New classes of certain analytic functions

H. Özlem Güney ${ }^{\text {a }}$, Mugur $\mathrm{Acu}^{\text {b }}$, Shigeyoshi Owa ${ }^{\mathrm{c}, *}$
${ }^{a}$ Dicle University, Faculty of Science, Department of Mathematics, Diyarbakır, Türkiye
${ }^{\text {b }}$ University "Lucian Blaga" of Sibiu, Department of Mathematics and Informatics, Str. Dr. I. Ratiu, No. 5-7,50012- Sibiu, Romania
"Honorary Professor "1 Decembrie 1918" University of Alba Iulia, Alba Iulia, Romania

(Communicated by Ali Jabbari)

Abstract

Considering a function $f(z)$ which is the extremal function for p-valently starlike of order α in the open unit disk, two new classes $S_{p}^{*}(m, \alpha)$ and $K_{p}(m, \alpha)$ are introduced. The object of the present paper is to discuss some interesting problems of functions $f(z)$ concerned with $S_{p}^{*}(m, \alpha)$ and $K_{p}(m, \alpha)$.

Keywords: Appell's symbol, Analytic function, p-valently starlike of order α, p-valently convex of order α 2020 MSC: Primary 30C45, Secondary 30C50

1 Introduction

Let a be a complex number and $k \in \mathbb{N}=\{1,2, \ldots\}$. With such a and k, we define

$$
\begin{gather*}
(a, k)=a(a+1)(a+2) \ldots(a+k-1) \tag{1.1}\\
(a, 0)=1 \tag{1.2}
\end{gather*}
$$

and

$$
\begin{equation*}
(a,-k)=\frac{1}{(a-1)(a-2) \ldots(a-k)} \quad ; \quad(a \neq 1,2, \ldots, k) \tag{1.3}
\end{equation*}
$$

This symbol (a, k) is said to be Appell's symbol (cf.Carlson [3]).
Let $\mathcal{A}_{p}(n)$ be the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=n}^{\infty} a_{p+k} z^{p+k} \quad ; \quad n \in \mathbb{N} \tag{1.4}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}: 0 \leq|z|<1\}$ where $p \in \mathbb{N}$. If $f(z) \in \mathcal{A}_{p}(n)$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathbb{U}) \tag{1.5}
\end{equation*}
$$

[^0]then we say that $f(z)$ is p-valently starlike of order $\alpha(0 \leq \alpha<p)$ in \mathbb{U}.
Furthermore, if $f(z) \in \mathcal{A}_{p}(n)$ satisfies
\[

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(z \in \mathbb{U}) \tag{1.6}
\end{equation*}
$$

\]

then we say $f(z)$ is p-valently convex of order $\alpha(0 \leq \alpha<p)$ in \mathbb{U}.
It is clear that $f \in \mathcal{A}_{p}(n)$ is p-valently convex of order α in \mathbb{U} if and only if $\frac{z f^{\prime}(z)}{p}$ is p-valently starlike of order α in \mathbb{U}, and $f(z)$ is p-valently starlike of order α in \mathbb{U} if and only if $\int_{0}^{z} \frac{p f(t)}{t} d t$ is p-valently convex of order α in \mathbb{U} (cf. Hayami and Owa [12]).

Let us consider a function $f(z)$ given by

$$
\begin{equation*}
f(z)=\frac{z^{p}}{(1-z)^{2(p-\alpha)}} \quad(z \in \mathbb{U}) \tag{1.7}
\end{equation*}
$$

with $p \in \mathbb{N}$ and $0 \leq \alpha<p$. Then $f(z)$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)=\operatorname{Re}\left(\frac{p+(p-2 \alpha) z}{1-z}\right)>\alpha \quad(z \in \mathbb{U}) \tag{1.8}
\end{equation*}
$$

