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Abstract

The Compressible MHD resistance equations were written for the IR T1 tokamak configuration with one or two
singular surfaces for density mass profiles. And they are linearized around equilibrium state. The eigenvalues and
eigne functions of the resistive MHD modes were obtained for poloidal and toroidal mode numbers numerically by
Mathematica software for homogeny and in homogeny plasma. The values obtained show that the eigenvalues are
complex, and they are placed on certain curves. Also by drawing a diagram of eigne functions, it was determined that
they were damped.
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1 Introduction

For the understanding of ideal and resistive Magnetohydrodynamic MHD plasma phenomena such as heating,
stability, study of linearized motion has significantly provided. The most total picture is gotten by means of a normal-
mode analysis [4, 8, 9]. Since the analysis is entirely difficult both analytically and numerically. Simpler methods
have been expanded. Knowledge of the ideal problem was used to expand a spectral code of solving for the complete
spectra of compressible resistive MHD. By using of Mathematica software discretization leads the general complex
eigenvalue problem Ax ≡ λBx. Inverse vector iteration, which keeps the band structure of the matrices, discovers
selected eigenvalues and allows total parts of the complex spectrum to be continually arranged even in cases of large
matrix dimension. This plan is suited to analyzing the complex resistive spectrum. The resistant MHD equations
are not self-adjoint and the ideal spectrum which is a continuous spectrum completely, is removed and damped waves
appear. Using the analysis of cylindrical geometry, complex eigenvalues were obtained which are located on certain
curves. We study the resistive Alfven modes in detail for experimentally relevant configurations. Our numerical
scheme yields an accuracy resulting in much finer details of the spectrum. Complete results can thus be given. It
is found that the ideal continua disappear and are approximated only at the end points and a few selected interior
points. The interior points are present in terms of the ideal Alfven dispersion relation ωA ≡ |k.B0|/

√
ρ0, where k is

wave vector of the perturbation and B0 the equilibrium magnetic field; ρ0 is the density. Configurations with magnetic
shear and with one or two resonant surfaces in the plasma are treated. The eigenvalues locate on specific curves in
the complex plane which become independent of resistivity. In this fusion the spectrum is arranged completely for
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configurations where three or four branch points are involved in the eigenvalue curves [5, 6, 8]. In this paper, we
examine the subtle structure of the resistance spectrum to obtain results in internal Alfvén modes in order to find
an effective mechanism that is highly desirable in a variety of ways with Mathematica software. In previous papers
[4, 5] the spectrum obtained is for constant mass density. While in this work, we have used variable mass density.
The paper was organized as follows: the physical model which is the common compressible resistive MHD model was
presented in the section 2 and the results for different type of density, for tokamak like equilibria with singular surface
k.B0 = 0 for m = 1, 2, 3 were obtained. Then the case with two resonant surfaces in the plasma was discussed in
section 3 and finally the discussions are in section 4.

2 Simulation Method

Since in the plasma, the ensemble of particles exhibit collective behavior, it can be defined in terms of single fluid
theory. In the tokamak device a toroidal current in the plasma generates a poloidal magnetic field. This poloidal field
with the toroidal field, come equilibrium and heats the plasma. The resistance magnetohydrodynamic equations study
in normalized, dimensionless form consists of [4]:

1. equation of motion:

ρ

(
∂V⃗

∂t
+ V.∇V

)
= −∇P + (∇×B)×B, (2.1)

2. Maxwell-Ohm:

∂B

∂t
= ∇× (V ×B)−∇× (η∇×B), (2.2)

3. Adiabatic law:

∂P

∂t
= −γP∇.V − V.∇P, (2.3)

4. Maxwell:

∇.B = 0. (2.4)

where B the magnetic field, V velocity of the fluid, P the pressure, ρ the mass density, η is the resistivity, γ is
the ratio of the specific heats. Physical quantities are normalized using the characteristic length L, which is the same
as the scale of Alfvenic units, a characteristic magnetic field strength B0, and a characteristic density ρ0. Velocities
are then presented in terms of the Alfven speed VA ≡ B0/

√
µ0ρ0, time in terms of τA = L/VA. Notice that the

supposition of incompressibility ∇.V = 0 is not made [3, 6, 8]. If the pressure variations are small compared with
the mean thermodynamic pressure, the incompressible equations of motion accurately indicate the plasma behavior.
Since the resistive modes rapidly oscillate, the compressible set of equations is appropriate. Since the dissipation
proportional to η is considered to be small, the adiabatic law is adopted for the equation of state. At this point these
equations become linear around a static equilibrium denoted by ∂/∂t = 0. And V0 = 0. The equilibrium is then
defined by the equation [2].

