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Abstract

Traditional techniques of the Helmert model are known to be used for the purpose of smoothing the data. Therefore,
the special Helmert robust technique is adopted in this research to reach the internal and external reliability and
suitability for the data using observed points and corresponding weights, which form the objective of this study. The
least-squares method poorly performed in the presence of outliers, in comparison with the use of the robust traditional
techniques, to reduce the outliers’ impact. Geodetic reliability consists of two basic components: internal reliability and
external reliability, which are critical measures of validating the model. Through the analyses, the internal reliability
values represented by the minimum detectable bias become larger, increasing the reliability value and decreasing the
probability of error. After comparing the two methods, the best method was chosen based on the final value of the
probability of error. The values of the measuring parameters were modified accordingly. This method is essential
to determine the reliability of the model and is bound by the effect of observations on the estimated variance of the
parameters. Depending on the using various methods to estimate the reliability of the Helmert model, the results
indicated that the suggested robust M method is the most accurate. And in this contribution, the minimum detectable
bias was used to determine the outliers in the Gauss-Helmert model. The results showed that the robust M method
has the ability to detect outliers and reduce their impact by calculating the value of the Mean Absolute Percentage
Error.
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1 Introduction

The German geodesist F. Helmert made significant contributions to the least-squares theory [1]. The precision of
the Gauss-Helmert model (GHM) least-squares method has proven to be one of the most versatile techniques available
for estimating unknown (constant) parameters in a nonlinear functional model. The model uses simple elevation grids
and a GPS simulation study, and adjusts the reliability numbers for correlated observations. To discover outliers
between unconnected observations, the relative size between the catalyst for the residuals and the corresponding
observation must be verified [10]. Two common problems in weighted iterative least-squares were solved in geodesy,
namely linear regression and affine transformation, using real and simulated data. The results were identical to

∗Corresponding Author
Email addresses: hala.obead@aliraqia.edu.iq (Hala Kadhum Obead), aseel.shakir@aliraqia.edu.iq (Aseel Mahmood Shakir),

dr.saifhkamar@gmail.com (Saifaldin Hashim Kamar)

Received: February 2022 Accepted: May 2022

http://dx.doi.org/10.22075/ijnaa.2022.27462.3609


2566 Obead, Shakir, Kamar

the nonlinear Gauss-Helmert model, and the difference in unit weight was estimated based on the difference in the
covariance matrix in the estimate.

This formula allows the researcher to obtain internal and external reliability and to apply a data snooping procedure
that identifies remote measurements [2]. Helmert’s model was analysed using a single scattering matrix that focuses
on the necessary conditions in the presence of a unique solution for the remainder vector and the parameter vector
as this solution holds specific statistical characteristics [8]. In order to easily obtain the total least-squares estimates
(TLS) within the EIV model, as the conversion example shows the similarity in planar coordinates through accurate
evaluation of Helmert’s model, the weights are presented without additional restrictions Neitzel [7] and Koch [5] used
the EM algorithm to detect outliers in the Gauss-Helmert model based on the variance amplification and the shift
model mean that slightly changes the weights of observations from one repetition to another. The previous sequence
results in a slight change in the estimated parameters as estimates can be presented in approximation of the linear
iterations of the GH model.

Furthermore, one the most robust estimation techniques that was used to control the effect of outliers, especially
after the least-squares estimates, have shown poor performance in the presence of major errors. Encompassing two
basic components, external and internal, geodetic reliability is considered an essential tool of measurements for the
validation of any model. Both components are important diagnostic tools for inferring the validity of a model. The
contrast characteristics of the internal and external reliability measures of a given robust estimator are addressed.
During the iterative re-weighing procedure of disjointed observations, the internal reliability measures as represented
by minimum detectable bias become increasingly larger [4].

This paper first calculated the value of the least squares method and the robust estimator for the uncorrelated
observations and the internal and external reliability measures for the robust estimator. Afterwards, the paper
concluded with an example of a number linked to the simulation and the internal and external reliability measure that
showed the smallest size of the total errors.

2 Model Description

2.1 Helmert Model

Helmert’s model was used in geodesy as used in the indoor imaging camera and photographic sciences. The model
can be written as follows [3], [6]:

w = By = Aξ +Be, e ∼ (0, σ0
2P−1) (2.1)

where:

w is a vector of the linear combination of a random vector y of rank (2n× 1).

B is non-random matrix of rank (2n× 2n).

y is a dependent variable of rank (2n× 1).

A is non-random matrix of rank (2n× 6).

By using the weighted least squares method to model 2.1, the result is:

ξ = (A′(BP−1B′)−1A)−1A′(BP−1B′)−1w. (2.2)

However, the natural equations in 2.1, that leads to equation 2.2, provide a solution to the Lag-range vector
λ̂ = −(BP−1B′)−1(w − Aξ̂)A. A necessary condition of Lag-range Euler is that the observed residual vector can be
directly calculated:

ẽ = P−1B′(BP−1B′)−1(w −Aξ̂) (2.3)

substituting ξ̂ into 2.3 the result is:

ẽ = P−1B′(BP−1B′)−1(I −A(A′(BP−1B′)−1A)−1A′(BP−1B′)−1)w (2.4)

with
N = A′(BP−1B′)−1A and P = (BP−1B′)−1.
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Let I be the identity matrix. Then

ẽ = P−1B′P̄
(
I −AN̄−1A′P̄

)
w.

