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Abstract

Making use of convolution product, we introduce a unified class of analytic functions with negative coefficients. Also,
we obtain the coefficient bounds, extreme points and radius of starlikeness for functions belonging to the generalized
class T Pa,c

ϑ,τ (α, β). Furthermore, partial sums fk(z) of functions f(z) in the class Pa,c
ϑ,τ (α, β) are considered and sharp

lower bounds for the ratios of real part of f(z) to fk(z) and f ′(z) to f ′
k(z) are determined. Relevant connections of

the results with various known results are also considered.
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1 Introduction

The theory of analytic function is an ancient subject, yet it ruins an active field of current research. As a privileged
topic regarding inequalities in complex analysis, there have been lots of studies based on the classes of analytic
functions. The interplay of geometry and analysis is the most attractive aspect of complex function theory. This
fast progress has been concerned mainly with such relations between analytic structure and geometric behaviour.
Motivated by this approach, in the present study, we have introduced a new subclass of analytic functions concerning
Erdély–Kober operator. Many authors have examined the properties of subclasses of analytic functions and shown
their results have several applications in engineering, hydrodynamics and signal theory. One of the significant problems
in geometric function theory are the extremal problems. Extremal problems play a central role in geometric function
theory, discovery of coefficient bounds, sharp estimates, and an extremal function. The theory of analytic univalent
functions is a influential tool in the study of many problems related to the time evolution of the free boundary of a
viscous fluid for planar flows in Hele-Shaw cells under injection. The results we obtained here may have prospective
application in other branches of mathematics, both pure and applied.

Let A denote the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n (1.1)
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which are analytic and univalent in the open disc U = {z : z ∈ C, |z| < 1}. A function f ∈ A is said to be starlike

of order α (0 ≤ α < 1), if and only if Re
(

zf ′(z)
f(z)

)
> α (z ∈ U). This function class is denoted by S∗(α). We also

write S∗(0) =: S∗, where S∗ denotes the class of functions f ∈ A that are starlike in U with respect to the origin. A

function f ∈ A is said to be convex of order α (0 ≤ α < 1) if and only if Re
(
1 + zf ′′(z)

f ′(z)

)
> α (z ∈ U). This class is

denoted by C(α). Further, C = C(0), the well-known standard class of convex functions. It is an established fact that
f ∈ C(α) if and only if zf ′ ∈ S∗(α)[1].

For functions f ∈ A given by (1.1) and g ∈ A given by g(z) = z +
∞∑

n=2
bnz

n, then the Hadamard product (or

convolution) of f, g is given by

(f ∗ g)(z) = z +

∞∑
n=2

anbnz
n, z ∈ U. (1.2)

Now we recall the Erdély–Kober type ([12] Ch. 5) integral operator definition which shall be used throughout the
paper as below:

Definition 1.1. Erdély–Kober fractional-order derivative Let for ϑ > 0, a, c ∈ C, be such that Re(c− a) ≥ 0,
an Erdély–Kober type integral operator

Ia,cϑ : A → A

be defined for Re(c− a) > 0 and Re(a) > −ϑ by

Ia,cϑ f(z) =
Γ(c+ ϑ)

Γ(a+ ϑ)

1

Γ(c− a)

1∫
0

(1− t)c−a−1ta−1f(ztϑ)dt, ϑ > 0. (1.3)

For ϑ > 0,Re(c− a) ≥ 0, Re(a) > −ϑ and f ∈ A of the form (1.1) we have

Ia,cϑ f(z) = z +

∞∑
n=2

Γ(c+ ϑ)Γ(a+ nϑ)

Γ(a+ ϑ)Γ(c+ nϑ)
anz

n (z ∈ U) (1.4)

= z +

∞∑
n=2

Φa,c
ϑ (n)anz

n (z ∈ U) (1.5)

where

Φa,c
ϑ (n) =

Γ(c+ ϑ)Γ(a+ nϑ)

Γ(a+ ϑ)Γ(c+ nϑ)
and Φa,c

ϑ (2) =
Γ(c+ ϑ)Γ(a+ 2ϑ)