Therefore, the function $f(z)$ given by 1.7 is the extremal function for p-valently starlike of order α in \mathbb{U}. If $p=1$ in (1.7), then $f(z)$ becomes

$$
\begin{equation*}
f(z)=\frac{z}{(1-z)^{2(1-\alpha)}} \quad(z \in \mathbb{U}) \tag{1.9}
\end{equation*}
$$

and $w=f(z)$ maps \mathbb{U} onto the domain such that $\operatorname{Re} w>\alpha(0 \leq \alpha<1)$ (cf. Duren[4], Goodmann [8). Further, the function $f(z)$ given by 1.7 is written by

$$
\begin{equation*}
f(z)=\frac{z^{p}}{(1-z)^{2(p-\alpha)}}=z^{p}+\sum_{k=1}^{\infty} \frac{(2 p-2 \alpha, k)}{k!} z^{p+k}, \quad(z \in \mathbb{U}) \tag{1.10}
\end{equation*}
$$

where $(2 p-2 \alpha, k)$ is Appell's symbol. For such function $f(z)$, we consider

$$
\begin{equation*}
g(z)=\frac{z^{p}}{(1-\sqrt{z})^{2(p-\alpha)}}=z^{p}+\sum_{k=1}^{\infty} \frac{(2 p-2 \alpha, k)}{k!} z^{p+\frac{k}{2}}, \quad(z \in \mathbb{U}) \tag{1.11}
\end{equation*}
$$

This function $g(z)$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z g^{\prime}(z)}{g(z)}\right)=\operatorname{Re}\left(\frac{p-\alpha \sqrt{z}}{1-\sqrt{z}}\right)>\frac{p+\alpha}{2}>\alpha \quad(z \in \mathbb{U}) \tag{1.12}
\end{equation*}
$$

This means that $g(z)$ is p-valently starlike of order $\frac{p+\alpha}{2}$ in \mathbb{U}. If we consider a function $g(z)$ such that

$$
\begin{equation*}
g(z)=\frac{z h^{\prime}(z)}{p}=\frac{z^{p}}{(1-\sqrt{z})^{2(p-\alpha)}}, \tag{1.13}
\end{equation*}
$$

$h(z)$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right)=\operatorname{Re}\left(\frac{p-\alpha \sqrt{z}}{1-\sqrt{z}}\right)>\frac{p+\alpha}{2}>\alpha \quad(z \in \mathbb{U}) \tag{1.14}
\end{equation*}
$$

Thus $h(z)$ is p-valently convex of order $\frac{p+\alpha}{2}$ in \mathbb{U}.
With the above mention, let $\mathcal{A}_{p}(n, m)$ be the class of functions

$$
\begin{equation*}
f(z)=f(0)+z^{p}+\sum_{k=n}^{\infty} a_{p+\frac{k}{m}} z^{p+\frac{k}{m}} \quad ; \quad m \in \mathbb{N} \tag{1.15}
\end{equation*}
$$

which are analytic in $\mathbb{U}_{0}=\{z \in \mathbb{C}: 0<|z|<1\}$. If $f(z) \in \mathcal{A}_{p}(n, m)$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)-f(0)}\right)>\alpha \quad\left(z \in \mathbb{U}_{0}\right) \tag{1.16}
\end{equation*}
$$

for some real $\alpha(0 \leq \alpha<p)$, then we say that $f(z) \in S_{p}^{*}(m, \alpha)$.
To define the class $\mathcal{K}_{p}(m, \alpha)$, we use

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=z \frac{d}{d z}\left(\log \left(\frac{z f^{\prime}(z)}{f(z)-f(0)}\right)\right)+\frac{z f^{\prime}(z)}{f(z)-f(0)} . \tag{1.17}
\end{equation*}
$$

If $f(z) \in \mathcal{A}_{p}(n, m)$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad\left(z \in \mathbb{U}_{0}\right) \tag{1.18}
\end{equation*}
$$

for some real $\alpha(0 \leq \alpha<p)$, then we write that $f(z) \in \mathcal{K}_{p}(m, \alpha)$.
Classes of starlike and convex p-valent analytic functions were previously introduced and studied by many authors regarding different aspects. Differential subordinations in the class of analytic and p-valent functions in the unit disc were studied in [10]. Properties of certain classes of meromorphic functions are obtained in [6, 7] and in very recent papers such as [5]. Recent investigations on p-valent functions can be seen in [1, 9, 12, 13] and starlikeness and convexity for p-valent analytic functions are considered in [2] and [11. p-valently analytic functions still inspire studies with interesting outcomes. Therefore, in this study, we discuss some interesting problems of functions $f(z)$ concerned with $S_{p}^{*}(m, \alpha)$ and $K_{p}(m, \alpha)$ which are introduced considering a function $f(z)$ which is the extremal function for p-valently starlike of order α in the open unit disk.

