given by (2.6) are

determined by the boundary value condition (1.2) is shown by the above steps, it follows that

∫ b

a

Gµ(t, s)f(s)∇s is a

solution to the DFBVP (1.1)-(1.2). ⊓⊔□
The next theorem will give a bound of the Green’s function for the DFVBP (1.1)-(1.2).

Theorem 2.12. Let Gµ be defined as (2.6). Then

|Gµ(t, s)| ≤ DHµ−1(b, a), (2.10)

where D :=
(γ + δ)

(
α(b− a+ 1) + β

)
d

for (t, s) ∈ Nb
a−1 × Nb

a+1.

Proof. First, consider (t, s) ∈ Nb
s × Nt

a+1. Then note that from (2.6),

|Gµ(t, s)| =

∣∣∣∣∣γ(b− ρ(s))µ−1 + δ(µ− 1)(b− ρ(s))µ−2

dΓ(µ)

(
α(t− a+ 1) + β

)
− (t− ρ(s))µ−1

Γ(µ)

∣∣∣∣∣ . (2.11)

Now by Proposition 2.9, (t−ρ(s))µ−1 ≥ 0, (t−ρ(s))µ−2 ≥ 0 for t ∈ Nb
s and also (b−ρ(s))µ−1 ≥ 0, (b−ρ(s))µ−2 ≥ 0.

Note that for each i ∈ {0, 1}, (t− a)i =
Γ(t− a+ i)

Γ(t− a)
≥ 0 since (t, s) ∈ Nb

s × Nt
a+1 implies t ≥ a+ 1. Since d > 0 and
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Proposition 2.8, we have

|Gµ(t, s)| ≤ max

{
max
t∈Nb

a

[
γ(b− ρ(s))µ−1 + δ(µ− 1)(b− ρ(s))µ−2

dΓ(µ)

(
α(t− a+ 1) + β

)]
,max
t∈Nb

a

[
(t− ρ(s))µ−1

Γ(µ)

]}
.

Since
(b− ρ(s))µ−1

µ− 1
> (b− ρ(s))µ−2 and D > 1, we have

|Gµ(t, s)| ≤ max

{
max
t∈Nb

a

[
γ(b− ρ(s))µ−1 + δ(b− ρ(s))µ−1

dΓ(µ)

(
α(t− a+ 1) + β

)]
,max
t∈Nb

a

[
(t− ρ(s))µ−1

Γ(µ)

]}

≤ max

{
max
t∈Nb

a

[
(γ + δ)

(
α(t− a+ 1) + β

)
d

(
b− ρ(s)µ−1

)
Γ(µ)

]
,max
t∈Nb

a

[
(t− ρ(s))µ−1

Γ(µ)

]}

≤ (t− ρ(s))µ−1

Γ(µ)
max

{
(γ + δ)

(
α(b− a+ 1) + β

)
d

, 1

}

=
(t− ρ(s))µ−1

Γ(µ)
max {D, 1}

= Hµ−1(b, ρ(s))max {D, 1}
= DHµ−1(b, a).

Next, consider (t, s) ∈ Ns−1
a−N+1 × Nb

max{a+1,t+1}. Then from (2.6), we get

|Gµ(t, s)| =

∣∣∣∣∣γ(b− ρ(s))µ−1 + δ(µ− 1)(b− ρ(s))µ−2

dΓ(µ)

(
α(t− a+ 1) + β

)∣∣∣∣∣
≤ 1

Γ(µ)

∣∣∣∣∣γ(b− a)µ−1 + δ(b− a)µ−1

d

(
α(t− a+ 1) + β

)∣∣∣∣∣
=

1

Γ(µ)

∣∣∣∣∣∣
(
γ(b− a)µ−1 + δ(b− a)µ−1

)(
α(b− a+ 1) + β

)
d

∣∣∣∣∣∣
≤ D

(b− a)µ−1

Γ(µ)

= DHµ−1(b, a).