Γ(a+ ϑ)Γ(c+ 2ϑ)
. (1.6)

Note that
Ia,aϑ f(z) = f(z)

Remark 1.2. By fixing the parameters a, c, ϑ as mentioned below, the operator Ia,cϑ includes various operators studied
in the literature as cited below:

1. For a = κ; c = ς + κ and ϑ = 1, we obtain the operator Qς
κf(z)(ς ≥ 0;κ > 1) studied by Jung et al.[11];

2. For a = ς − 1; c = κ − 1 and ϑ = 1, we obtain the operator Lς,κf(z)(ς;κ ∈ C ∈ Z0;Z0 = {0;−1;−2; · · · }
studied by Carlson and Shafer[6];

3. For a = ρ− 1; c = ℓ and ϑ = 1, we obtain the operator Iρ,ℓ(ρ > 0; ℓ > 1) studied by Choi et al. [7];

4. For a = ς; c = 0 and ϑ = 1, we obtain the operator Dς(ς > −1) studied by Ruscheweyh[22];

5. For a = 1; c = n and µ = 1, we obtain the operator In(n > N0) studied in[15, 16];

6. For a = κ; c = κ+ 1 and ϑ = 1; we obtain the integral operator Iκ,1 which studied by Bernardi[4];
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7. For a = 1; c = 2 and ϑ = 1, we obtain the integral operator I1,1 = I studied by Libera[13] and Livingston[14].

Motivated by earlier works in this paper, by making use of the operator Ia,cϑ we introduced a new subclass of
analytic functions with negative coefficients and discuss some interesting properties of this generalized function class.

For τ ≥ 0, −1 ≤ α < 1 and β ≥ 0, we let Pa,c
ϑ,τ (α, β) be the subclass of A consisting of functions of the form (1.1)

and satisfying the inequality

Re

{
z(Ia,cϑ f)′(z) + τz2(Ia,cϑ f)′′(z)

(1− τ)(Ia,cϑ f)(z) + τz(Ia,cϑ f)′(z)
− α

}
> β

∣∣∣∣ z(Ia,cϑ f)′(z) + τz2(Ia,cϑ f)′′(z)

(1− τ)(Ia,cϑ f)(z) + τz(Ia,cϑ f)′(z)
− 1

∣∣∣∣ (1.7)

where z ∈ U, Ia,cϑ f(z) is given by (1.4) . We further let T Pa,c
ϑ,τ (α, β) = P a,c

ϑ,τ (α, β) ∩ T, where

T :=

{
f ∈ A : f(z) = z −

∞∑
n=2

anz
n, an > 0; z ∈ U

}
(1.8)

is a subclass of A introduced and studied by Silverman [24].

In particular, for τ = 1 and τ = 0, the class T Pa,c
ϑ,τ (α, β) provides the following two new subclasses of β− starlike

functions and β−uniformly convex functions as given below.

Example 1.3. For τ = 0, −1 ≤ α < 1 and β ≥ 0, we let Sa,c
ϑ (α, β) be the subclass of A consisting of functions of the

form (1.1) and satisfying the inequality

Re

(
z(Ia,cϑ f)′(z)

(Ia,cϑ f)(z)
− α

)
> β

∣∣∣∣z(Ia,cϑ f)′(z)

(Ia,cϑ f)(z)
− 1

∣∣∣∣ (1.9)

where z ∈ U, Ia,cϑ f(z) is given by (1.4) .

Example 1.4. Fixing τ = 1, −1 ≤ α < 1 and β ≥ 0, we let Ca,c
ϑ,τ (α, β) be the subclass of A consisting of functions of

the form (1.1) and satisfying the inequality

Re

(
1 +

z(Ia,cϑ f)′′(z)

(Ia,cϑ f)′(z)
− α

)
> β

∣∣∣∣z(Ia,cϑ f)′′(z)

(Ia,cϑ f)′(z)

∣∣∣∣ (1.10)

where z ∈ U, Ia,cϑ f(z) is given by (1.4) .