2 Main results

We first derive the following theorem.
Theorem 2.1. If $f(z) \in \mathcal{A}_{p}(n, m)$ satisfies

$$
\begin{equation*}
\sum_{k=n}^{\infty}\left(p+\frac{k}{m}-\alpha\right)\left|a_{p+\frac{k}{m}}\right| \leq p-\alpha \tag{2.1}
\end{equation*}
$$

for some real $\alpha(0 \leq \alpha<p)$, then $f(z) \in S_{p}^{*}(m, \alpha)$. The equality in 2.1) is attained for $f(z)$ given by

$$
\begin{equation*}
f(z)=f(0)+z^{p}+\sum_{k=n}^{\infty} \frac{m n(p-\alpha) \varepsilon}{k(k+1)(m p+k-m \alpha)} z^{p+\frac{k}{m}} \tag{2.2}
\end{equation*}
$$

where $|\varepsilon|=1$.
Proof. We note that if $f(z) \in \mathcal{A}_{p}(n, m)$ satisfies

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)-f(0)}-p\right|<p-\alpha \quad\left(z \in \mathbb{U}_{0}\right) \tag{2.3}
\end{equation*}
$$

for some real $\alpha(0 \leq \alpha<p)$, then $f(z) \in \mathcal{S}_{p}^{*}(m, \alpha)$. Since

$$
\begin{align*}
\left|\frac{z f^{\prime}(z)}{f(z)-f(0)}-p\right| & =\left|\frac{\sum_{k=n}^{\infty} \frac{k}{m} a_{p+\frac{k}{m}} \frac{k}{m}}{1+\sum_{k=n}^{\infty} a_{p+\frac{k}{m}} z^{\frac{k}{m}}}\right| \\
& <\frac{\sum_{k=n}^{\infty} \frac{k}{m}\left|a_{p+\frac{k}{m}}\right|}{1-\sum_{k=n}^{\infty}\left|a_{p+\frac{k}{m}}\right|} \quad\left(z \in \mathbb{U}_{0}\right), \tag{2.4}
\end{align*}
$$

and 2.1 implies

$$
\sum_{k=n}^{\infty}\left|a_{p+\frac{k}{m}}\right| \leq \frac{p-\alpha}{p+\frac{n}{m}-\alpha}<1
$$

we consider

$$
\frac{\sum_{k=n}^{\infty} \frac{k}{m}\left|a_{p+\frac{k}{m}}\right|}{1-\sum_{k=n}^{\infty}\left|a_{p+\frac{k}{m}}\right|} \leq p-\alpha
$$

If the above inequality holds true, then $f(z) \in \mathcal{S}_{p}^{*}(m, \alpha)$. This means that if $f(z)$ satisfies

$$
\begin{equation*}
\sum_{k=n}^{\infty} \frac{k}{m}\left|a_{p+\frac{k}{m}}\right| \leq(p-\alpha)\left(1-\sum_{k=n}^{\infty}\left|a_{p+\frac{k}{m}}\right|\right) \tag{2.5}
\end{equation*}
$$

that is that the inequality 2.1 is satisfied, then $f(z) \in \mathcal{S}_{p}^{*}(m, \alpha)$.
Next we consider a function $f(z) \in \mathcal{A}_{p}(n, m)$ which satisfies

$$
\begin{align*}
\sum_{k=n}^{\infty}\left(p+\frac{k}{m}-\alpha\right)\left|a_{p+\frac{k}{m}}\right| & =p-\alpha \\
& =(p-\alpha) n\left\{\left(\frac{1}{n}-\frac{1}{n+1}\right)+\left(\frac{1}{n+1}-\frac{1}{n+2}\right)+\ldots\right\} \\
& =(p-\alpha) \sum_{k=n}^{\infty}\left(\frac{n}{k}-\frac{n}{k+1}\right) \tag{2.6}\\
& =(p-\alpha) \sum_{k=n}^{\infty} \frac{n}{k(k+1)}
\end{align*}
$$