The residual cofactor matrix may be computed from 2.4

Qẽ = P−1B′P̄
(
I −AN̄−1A′)BP−1 (2.5)

whereas
ẽ = PQẽy (2.6)

where PQẽ represent the Reliability matrix.

2.2 Robust M-estimator

In the case of extreme values, the study resorted to the robust methods based on the M-estimation to reduce the
error to a minimum compared to the traditional methods.

min = ẽ′ẽ (2.7)

ẽ = y −B−1Aξ (2.8)

∑∑
ρ
(
y −B−1Aξ

)
(2.9)

∑∑
Aψ

(
y −B−1Aξ

)
= 0 (2.10)

∑∑
ρ

(
y −B−1Aξ

σ2
ẽ

)
(2.11)

W ∗ =
ψ
(

y−B−1Aξ
σ2
ẽ

)
y−B−1Aξ

σ2
ẽ

(2.12)

σ2
ẽ = 1.483 (Median |ẽ−Median (ẽ)|) (2.13)

ρ(ẽ) =

[
G2(1− cos(ẽ/G)) |ẽ| ≤ Gπ
2G2|ẽ| > Gπ

]

ψ(ẽ) =

[
G sin(ẽ/G)|ẽ| ≤ Gπ
0|ẽ| > Gπ

]
G = 1.339, π = 4.13.

The robust estimators are obtained when estimating the value of ψ in 2.2:

ξRob =
(
A′ (BW ∗−1 B′)−1

A
)−1

A′ (BW ∗−1 B′)−1
w. (2.14)

3 Variation of reliability measures in the Robust M- estimator

Reliability refers to the range the measurements of which are free of errors. Such range helps establishing consistency
between the measurements of a variable. The robust M-estimator is treated when outliers are present and are resistant
to influence, where reliability measures are used to remove the effect of outliers on the estimating parameters.

When estimating the equation 2.6 in robust, the result is:

ẽ = p̄Q̄ẽy (3.1)
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3.1 Internal Reliability Measures

In reliability theory, Minimum Detected Bias (MDB) describes the size of the model’s errors that can be calculated
by a standardized test [4]. The Internal Reliability Measures can be formulated as:

MDBi = σ0

√
λ0

(PQë)ii
(3.2)

where λ0 represents the non-centrality parameter and
√
λ0 =4.13 [10].

σ0

√
λ0

(P k−1Qk−1
ẽ)ii

≤ σ0

√
λ0

(pkQk
ẽ)ii

Note that MDB values are larger after the iterative reweighting procedure. It is considered an important diagnostic
tool in monitoring data quality [11].

3.2 External Reliability Measures

External reliability (Bias Ratio Noise BRN) has more practical value than internal reliability. If external factors
that affect the estimation of the parameter are not disclosed, they are rendered to be of little importance. Then, the
External Reliability Measures can be formulated as:

BNRi =
√
λo(1/rii − 1) (3.3)

where rii is the diagonal element of matrix (I −Qe).

4 Result and discussion

4.1 Simulation

The data has been generated based on the Helmert model 2.1, and three samples were generated to simulate this
model (5, 10, and 15 observations). Helmert’s method was compared with the robust Helmert method depending on
the polluting data (10%, 20%, 30%) by calculating the absolute mean percentage error (MAPE) for two methods [?
? ].

Table 1: Estimating parameters using the Helmert method and the robust Helmert’s method for all sample sizes with
contamination ratios (10%, 20%, 30%)

n Parameter
Contamination ratios

10% 20% 30%

Helmret
Robust
Helmret

Helmret
Robust
Helmret

Helmret
Robust
Helmret

5

a1 1.5395 2.9075 10.3162 11.3808 7.4969 1.5017
b1 -2.0494 -2.6733 -6.2168 -6.6844 -3.8728 -0.9718
c1 53.6241 46.3854 44.8353 37.819 25.8699 33.7373
a2 -0.0886 0.0371 -8.6907 -10.202 -4.8684 -2.349
b2 1.2222 1.215 5.384 6.1905 2.1319 1.1225
c2 16.9134 16.4198 -9.9297 -8.9948 42.0441 26.3691