Example 1.5. For τ = 0, −1 ≤ α < 1 and β = 0, we let Sa,c
ϑ (α) be the subclass of A consisting of functions of the

form (1.1) and satisfying the inequality

Re

(
z(Ia,cϑ f)′(z)

(Ia,cϑ f)(z)

)
> α. (1.11)

By fixing τ = 1, −1 ≤ α < 1 and β = 0, we let Ca,c
ϑ (α) be the subclass of A consisting of functions of the form (1.1)

and satisfying the inequality

Re

(
1 +

z(Ia,cϑ f)′′(z)

(Ia,cϑ f)′(z)

)
> α (1.12)

where z ∈ U, Ia,cϑ f(z) is given by (1.4).

By suitably specializing the values of a, c, α, β and τ the class T Pa,c
ϑ,τ (α, β) yields to the various new subclasses

associated with the operator listed in Remark 1.2, and also the classes introduced and studied in [2, 5, 24, 28, 29].

Example 1.6. If c = a and τ = 1, then

T Pa,a
ϑ,1(α, β) ≡ UCT(α, β) :=

{
f ∈ T : Re

(
1 +

zf ′′(z)

f ′(z)
− α

)
> β

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ , z ∈ U

}
. (1.13)

A function in UCT(α, β) is called β−uniformly convex of order α, 0 ≤ α < 1. This class was introduced in [5].
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Example 1.7. If c = a, then

T Pa,a
ϑ,0(α, β) ≡ TSp(α, β) :=

{
f ∈ T : Re

(
zf ′(z)

f(z)
− α

)
> β

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ , z ∈ U

}
. (1.14)

A function in TSp(α, β) is called β−uniformly starlike of order α, 0 ≤ α < 1. This class was introduced in [5].Indeed
it follows from (1.14) and (1.13) that

f ∈ UCT(α, β) ⇔ zf ′ ∈ TSp(α, β). (1.15)

We observe that UCT(α, 0) ≡ C(α) and UCT(0, 0) ≡ C∗ further note that TSp(α, 0) = T ∗(α) and TSp(0, 0) = T ∗

the classes were first introduced and studied by Silverman [24]. We remark that the classes of uniformly convex and
uniformly starlike functions were introduced by Goodman [9, 10], and later generalized by and others [5, 18, 19, 20,
21, 28, 29].

The main object of this paper is to study the coefficient bounds, extreme points and radius of starlikeness for
functions belong to the generalized class T Pa,c

ϑ,τ (α, β). Furthermore, partial sums fk(z) of functions f(z) in the class

Pa,c
ϑ,τ (α, β) are considered and sharp lower bounds for the ratios of real part of f(z) to fk(z) and f ′(z) to f ′

k(z) are
determined.

2 Coefficient Bounds

In this section we obtain a necessary and sufficient condition for functions f(z) in the classes Pa,c
ϑ,τ (α, β) and

T Pa,c
ϑ,τ (α, β).

Theorem 2.1. A function f(z) of the form (1.1) is in Pa,c
ϑ,τ (α, β) if

∞∑
n=2

(1 + τ(n− 1))[n(1 + β)− (α+ β)]|an||Φa,c
ϑ (n)| ≤ 1− α, (2.1)

0 ≤ τ ≤ 1, −1 ≤ α < 1, β ≥ 0.

Proof . It suffices to show that

β

∣∣∣∣ z(Ia,cϑ f)′(z) + τz2(Ia,cϑ f)′′(z)

(1− τ)(Ia,cϑ f)(z) + τz(Ia,cϑ f)′(z)
− 1

∣∣∣∣− |Re

(
z(Ia,cϑ f)′(z) + τz2(Ia,cϑ f)′′(z)

(1− τ)(Ia,cϑ f)(z) + τz(Ia,cϑ f)′(z)
− 1

)
≤ 1− α.