This is implied by

$$
\begin{equation*}
\left(p+\frac{k}{m}-\alpha\right)\left|a_{p+\frac{k}{m}}\right|=\frac{(p-\alpha) n}{k(k+1)} \tag{2.7}
\end{equation*}
$$

for all $k \geq n$. Taking $a_{p+\frac{k}{m}}$ such that

$$
\begin{equation*}
a_{p+\frac{k}{m}}=\frac{m n(p-\alpha) \varepsilon}{k(k+1)(m p+k-m \alpha)} \quad(|\varepsilon|=1) \tag{2.8}
\end{equation*}
$$

we know that $f(z) \in \mathcal{S}_{p}^{*}(m, \alpha)$.
Letting $m=1$ in Theorem 2.1, we have the following corollary.
Corollary 2.2. If $f(z) \in \mathcal{A}_{p}(n, 1)$ satisfies

$$
\begin{equation*}
\sum_{k=n}^{\infty}(p+k-\alpha)\left|a_{p+k}\right| \leq p-\alpha \tag{2.9}
\end{equation*}
$$

for some real $\alpha(0 \leq \alpha<p)$, then $f(z) \in \mathcal{S}_{p}^{*}(1, \alpha)$. The equality in 2.9) is attained for $f(z)$ given by

$$
\begin{equation*}
f(z)=f(0)+z^{p}+\sum_{k=n}^{\infty} \frac{n(p-\alpha) \varepsilon}{k(k+1)(p+k-\alpha)} z^{p+k} \tag{2.10}
\end{equation*}
$$

where $|\varepsilon|=1$.
Next, we derive the following theorem.
Theorem 2.3. If $f(z) \in \mathcal{A}_{p}(n, m)$ satisfies

$$
\begin{equation*}
\sum_{k=n}^{\infty}\left(p+\frac{k}{m}\right)\left(p+\frac{k}{m}-\alpha\right)\left|a_{p+\frac{k}{m}}\right| \leq p(p-\alpha) \tag{2.11}
\end{equation*}
$$

for some real $\alpha(0 \leq \alpha<p)$, then $f(z) \in \mathcal{K}_{p}(m, \alpha)$. The equality in 2.11) is attained for

$$
\begin{equation*}
f(z)=f(0)+z^{p}+\sum_{k=n}^{\infty} \frac{m^{2} n p(p-\alpha) \varepsilon}{k(k+1)(m p+k)(m p+k-m \alpha)} z^{p+\frac{k}{m}}, \tag{2.12}
\end{equation*}
$$

where $|\varepsilon|=1$.

Proof . Note that $f(z) \in \mathcal{K}_{p}(m, \alpha)$ if and only if $\frac{z f^{\prime}(z)}{p} \in \mathcal{S}_{p}^{*}(m, \alpha)$. Noting that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{p}=z^{p}+\sum_{k=n}^{\infty} \frac{p+\frac{k}{m}}{p} a_{p+\frac{k}{m}} z^{p+\frac{k}{m}} \in \mathcal{S}_{p}^{*}(m, \alpha) \tag{2.13}
\end{equation*}
$$

we know that if $f(z)$ satisfies the inequality 2.11, then $f(z) \in \mathcal{K}_{p}(m, \alpha)$. Also, the function $f(z)$ given by (2.12) satisfies the equality in 2.11.

Making $m=1$ in Theorem 2.3, we have the following corollary.
Corollary 2.4. If $f(z) \in \mathcal{A}_{p}(n, 1)$ satisfies

$$
\begin{equation*}
\sum_{k=n}^{\infty}(p+k)(p+k-\alpha)\left|a_{p+k}\right| \leq p(p-\alpha) \tag{2.14}
\end{equation*}
$$

for some real $\alpha(0 \leq \alpha<p)$, then $f(z) \in \mathcal{K}_{p}(1, \alpha)$. The equality in (2.14) is attained for

$$
\begin{equation*}
f(z)=f(0)+z^{p}+\sum_{k=n}^{\infty} \frac{n p(p-\alpha) \varepsilon}{k(k+1)(p+k)(p+k-\alpha)} z^{p+k} \tag{2.15}
\end{equation*}
$$

where $|\varepsilon|=1$.