Hence we have |Gµ(t, s)| ≤ DHµ−1(b, a) for all (t, s) ∈ Nb
a−1 × Nb

a+1. ⊓⊔□

Corollary 2.13. The Green’s function, Gµ(t, s) : Nb
a−1×Nb

a+1 −→ R for the DFBVP (1.1)-(1.2) satisfies the inequality∫ b

a

|Gµ(t, s)| ∇s ≤ DHµ−1(b, a)(b− a).

3 Upper and Lower Solutions

In this section, we present a method of lower and upper solutions for the DFBVP (1.1)-(1.2) and prove the
existence of positive solutions for this problem.

Theorem 3.1 ([9], Theorem(3.123)). Assume that N − 1 < ν < N, f : Na−N+1 −→ R, ∇a∗f(t) ≥ 0 for t ∈ Na+1

and ∇N−1f(t) ≥ 0 for t ∈ Na.

For N = 2, we get following;

Theorem 3.2 ([9], Theorem(3.116)). Assume that f : Nb
a−1 −→ R, ∇µ

a∗f(t) ≥ 0 for each t ∈ Na+1 and ∇f(a) ≥
q0 with 1 < µ ≥ 2. Then ∇f(t) ≥ 0, for t ∈ Na.
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Theorem 3.3. (Schauder-Tychonov Fixed Point Theorem) Let X be a Banach space. Assume that K is a closed,
bounded, convex subset of X. If T : K −→ K is compact, then T has a fixed point in K.

Theorem 3.4. Assume that f is continuous on [a − 1, b] × R. If M > 0 and DHµ−1(b, a)(b − a) ≤ M

Q
where Q > 0

satisfies

Q ≥ max{|f(t, x)| : t ∈ [a− 1, b], |x| ≤ M},

then the DFBVP (1.1)-(1.2) has a solution.

Proof. Define B to the Banach space of all continuous functions on Nb
a equipped with the norm ∥.∥ defined

by

∥x∥ := max
t∈[a−1,b]

|x(t)| for all x ∈ B.

Let K := {x ∈ B : ∥x∥ ≤ M}.

It can be shown that K is a closed, bounded and convex subset of B. Define T : K −→ B by

Tx(t) :=

∫ b

a

Gµ(t, s)f(s, x(s− 1))∇s

for t ∈ [a− 1, b]. It is easy to shown that T : K −→ B is continuous. Let x ∈ K and consider

|Tx(t)| =

∣∣∣∣∣
∫ b

a

Gµ(t, s)f(s, x(s− 1))∇s

∣∣∣∣∣
≤

∫ b

a

|Gµ(t, s)f(s, x(s− 1))| ∇s

≤ Q

∫ b

a

|Gµ(t, s)| ∇s

≤ QDHµ−1(b, a)(b− a)

≤ M,

for all t ∈ [a, b]. This implies that ∥Tx∥ ≤ M . Hence T : K −→ K. Using the Arzela-Ascoli theorem it can be shown
that T : K −→ K is a compact operator. Hence T has a fixed point x in K by the Schauder-Tychonov theorem. This
implies that x is a solution of the boundary value problem (1.1) and (1.2). ⊓⊔□

Corollary 3.5. If f is continuous and bounded on [a− 1, b]× R, then the DFBVP (1.1)-(1.2) has a solution.

We define the set

H := {y : ∇µy is continuous on Na−1}.

For any u, v ∈ H, we define the sector [u, v] by

[u, v] = {w ∈ H : u ≤ w ≤ v}.

Definition 3.6. We say that u ∈ H is called a lower solution of DFBVP (1.1)-(1.2) on Nb
a−1 provided

−∇µ
a∗u(t) ≥ f(t, u(t− 1)), t ∈ Nb−1

a+1

αu(a− 1)− β∇u(a) ≤ 0,

γu(b) + δ∇u(b) ≤ 0.