We have

β

∣∣∣∣ z(Ia,cϑ f)′(z) + τz2(Ia,cϑ f)′′(z)

(1− τ)(Ia,cϑ f)(z) + τz(Ia,cϑ f)′(z)
− 1

∣∣∣∣−Re

(
z(Ia,cϑ f)′(z) + τz2(Ia,cϑ f)′′(z)

(1− τ)(Ia,cϑ f)(z) + τz(Ia,cϑ f)′(z)
− 1

)
≤ (1 + β)

∣∣∣∣ z(Ia,cϑ f)′(z) + τz2(Ia,cϑ f)′′(z)

(1− τ)(Ia,cϑ f)(z) + τz(Ia,cϑ f)′(z)
− 1

∣∣∣∣
=

(1 + β)
∞∑

n=2
(n− 1)[1 + τ(n− 1)]|an||Φa,c

ϑ (n)|

1−
∞∑

n=2
[1 + τ(n− 1)]|an||Φa,c

ϑ (n)|
.

This last expression is bounded above by (1− α) if

∞∑
n=2

(1 + τ(n− 1))[n(1 + β)− (α+ β)]|an||Φa,c
ϑ (n)| ≤ 1− α

and hence the proof is complete. □
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Theorem 2.2. A necessary and sufficient condition for f(z) of the form (1.8) to be in the class T Pa,c
ϑ,τ (α, β), −1 ≤

α < 1, 0 ≤ τ ≤ 1, β ≥ 0 is that

∞∑
n=2

(1 + τ(n− 1))[n(1 + β)− (α+ β)] anΦ
a,c
ϑ (n) ≤ 1− α. (2.2)

Proof . In view of Theorem 2.1, we need only to prove the necessity. If f ∈ Pa,c
ϑ,τ (α, β) and z is real then

1−
∞∑

n=2
n[1 + τ(n− 1)]anΦ

a,c
ϑ (n)zn−1

1−
∞∑

n=2
[1 + τ(n− 1)]anΦ

a,c
ϑ (n)zn−1

− α ≥ β

∣∣∣∣∣∣∣∣
∞∑

n=2
(n− 1)[1 + τ(n− 1)]|an||Φa,c

ϑ (n)|

1−
∞∑

n=2
[1 + τ(n− 1)]|an||Φa,c

ϑ (n)|

∣∣∣∣∣∣∣∣ .
Letting z → 1 along the real axis, we obtain the desired inequality

∞∑
n=2

(1 + τ(n− 1))[n(1 + β)− (α+ β)] anΦ
a,c
ϑ (n) ≤ 1− α.

□

Corollary 2.3. If f ∈ T Pa,c
ϑ,τ (α, β), then

an ≤ 1− α

[n(β + 1)− (α+ β)](1 + τ(n− 1))Φa,c
ϑ (n)

, (n ≥ 2) (2.3)

where 0 ≤ τ ≤ 1, −1 ≤ α < 1 and β ≥ 0. Equality in (2.3) holds for the function

f(z) = z − 1− α

[n(β + 1)− (α+ β)](1 + τ(n− 1))Φa,c
ϑ (n)

zn. (2.4)

By fixing τ = 0 in Theorem 2.2 we get the following result:

Corollary 2.4. A function f ∈ T of the form (1.8) is in the class Sa,c
ϑ (α, β), −1 ≤ α < 1, β ≥ 0 if and only if

∞∑
n=2

[n(1 + β)− (α+ β)]Φa,c
ϑ (n) an ≤ 1− α.

By fixing τ = 1 in Theorem 2.2, we get the following result:

Corollary 2.5. A function f ∈ T of the form (1.8) is in the class Ca,c
ϑ (α, β), −1 ≤ α < 1, β ≥ 0 if and only if

∞∑
n=2

n[n(1 + β)− (α+ β)]Φa,c
ϑ (n) an ≤ 1− α.

Corollary 2.6. A function f ∈ T of the form (1.8) is in Sa,c
ϑ (α), if and only if

∞∑
n=2

(n− α)Φa,c
ϑ (n)an ≤ 1− α.