∇P0 = (∇×B0)×B0 (2.5)

We use a cylindrical symmetry approximation to calculate the resistive spectrum, because an IR-T1 tokomak has
inverse aspect ratio a/R0 = 12.5/45 = 0.27 [9-10] and a circular cross section. In straight geometry static, ideal
equilibria can be interpreted as resistive equilibria if ∇×η(∇×B0) = 0, with the consequence that η0j0 = Ez = const.
In toroidal geometry a resistive equilibrium is only possible with flow. i.e. V0 = 0. It is proportional to η and hence
very small. Here we take the simplest approach of a constant resistivity η0 instead constant Ez. This simplification
does not establish any restriction on unstable modes, since the resistivity decouples the magnetic field from the fluid
in localized regions where the perturbation corresponds the field. But also the results for stable modes are only
insignificantly modified by using constant resistivity. The equilibrium quantities for a cylindrical symmetry only have
an r-dependence. With the usual cylindrical coordinates r, θ, z the equilibrium is determined by the following equation
[2]:
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∂P0

∂r
= −1

r
Bθ

∂

∂r
(rBθ)−Bz

∂

∂r
Bz. (2.6)

With two profiles, and solving the Eq. (2.6), the last profile can be obtained. Equilibrium profiles in plasma
boundary conditions are selected so that the safety factor from q0 = 2 on axis to q1 = 4. The perturbations from the
equilibrium are follows:

V (r, t) = v(r, t)

B(r, t) = B0(r, t) + b(r, t)

P (r, t) = P0(r, t) + p(r, t)

The following function is suitable for separating perturbed quantities:

f(r, θ, z, t) = f(r) exp(imθ + ink + iωt), (2.7)

where f(r) is the amplitude of perturbation, ω is the Eigen frequency.

The growth rate λr = Re(iω) is denoted as the real part of λ = iω.n is the toroidal mode number, and m is related
to the poloidal mode number. Finally k = 2π/L explains a periodicity length. In ideal MHD λ is either real or purely
imaginary, which cause to unstable or purely oscillating waves. By including resistance, the frequency can be complex.
The equations for the perturbed quantities v, p and b are follows [4]:

iωρ0v = −∇p+ (∇×B0)× b+ (∇× b)×B0, (2.8)

iωp = −γP0∇.v − v.∇P0, (2.9)

iωb = ∇× (v ×B0)−∇× (η∇× b). (2.10)

The perturbation resistance is considered to be zero, so the ripple mode is eliminated [4]:

iωρ0
v1
r

= −

[
P̂

r
+

1

m
Bθb

′
1 +

(
Bz −

1

m
Bθ

)
b3
r

]′
+

1

r

(m
r
Bθ + nkBz

)
b1 −

2

rm
Bθb

′
1 +

2nk

rm
Bθb3. (2.11)

iωρ0rv2 =
m

r
p̂+

(
1

r
Bθ +B′

θ

)
b1 −

nkr

m
Bzb

′
1 +

(
n2k2r

m
+

m

r

)
Bzb3. (2.12)

iωρ0
v3
r

=
nk

r
p̂−

(
n2k2

m
+

m

r2

)
Bθb3 +

nk

m
Bθb

′
1 +B′

z

1

r
b1. (2.13)

iω
p̂

r
= −1

r
p̂′v1 − γp0

1

r
v′1 − γp0

m

r
v2 − γp0

nk

r
v3 (2.14)

iωb1 = −
(m
r
Bθ + nkBz

)
v1 + η0

[
b′′1 +

1

r
b′1 −

(
m2

r2
+ n2k2

)
b1 −

2nk

r
b3

]
. (2.15)

iωb3 = −Bzv
′
1 −mBzv2 +

m

r
Bθv3 −B′

zv1 + η0

[(
b′3 −+

b3
r

)′

+
1

r
b′1 −

(
m2

r2
+ n2k2

)
b3

]
. (2.16)

The variable changed to v1 = rvr, v2 = ivθ, v3 = irvz, p̂ = rp1, b1 = irbr, b3 = rbz. for preserve the Eq. (2.6)
components {v1, v2, v3, p̂, b1, b3} as real quantities [3, 4, 5, 6, 8]. The poloidal component bθ ≡ b2 of the perturbed
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b-field was eliminated by means of the divergence-free condition ∇.b1 = 0, −i/r(b′1 −mb2 − nkb3) = 0 which will be
obtained for poloidal modes, m ̸= 0.