Similarly, v ∈ H is called upper solution of (1.1)-(1.2) on Nb
a−1 provided

−∇µ
a∗v(t) ≤ f(t, v(t− 1)), t ∈ Nb−1

a+1

αv(a− 1)− β∇v(a) ≥ 0,

γv(b) + δ∇v(b) ≥ 0.
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We will prove that when the lower and upper solutions are given in the well order, i.e. u ≤ v, DFBVP (1.1)-(1.2)
has a solution admit lying between both functions.

Theorem 3.7. Let f : Nb
a−1 −→ R be continuous functions. Assume that u and v are respectively lower and upper

solutions for the DFBVP (1.1)-(1.2) such that u ≤ v on Nb
a−1. Then the problem (1.1)-(1.2) has a solution x ∈ [u, v]

on Nb
a−1.

Proof. Consider the following DFBVP

−∇µ
a∗x(t) = F (t, x(t− 1)), t ∈ Nb−1

a+1 (3.1)

αx(a− 1)− β∇x(a) = 0,

γx(b) + δ∇x(b) = 0
(3.2)

where

F (t, ζ) =


f(t, v(t− 1)) +

ζ − v(t)

1 + |x(c)|
, ζ ≥ v(t),

f(t, ζ) u(t) ≤ ζ ≤ v(t),

f(t, u(t− 1)) +
ζ − u(t)

1 + |x(c)|
, ζ ≤ u(t),

for t ∈ Nb
a−1.

Clearly, the function F is bounded for t ∈ [a − 1, b] and ζ ∈ R, and is continuous in ζ. Thus, by Corollary 3.5,
there exists a solution x(t) of the the DFBVP (3.1)-(3.2).

We claim that x(t) ≤ v(t) for t ∈ Nb
a−1. If not, from the boundary conditions we know that x(t) − v(t) has a

positive maximum solutions at some c ∈ Nb−1
a . Since

−∇µ
a∗x(c) = F (c, x(c− 1))

= f(c, v(c− 1)) +
x(c)− v(c)

1 + |x(c)|
> f(c, v(c− 1))

≥ −∇µ
av(c),

we have ∇µ
a∗

(
x − v

)
(c) ≤ 0. Also we know ∇(x − v)(a) ≤ 0, using (x − v)(t) has a positive max of x = a. So from

Theorem 3.1 we get

∇(x− v)(c) ≤ 0, c ∈ Nb−1
a ,

which is contradiction with maximum of t = c. It follows that x(t) ≤ v(t) on Nb−1
a+1.

Similarly, we have u(t) ≤ x(t) on Nb−1
a+1.

Also, from the first boundary condition we get αx(a− 1)−β∇x(a) = αx(a− 1)−β
(
x(a)−x(a− 1)

)
= 0 and from

Definition 3.1 we get αu(a− 1)− β∇u(a) = αu(a− 1)− β
(
u(a)− u(a− 1)

)
≤ 0. Thus, we have

(α+ β)(u− x)(a− 1) ≤ β(u− x)(a) ≤ 0.

That is to say (u− x)(a− 1) ≤ 0, so u(a− 1) ≤ x(a− 1).

On the other hand, from the second boundary condition we get γx(b)+ δ∇x(b) = 0 and from Definition 3.1 we get
γu(b) + δ∇u(b) ≤ 0. Thus, we have

(γ + δ)(u− x)(b)− δ(u− x)(b− 1) ≤ 0.

That is to say (u− x)(b) ≤ 0, so u(b) ≥ x(b).
Similarly, we get x(a− 1) ≤ v(a− 1) and x(b) ≤ v(b). So, we have u(t) ≤ x(t) ≤ v(t) for t ∈ Nb

a−1. ⊓⊔□

Example 3.8. Consider the following DFBVP

−∇µ
1∗x(t) = −e−x(t−1) + x(t− 1), t ∈ N9

2

x(0)− 2∇x(1) = 0,

x(10) +∇x(10) = 0.

It is easy to check that u(t) = 0 is a lower solution and v(t) = 1 is an upper solution of the problem. Thus, by Theorem
3.4, problem has a solution x(t) ∈ [0, 1] on t ∈ [0, 10].
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