Corollary 2.7. A function f ∈ T of the form (1.8) is in Ca,c
ϑ (α), if and only if

∞∑
n=2

n(n− α)Φa,c
ϑ (n)an ≤ 1− α.

By fixing a = c, τ = 0 and a = c, τ = 1 in above Corollaries we get the results given in [5]. Further by taking β = 0
and τ = 0 (or τ = 1) with a = c, Theorem 2.2 gives the results given in [24]. Similarly many known results can be
obtained as particular cases of the Theorem 2.2, so we omit stating the particular cases.
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3 Closure Properties

For any compact family F of univalent functions, the maximum or minimum value on F of the real part of any
continuous linear functional defined over the set of analytic functions occurs at one of the extreme points of the
closed convex hull of F . Consequently, the determination of the extreme points of a family F enables us to solve
many extremal problems for F . The extreme points of the closed convex hull for convex, starlike, close-to-convex,and
typically real functions were firstly studied in [3] . Since then, the extreme points for many additional classes have
been determined. In view of Theorem 2.2, in this section we made an attempt to find extreme points for the function
class T Pa,c

ϑ,τ (α, β).

Theorem 3.1. Let

f1(z) = z and

fn(z) = z − 1− α

[n(β + 1)− (α+ β)](1 + τ(n− 1))Φa,c
ϑ (n)

zn, n ≥ 2. (3.1)

Then f ∈ T Pa,c
ϑ,τ (α, β), if and only if it can be expressed in the form

f(z) =

∞∑
n=1

ωnfn(z), ωn ≥ 0,

∞∑
n=1

ωn = 1. (3.2)

Proof . Suppose f(z) can be written as in (3.2). Then

f(z) = z −
∞∑

n=2

ωn
1− α

[n(β + 1)− (α+ β)](1 + τ(n− 1))Φa,c
ϑ (n)

zn.

Now,

∞∑
n=2

ωn
[n(β + 1)− (α+ β)](1 + τ(n− 1))Φa,c

ϑ (n)(1− α)

(1− α)[n(β + 1)− (α+ β)](1 + τ(n− 1))Φa,c
ϑ (n)

=

∞∑
n=2

ωn = 1− ω1 ≤ 1.

Thus f ∈ T Pa,c
ϑ,τ (α, β). Conversely, let us have f ∈ T Pa,c

ϑ,τ (α, β). Then by using (2.3), we set

ωn =
[n(β + 1)− (α+ β)](1 + τ(n− 1))Φa,c

ϑ (n)

1− α
an (n ≥ 2)

and ω1 = 1−
∑∞

n=2 ωn. Then f(z) =
∑∞

n=1 ωnfn(z). This completes the proof. □

Theorem 3.2. The class T Pa,c
ϑ,τ (α, β) is a convex set.

Proof . Let the function

fj(z) = z −
∞∑

n=2

an, jz
n, an, j ≥ 0, j = 1, 2 (3.3)

be in the class T Pa,c
ϑ,τ (α, β). It sufficient to show that the function h(z) defined by

h(z) = ηf1(z) + (1− η)f2(z), (0 ≤ η ≤ 1)

is in the class T Pa,c
ϑ,τ (α, β) then we have

h(z) = z −
∞∑

n=2

[ηan,1 + (1− η)an,2]z
n.
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By a simple computation with the aid of Theorem 2.2 , we get

∞∑
n=2

(1 + τ(n− 1))[n(β + 1)− (α+ β)]ηΦa,c
ϑ (n)an,1

+

∞∑
n=2

(1 + τ(n− 1))[n(β + 1)− (α+ β)](1− η)Φa,c
ϑ (n)an,2

≤ η(1− α) + (1− η)(1− α)

= 1− α

which implies that h ∈ T Pa,c
ϑ,τ (α, β). Hence T Pa,c

ϑ,τ (α, β) is convex. □

Next we obtain the radii of close-to-convexity, starlikeness and convexity for the class T Pa,c
ϑ,τ (α, β).