We now discuss the boundary conditions. Plasma is assumed to be surrounded by a perfectly conductive wall,
which indicates the following conditions at the wall: b1(a) = 0, v1(a) = 0 and all quantities at the origin r = 0
are assumed to be known, b1(0) = 0, b3(0) = 0, v1(0) = 0, v3(0) = 0, p̂(0) = 0. The eigenvalue problem of Eqs.
(2.11),(2.12),(2.13),(2.14),(2.15),(2.16) obtains of a system of coupled ordinary differential equations (ODEs) which
can be symbolically exhibited as Ax ≡ λBx where λ is eigenvalue, and x is eigenvector, these are in general, complex.
A is a general, non-Hermitian matrix and B is symmetric and positive certain.

Since in our problem A and B are real matrices, the eigenvalues appear in complex conjugate pairs.

3 Result

3.1 First approximate

A tokamak-like equilibria current density j, and constant toroidal field is given by

jz = j + 0(1− r2/a2)2, (3.1)

Bz = 1, (3.2)

The plasma assumed to be homogeneous, so ρ = 1. For these profiles the safety factor, which is defined as usual as

q(r) =
rkBz(r)

Bθ(r)
. (3.3)

q(r) =
6k

j0[(r/a)4 − 3(r/a)2 + 3]
. (3.4)

The ratio of on surface and on axis is q(a)/q(0) = 3. The constant j0 in Eq (3.1) is used to vary q(0) and is chosen
such that the resonant surface is in the middle of the plasma; i.e. q(0) with q(rs) = 2 and rs = 0.5a. By using of
equation:

j0 = (∇×B0)

jz =
1

r

d

dr
(rBθ) (3.5)

Bθ is fined. Then by using eq. (2.6) we calculate:

p0 = j20/6

[
1

10

[(
1− (r/a)

10
)]

− 5

8

[(
1− (r/a)

8
)]

+
5

3

[(
1− (r/a)

6
)]

− 9

4

[(
1− (r/a)

4
)]

− 3

2

[(
1− (r/a)

2
)]]
(3.6)

Frequency of Alfven wave is [5]:

ωA(r) = |k.B0|/
√
ρ

ωA(r) =
((m

r

)
Bθ + nkBz

)
/
√
ρ (3.7)

The value j0 is chosen such that the resonant surface is lies in the middle of the plasma which means that the
wave vector of the perturbation is perpendicular to the magnetic field in that location, i.e. F = k.B0|r=rs = 0 with
q(rs) = 2 and rs = 0.5a. and k = 0.1 [5]. To my concern, the problems related to non-hermitian operators don’t have a
unique approach. Direct or iterative methods can usually be chosen to solve large numerical systems. we apply of the
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Figure 1: The Complete resistive spectrum for jz = j0(1− r2/a2)2, homogene plasma ρ = 1

Mathematica software for solving the resistive MHD equations. The eigenvalues and eigenvectors are obtained. The
complex eigenvalues are exhibited in Fig. 1. λR represents the growth rate and λi represents the oscillation frequency.

The Alfven mode spectra for n = 1 and m = −2 is showed in Fig. 2.

The sound mode spectrum is concentrated close to the origin and has a more complicated structure.

The sound modes are not well resolved at this scale and are therefore omitted from this and the following graphs.

Eigen functions corresponding to the respective modes in the branches have different numbers of radial oscillations.
For a given branch, the number of oscillations from the endpoints on the imaginary axis increases until this number
becomes infinite at the cumulative points corresponding to and −∞ on the real axis [5]. By using eq. (3.7), ωA(a) =
0.18, that correspond with Fig. 2.

Figure 2: The resistive Alfven spectrum for jz = j0(1− r2/a2)2, for ρ = 1, η = 10−5, n = 1, m = −2.

In Fig. 3 for the perturbed field b1 = irbr is displayed. This perturbation has a finite value at the singular surface.
Perturbed velocity v1 = rvr, displayed in Fig. 4.

These, Normal components have a limited value at the singular surface.

In tokamak IR-T1 toroidal mode number and poloidal mode number are: n = 1, m = 1, m = 2, m = 3.
Calculation is repeated for m = −1 and m = −3, so we set:



1764 Rahmani, Salar Elahi, Ghoraneviss

Figure 3: Normal component of the perturbed rnagnetic field b1 = irbr, with the singular surface at r = 0.5a.

Figure 4: Normal component of the perturbed velosity v1 = rvr, with the singular surface at r = 0.5a.

jz = j0(1− r2/a2)2, ρ0 = 1.

p0 = j20/6

[
1

10

[(
1− (r/a)10

)]
− 5

8

[(
1− (r/a)8

)]
+

5

3

[(
1− (r/a)6

)]
− 9

4

[(
1− (r/a)4

)]
− 3

2

[(
1− (r/a)2

)]]
The eigenvalue distribution of the m = −1 and m = −3 modes are shown in Fig. 5 and Fig. 6 respectively.