Next we consider a function $f(z) \in \mathcal{A}_{p}(1, m)$ given by

$$
\begin{align*}
f(z) & =f(0)+\frac{z^{p}}{\left(1-z^{\frac{1}{m}}\right)^{2(p-\alpha)}} \tag{2.16}\\
& =f(0)+z^{p}+\sum_{k=1}^{\infty} \frac{(2 p-2 \alpha, k)}{k!} z^{p+\frac{k}{m}} \quad\left(z \in \mathbb{U}_{0}\right),
\end{align*}
$$

where $(2 p-2 \alpha, k)$ is Appell's symbol. For such function $f(z)$, we have the following theorem.
Theorem 2.5. If $f(z) \in \mathcal{A}_{p}(1, m)$ is given by 2.16 , then $f(z)$ belongs to the class $\mathcal{S}_{p}^{*}\left(m, \frac{(m-1) p+\alpha}{m}\right)$.
Proof . It follows from 2.16 that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)-f(0)}\right)=\operatorname{Re}\left(p+\frac{2(p-\alpha) z^{\frac{1}{m}}}{m\left(1-z^{\frac{1}{m}}\right)}\right)>\frac{(m-1) p+\alpha}{m} \quad\left(z \in \mathbb{U}_{0}\right) \tag{2.17}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
0 \leq \frac{(m-1) p+\alpha}{m}<\alpha<p \tag{2.18}
\end{equation*}
$$

we prove the theorem.
Remark 2.6. Using the function $f(z)$ given by 2.16, we see that if $p-\alpha>\frac{1}{2}$

$$
\begin{align*}
\sum_{k=1}^{\infty}\left(p+\frac{k}{m}-\alpha\right)\left|a_{p+\frac{k}{m}}\right| & =\sum_{k=1}^{\infty}\left(p+\frac{k}{m}-\alpha\right) \frac{(2 p-2 \alpha, k)}{k!} \\
& >\sum_{k=1}^{\infty}(p-\alpha) \frac{(2 p-2 \alpha, k)}{k!} \tag{2.19}\\
& >p-\alpha .
\end{align*}
$$

Thus, $f(z)$ doesn't satisfy the inequality 2.1) of Theorem 2.1

Theorem 2.7. If a function $f(z)$ is given by

$$
\begin{align*}
f(z) & =f(0)+\frac{z}{\left(1-z^{\frac{1}{m}}\right)^{2(1-\alpha)}} \tag{2.20}\\
& =f(0)+z+\sum_{k=1}^{\infty} \frac{(2-2 \alpha, k)}{k!} z^{1+\frac{k}{m}} \quad\left(z \in \mathbb{U}_{0}\right),
\end{align*}
$$

for some real $\alpha\left(0 \leq \alpha \leq \frac{1}{2}\right)$ and $m \in \mathbb{N}$, then $f(z)$ is convex of order $\frac{(1-2 \alpha)(m+\alpha-1)}{2 m(1-\alpha)}$ in \mathbb{U}_{0}.
Proof . Note that $f(z)$ satisfies

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)-f(0)}=\frac{m+(2-2 \alpha-m) z^{\frac{1}{m}}}{m\left(1-z^{\frac{1}{m}}\right)} \tag{2.21}
\end{equation*}
$$

It follows from 2.21 that

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{m+2 \alpha-2}{m}+\frac{3-2 \alpha}{m\left(1-z^{\frac{1}{m}}\right)}-\frac{1}{m-(m+2 \alpha-2) z^{\frac{1}{m}}} \tag{2.22}
\end{equation*}
$$

Letting $z=e^{i \theta}(0<\theta<2 \pi)$ in 2.22), we see that

$$
\begin{align*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) & =\frac{m+2 \alpha-2}{m}+\frac{3-2 \alpha}{2 m} \\
& +\frac{m-(m+2 \alpha-2) \cos \theta}{m^{2}+(m+2 \alpha-2)^{2}-2 m(m+2 \alpha-2) \cos \theta} \tag{2.23}\\
& >\frac{2 m+2 \alpha-1}{2 m}-\frac{1}{2(1-\alpha)} \\
& =\frac{(1-2 \alpha)(m+\alpha-1)}{2 m(1-\alpha)} \geq 0 \quad\left(0 \leq \alpha \leq \frac{1}{2}\right)
\end{align*}
$$

Therefore, we say that $f(z)$ is convex of order $\frac{(1-2 \alpha)(m+\alpha-1)}{2 m(1-\alpha)}$ in \mathbb{U}_{0}.
Next we derive the following theorem.