Theorem 3.3. Let the function f(z) defined by (1.8)belong to the class T Pa,c
ϑ,τ (α, β). Then f(z) is close-to-convex of

order δ (0 ≤ δ < 1) in the disc |z| < r1, where

r1 := inf
n≥2

[
(1− δ)[n(β + 1)− (α+ β)](1 + τ(n− 1))Φa,c

ϑ (n)

n(1− α)

] 1
n−1

. (3.4)

The result is sharp, with extremal function f(z) given by (3.1).

Proof . Given f ∈ T, and f is close-to-convex of order δ, we have

|f ′(z)− 1| < 1− δ. (3.5)

For the left hand side of (3.5) we have

|f ′(z)− 1| ≤
∞∑

n=2

nan|z|n−1.

The last expression is less than 1− δ if
∞∑

n=2

n

1− δ
an|z|n−1 < 1.

Using the fact, that f ∈ T Pa,c
ϑ,τ (α, β) if and only if

∞∑
n=2

(1 + τ(n− 1))[n(β + 1)− (α+ β)]Φa,c
ϑ (n)

(1− α)
an ≤ 1.

We can say (3.5) is true if

n

1− δ
|z|n−1 ≤

(1 + τ(n− 1))[n(β + 1)− (α+ β)]Φa,c
ϑ (n)

(1− α)
an,

or, equivalently,

|z|n−1 =

[
(1− δ)(1 + τ(n− 1))[n(β + 1)− (α+ β)]Φa,c

ϑ (n)

n(1− α)

]
which completes the proof. □

Theorem 3.4. If f ∈ T Pa,c
ϑ,τ (α, β), then

(i) f is starlike of order δ(0 ≤ δ < 1) in the disc |z| < r2; that is, Re
(

zf ′(z)
f(z)

)
> δ, (|z| < r2 ; 0 ≤ δ < 1), where

r2 = inf
n≥2

[(
1− δ

n− δ

)
(1 + τ(n− 1))[n(β + 1)− (α+ β)]Φa,c

ϑ (n)

(1− α)

] 1
n−1

(3.6)

and
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(ii) f is convex of order δ (0 ≤ δ < 1) in the unit disc |z| < r3, that is Re
(
1 + zf ′′(z)

f ′(z)

)
> δ, (|z| < r3; 0 ≤ δ < 1),

where

r3 = inf
n≥2

[(
1− δ

n(n− δ)

)
(1 + τ(n− 1))[n(β + 1)− (α+ β)]Φa,c

ϑ (n)

(1− α)

] 1
n−1

. (3.7)

Each of these results are sharp for the extremal function f(z) given by (3.1).

Proof .(1) Given f ∈ T, and f is starlike of order δ, we have∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < 1− δ. (3.8)

For the left hand side of (3.8) we have

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤
∞∑

n=2
(n− 1)an |z|n−1

1−
∞∑

n=2
an |z|n−1

.

The last expression is less than 1− δ if

∞∑
n=2

n− δ

1− δ
an |z|n−1 < 1.

Using the fact, that f ∈ T Pa,c
ϑ,τ (α, β) if and only if

∞∑
n=2

(1 + τ(n− 1))[n(β + 1)− (α+ β)]

(1− α)
anΦ

a,c
ϑ (n) ≤ 1.

We can say (3.8) is true if

n− δ

1− δ
|z|n−1 <

(1 + τ(n− 1))[n(β + 1)− (α+ β)]Φa,c
ϑ (n)

(1− α)
.

or, equivalently,

|z|n−1 =

[(
1− δ

n− δ

)
(1 + τ(n− 1))[n(β + 1)− (α+ β)]Φa,c

ϑ (n)

(1− α)

]
which yields the starlikeness of the family.