10

a1 1.7013 -0.8727 -2.1181 -2.2856 3.7496 1.9046
b1 -1.0563 0.1037 1.096 1.2613 -1.9004 -0.9788
c1 6.5254 9.3969 21.9121 14.2662 8.323 6.2181
a2 -2.625 2.2091 -3.7273 -1.3414 -5.5345 -4.323
b2 1.7507 -0.4659 1.8363 0.7653 2.6074 2.2798
c2 16.0367 6.5629 23.4835 13.4696 46.4319 29.3334
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15

a1 -44.0441 -12.8265 -1.3378 5.9715 2.3563 2.1149
b1 22.0128 6.4862 0.29 -3.1636 -1.5974 -1.3656
c1 38.6382 16.8788 34.1869 15.1965 40.1551 31.0723
a2 28.0617 13.1099 -1.2527 0.7881 1.3605 -1.686
b2 -14.0331 -6.3388 0.9699 0.0733 -0.5454 1.1618
c2 2.2733 -0.6078 9.0134 2.2448 17.5678 7.8646

Table 2 shows the parameters estimated according to the two methods used. In general, it is noted that the values
of the estimates are close to each other according to the pollution rates and the sample size adopted in generating the
data. It can also be inferred that the robust Helmert method performed better, according to Table 3 based on MAPE.
Hence, it is noted that MAPE increases. In most cases, it is possible to see an increase in MAPE and an increase in
rates of pollution based on the sample size.

Table 2: MAPE using the Helmert method and the robust Helmert method for all sample sizes with contamination
ratios (10%, 20%, 30%)

Contamination ratios

n
10% 20% 30%

Helmret
Robust
Helmret

Best Helmret
Robust
Helmret

Best Helmret
Robust
Helmret

Best

5 5.8463 5.0766
Robust
Helmret

5.5161 5.1547
Robust
Helmret

13.9561 13.9965 Helmert

10 4.2001 3.5087
Robust
Helmret

11.8601 9.5952
Robust
Helmret

16.3532 13.7911
Robust
Helmret

15 8.9792 7.0931
Robust
Helmret

12.6245 9.4607
Robust
Helmret

18.4402 16.095
Robust
Helmret

4.2 Real Data

Depending on observed points and corresponding weights according to [9], the parameters were estimated using
the Helmert method and the robust Helmert method, the data of which is represented in Table 4, and the differences
in the estimated values can be seen.

Table 3: Neri’s Data for 2-D line-fitting: coordinate pairs (xi, yi)

Point No.
Observation
x y

1 5.9 0.0
2 5.4 0.9
3 4.4 1.8
4 4.6 2.6
5 3.5 3.3
6 3.7 4.4
7 2.8 5.2
8 2.8 6.1
9 2.4 6.5
10 1.5 7.4

Table 4: Parameter estimators using the Helmert method and the robust Helmert method

Parameter Helmret method Robust Helmret method
a1 -2.0301 0.3440
b1 -5.8994 -0.0730
c1 40.2287 10.4663
a2 0.1698 0.9626
b2 -0.8842 1.0768
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c2 6.7133 -3.3392

It can be seen that the estimated values using the robust Helmert method approach the original values of (y)
better than the Helmert method through Table 5. This is confirmed by the spread of the estimated (y) values shown
in Figure. 1.

Table 5: Estimators (y) using the Helmert method and the robust Helmert method

Observations y Helmret method Robust Helmret method
1 5.9 9.8373 8.2891
2 5.4 9.0703 7.5377
3 4.4 6.5734 5.2800
4 4.6 7.0409 5.7692
5 3.5 3.2558 3.1835
6 3.7 3.9636 3.9261
7 2.8 3.2373 2.1459
8 2.8 2.8749 1.8146
9 2.4 0.4489 0.9301
10 1.5 -1.2651 -0.7380
11 0.0 -2.6397 -3.4147
12 0.9 -1.6143 -2.3476
13 1.8 -0.4166 -0.0847
14 2.6 0.6315 1.0170
15 3.3 3.5734 3.1937
16 4.4 4.6500 4.3230
17 5.2 6.8103 6.8875
18 6.1 7.5577 7.6927
19 6.5 8.1434 9.2485
20 7.4 9.0500 10.2245

Figure 1: Estimated (y) values

Relying on calculating MAPE can be ascertained that the robust Helmert method is better compared to the
Helmert method where MAPE is 1.7091 for Helmret method and 1.5816 for Robust Helmret method. In addition, it



Reliability analysis of Helmert model for Robust M-estimator 2571

can be observed in Figure. 2 that the high internal reliability values are dependent on the robust Helmert method
while the external reliability is low, as shown in Figure. 3.

Figure 2: Internal Relability using Robust Helmert mothed

Figure 3: External Relability using Robust Helmert mothed

5 Conclusion

This study used robust evaluation techniques on a large scale to deal with the effects of outliers. To achieve
that, reliability scales were used to determine the likelihood of outliers being detected so that their influence can
be suppressed. The results showed that the internal reliability values increased dramatically during the iteration
process against a decrease in the external reliability. The robust M method contributed to achieving good results in
terms of adjusting the data and calculating the internal and external reliability by comparing mean values of absolute
percentage error for both methods, The Minimum Detected Bias and Bias ratio noise showed the smallest size of the
total errors when using the robust M method.
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