Theorem 2.8. If a function $f(z)$ is given by

$$
\begin{align*}
f(z) & =f(0)+\frac{z^{p}}{1-z^{\frac{1}{m}}} \\
& =f(0)+z^{p}+\sum_{k=1}^{\infty} z^{p+\frac{k}{m}} \quad\left(z \in \mathbb{U}_{0}\right) \tag{2.24}
\end{align*}
$$

for $m \in \mathbb{N}$, then $f(z)$ is p-valently starlike of order $\frac{2 m p-1}{2 m}$ in \mathbb{U}_{0}, and p-valently convex in \mathbb{U}_{0}.
Proof. It is easy to see that $f(z)$ satisfies

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)-f(0)}=p+\frac{z^{\frac{1}{m}}}{m\left(1-z^{\frac{1}{m}}\right)}=\frac{m p-1}{m}+\frac{1}{m\left(1-z^{\frac{1}{m}}\right)} \tag{2.25}
\end{equation*}
$$

and

$$
\begin{align*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} & =\frac{m p-1}{m}+\frac{1}{m\left(1-z^{\frac{1}{m}}\right)}-\frac{(m p-1) z^{\frac{1}{m}}}{m\left(m p-(m p-1) z^{\frac{1}{m}}\right)}+\frac{z^{\frac{1}{m}}}{m\left(1-z^{\frac{1}{m}}\right)} \tag{2.26}\\
& =\frac{m p-1}{m}+\frac{2}{m\left(1-z^{\frac{1}{m}}\right)}-\frac{p}{m p-(m p-1) z^{\frac{1}{m}}} .
\end{align*}
$$

Thus we know that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)-f(0)}\right)>\frac{m p-1}{m}+\frac{1}{2 m}=\frac{2 m p-1}{2 m} \quad\left(z \in \mathbb{U}_{0}\right) \tag{2.27}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>p-\operatorname{Re}\left(\frac{p}{m p-(m p-1) z^{\frac{1}{m}}}\right) \geq 0 \quad\left(z \in \mathbb{U}_{0}\right) \tag{2.28}
\end{equation*}
$$

With Theorem 2.7 and Theorem 2.8, we give the following problem.
Problem 2.9. For a function $f(z)$ given by

$$
\begin{equation*}
f(z)=f(0)+\frac{z^{p}}{\left(1-z^{\frac{1}{m}}\right)^{2(p-\alpha)}} \quad\left(z \in \mathbb{U}_{0}\right) \tag{2.29}
\end{equation*}
$$

consider starlikeness and convexity of $f(z)$.
Finally, we have the following theorem.
Theorem 2.10. If a function $f(z)$ is given by

$$
\begin{align*}
f(z) & =f(0)+\frac{z\left(m-(m-1) z^{\frac{1}{m}}\right)}{m\left(1-z^{\frac{1}{m}}\right)^{2}} \tag{2.30}\\
& =f(0)+z+\sum_{k=1}^{\infty}\left(1+\frac{k}{m}\right) z^{1+\frac{k}{m}} \quad\left(z \in \mathbb{U}_{0}\right)
\end{align*}
$$

for $m \in \mathbb{N}$, then $f(z)$ is starlike in \mathbb{U}_{0}.

Proof . Since $f(z)$ satisfies

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)-f(0)}=1+\frac{z^{\frac{1}{m}}}{m\left(1-z^{\frac{1}{m}}\right)}+\frac{1}{m\left(1-z^{\frac{1}{m}}\right)}-\frac{1}{m-(m-1) z^{\frac{1}{m}}} \tag{2.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)-f(0)}=1 \tag{2.32}
\end{equation*}
$$

for $z=0$, we consider a point z given by

$$
\begin{equation*}
z^{\frac{1}{m}}=e^{i \frac{\theta}{m}}=e^{i \varphi} \quad\left(\varphi=\frac{\theta}{m}\right) \tag{2.33}
\end{equation*}
$$