Figure 5: The resistive Alfven spectrum for a tokamak-like current profile, homogene plasma for η = 10−5, n = 1, m = −1, k = 0.2.
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Figure 6: The resistive Alfven spectrum for jz = j0(1− r2/a2)2, homogene plasma for η = 10−5, n = 1, m = −3, k = 0.2.

3.2 Second approximate

We now consider configurations with two singular surfaces, such as occur in the building up phase of tokamaks
and in hollow temperature and current profiles frequently watched. It is explained by

jz = j0(1 + 10r2/a2)(1− r2/a2)3,

Bz = 1

ρ = 1. (3.8)

For q(0) = 2.5 the singular surfaces are placed at r/a = s1 = 0.30 and r/a = s2 = 0.73. A pronounced dip happens
at the center. The Alfven frequency ωA(r) has two zero transitions with a maximum in between at r/a = re = 0.52.
By using equations (2.6) and (3.5) we read:

p0 = j20/8

[
2
(
1− (r/a)2

)
+

21

2

(
1− (r/a)4

)
− 23

3

(
1− (r/a)6

)
− 485

8

(
1− (r/a)8

)
+

1533

10

(
1− (r/a)10

)
−2023

12

(
1− (r/a)12

)
− 1417

14

(
1− (r/a)14

)
− 268

8

(
1− (r/a)16

)
+

40

9

(
1− (r/a)18

)]
(3.9)

The resistive Alfven spectrum for k = 0.2, n = 1, m = −2, η = 10−5 is showed in Fig. 7 [4].

Figure 7: The resistive Alfven spectrum for homogene plasma, jz = j0(1 + 10r2/a2)(1− r2/a2)3, η = 10−5, n = 1, m = −2, r/a = s1 =
0.30.

If plasma is considered inhomogeneous, density mass profile is [1].
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ρ = ρ0(1− r2/a2)α (3.10)

in Eq. (3.10) we choose α = 1:

ρ = ρ0(1− r2/a2), ρ0 = 1

jz = j0(1 + 10r2/a2)(1− r2/a2)3,

For the pressure profile in Equation (3.9). The calculations are repeated and the complex eigenvalues are shown
in Figure 8.

Figure 8: The Alfven resistive spectrum for jz = j0(1 + 10r2/a2)(1− r2/a2)3, ρ = ρ0(1− r2/a2), η = 10−5, n = 1, m = −2, k = 0.2.

We set α = 2, so:

ρ = ρ0(1− r2/a2)2, ρ0 = 1

jz = j0(1 + 10r2/a2)(1− r2/a2)3,

The result was showed in Fig. 9:

Figure 9: The Alfven resistive spectrum for jz = j0(1 + 10r2/a2)(1− r2/a2)3, ρ = ρ0(1− r2/a2), η = 10−5, n = 1, m = −2, k = 0.2.

We choose the resistivity η = 8 × 10−6 and η = 10−5. The calculates are repeated for ρ = 1, jz = j0(1 +
10r2/a2)(1− r2/a2)3, in Fig. 10 can be seen that in η = 10−5 and η = 9× 10−6 the points of the spectrum are on a
specialized curve.
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Figure 10: The resistive spectrum for jz = j0(1+10r2/a2)(1−r2/a2)3, with two singular surfaces for values of resistivity η = 10−5 (black)
and η = 9× 10−6 (red).

4 Conclusions

To understand the MHD spectrum in the IR-T1 tokamak with cylindrical geometry of plasma for m = 1, m = 2
and m = 3 resistance MHD modes are investigated by solving an eigenvalue problem based on reduced MHD model.
Resistance plasma column surrounded by a perfect conductor wall. We used numerical normal-mode analysis. the
simulations were based on tokamak-like equilibrium profiles for, B(r), jz = j0(1 − r2/a2)v and q(r) on homogene
plasma in the presence of the n = 1, m = −2 instability. We have used by Mathematica software for determination
of eigenvalues and eigenfunctions. Spectrum is lied on especial curve.the results are consistent with other researches.
Presence of the n = 1, m = −2 instability, Eigenfunctions b1(r) and v1(r) are displayed. These are damped. We
repeat the calculation for m = 1 and m = 3. For tokamak-like equilibrium jz = j0(1 + 10r2/a2)(1− r2/a2)3, with two
singular surfaces for homogene plasma and inhomogene plasma spectrum are obtained.

It can be seen that in η = 10−5, η = 9× 10−6 the spectrum points are on some curve. Our result agreement with
other researches [1, 2, 3, 6, 7, 8, 10].
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