Then $f(z)$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)-f(0)}\right)=\frac{2 m-1}{2 m}\left(1-\frac{1-\cos \varphi}{\left(2 m^{2}-2 m+1\right)-(2 m-1)^{2} \cos \varphi+2 m(m-1) \cos ^{2} \varphi}\right) . \tag{2.34}
\end{equation*}
$$

Letting $t=\cos \varphi(-1 \leq t \leq 1)$, we consider

$$
\begin{equation*}
g(t)=\frac{1-t}{\left(2 m^{2}-2 m+1\right)-(2 m-1)^{2} t+2 m(m-1) t^{2}} . \tag{2.35}
\end{equation*}
$$

Since $g^{\prime}(t) \geq 0$, we say that

$$
\begin{equation*}
g(t) \leq \lim _{t \rightarrow 0} g(t)=1 \tag{2.36}
\end{equation*}
$$

This means that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)-f(0)}\right)>0 \quad\left(z \in \mathbb{U}_{0}\right) \tag{2.37}
\end{equation*}
$$

With the above theorem, we give the following problem.

Problem 2.11. For a function $f(z)$ given by

$$
\begin{align*}
g(z) & =g(0)+\frac{z^{p}\left(m-(m-1) z^{\frac{1}{m}}\right)}{m\left(1-z^{\frac{1}{m}}\right)^{2}} \\
& =g(0)+z^{p}+\sum_{k=1}^{\infty}\left(1+\frac{k}{m}\right) z^{p+\frac{k}{m}} \quad\left(z \in \mathbb{U}_{0}\right) \tag{2.38}
\end{align*}
$$

and

$$
f(z)-f(0)=z^{p-1}(g(z)-g(0))
$$

consider starlikeness and convexity of $f(z)$.

References

[1] H.F. Al-Janaby and F. Ghanim, A subclass of Noor-type harmonic p-valent functions based on hypergeometric functions, Kragujevac J. Math. 45 (2021), 499-519.
[2] M.K. Aouf, A.M. Lashin and T. Bulboacă, Starlikeness and convexity of the product of certain multivalent functions with higher-order derivatives, Math. Slovaca 71 (2021), no. 2, 331-340.
[3] B.C. Carlson, Special functions of applied mathematics, Academic Press, 1977.
[4] P.L. Duren, Univalent functions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[5] A.H. El-Qadeem and I.S. Elshazly, Hadamard product properties for certain subclasses of p-valent meromorphic functions, Axioms 11 (2022), 172.
[6] F. Ghanim and M. Darus, Some results of p-valent meromorphic functions defined by a linear operator, Far East J. Math. Sci. 44 (2010), 155--165.
[7] F. Ghanim and M. Darus, Subclasses of meromorphically multivalent functions, Acta Univ. Apulensis Math. Inf. 23 (2010), 201-212.
[8] A.W. Goodmann, Univalent functions, Vol.1, Mariner Pub. Company, 1983.
[9] Q. Khan, J. Dziok, M. Raza and M. Arif, Sufficient conditions for p-valent functions, Math. Slovaca 71 (2021), no. 5, 1089-1102.
[10] G.I. Oros, Gh. Oros and S. Owa, Differential subordinations on p-valent functions of missing coefficients, Int. J. Appl. Math. 22 (2009), no. 6, 1021-1030.
[11] G.I. Oros, Gh. Oros and S. Owa, Applications of certain p-valently analytic functions, Math. 10 (2022), 910.
[12] T. Hayami and S. Owa, Applications of Hankel determinant for p-valently starlike and convex functions of order α, Far East J. Appl. Math. Sci. 46 (2010), 1-23.
[13] A.T. Yousef, Z. Salleh and T. Al-Hawary, On a class of p-valent functions involving generalized differential operator, Afr. Mat. 32 (2021), no. 1, 275--287.

[^0]: *Corresponding author
 Email addresses: ozlemg@dicle.edu.tr (H. Özlem Güney), mugur.acu@ulbsibiu.ro, acu_-mugur@yahoo.com (Mugur Acu), shige21@ican.zaq.ne.jp (Shigeyoshi Owa)

 Received: March 2022 Accepted: June 2022