(2) Using the fact that f is convex if and only if zf ′ is starlike, we can prove (ii), on lines similar to the proof of
(i). □

4 Partial Sums

In 1997, Silverman [27] and Silvia [23] have studied results on partial sums of analytic functions given by (1.1) to
its sequence of partial sums

fk (z) = z +

k∑
n=2

anz
n

when the coefficients {an} of f are sufficiently small they determine sharp lower bounds for

Re

(
f (z)

fk (z)

)
, Re

(
fj (z)

f (z)

)
, Re

(
f ′ (z)

f ′
k (z)

)
and Re

(
f ′
k (z)

f ′ (z)

)
. (4.1)

In this section, motivated by Silverman [27] and Silvia [23] we will examine the ratio (4.1) for functions of the form
(1.1) and satisfy the condition (2.1).
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Theorem 4.1. Let f(z) ∈ Pa,c
ϑ,τ (α, β). Define the partial sums f1(z) and fk(z), by

f1(z) = z; and fk(z) = z +

k∑
n=2

anz
n, (k ∈ N \ {1}). (4.2)

Suppose that
∞∑

n=2
dn|an| ≤ 1, where

dn :=
(1 + τ(n− 1))[n(α+ β)− (α+ β)]Φa,c

ϑ (n)

(1− α)
. (4.3)

Then f ∈ P a,c
ϑ,τ (α, β). Furthermore,

Re

(
f(z)

fk(z)

)
> 1− 1

dk+1
; , (z ∈ U, k ∈ N \ {1}) (4.4)

and

Re

(
fk(z)

f(z)

)
>

dk+1

1 + dk+1
. (4.5)

Proof . For the coefficients dn given by (4.3) it is not difficult to verify that

dn+1 > dn > 1. (4.6)

Therefore we have
k∑

n=2

|an|+ dk+1

∞∑
n=k+1

|an| ≤
∞∑

n=2

dn|an| ≤ 1 (4.7)

by using the hypothesis (4.3). By setting

g1(z) = dk+1

{
f(z)

fk(z)
−
(
1− 1

dk+1

)}

= 1 +

dk+1

∞∑
n=k+1

anz
n−1

1 +
k∑

n=2
anzn−1

(4.8)

and applying (4.7), we find that

∣∣∣∣g1(z)− 1

g1(z) + 1

∣∣∣∣ ≤
dk+1

∞∑
n=k+1

|an|

2− 2
n∑

n=2
|an| − dk+1

∞∑
n=k+1

|an|

≤ 1, z ∈ U, (4.9)

which readily yields the assertion (4.4) of Theorem 4.1. In order to see that

f(z) = z +
zk+1

dk+1
(4.10)

gives sharp result, we observe that for z = reiπ/k that f(z)
fk(z)

= 1 + zk

dk+1
→ 1− 1

dk+1
as z → 1−. Similarly, if we take

g2(z) = (1 + dk+1)

{
fk(z)

f(z)
− dk+1

1 + dk+1

}

= 1−
(1 + dn+1)

∞∑
n=k+1

anz
n−1

1 +
∞∑

n=2
anzn−1

(4.11)
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and making use of (4.7), we can deduce that

∣∣∣∣g2(z)− 1

g2(z) + 1

∣∣∣∣ ≤ (1 + dk+1)
∞∑

n=k+1

|an|

2− 2
k∑

n=2
|an| − (1− dk+1)

∞∑
n=k+1

|an|
(4.12)

which leads us immediately to the assertion (4.5) of Theorem 4.1. The bound in (4.5) is sharp for each k ∈ N \ {1}
with the extremal function f(z) given by (4.10). The proof of the Theorem 4.1, is thus complete. □

Theorem 4.2. If f(z) of the form (1.1) satisfies the condition (2.1). Then

Re

{
f ′(z)

f ′
k(z)

}
≥ 1− k + 1

dk+1
. (4.13)

Proof . By setting

g(z) = dk+1

{
f ′(z)

f ′
k(z)

−
(
1− k + 1

dk+1

)}

=

1 + dk+1

k+1

∞∑
n=k+1

nanz
n−1 +

∞∑
n=2

nanz
n−1

1 +
k∑

n=2
nanzn−1

= 1 +

dk+1

k+1

∞∑
n=k+1

nanz
n−1

1 +
k∑

n=2
nanzn−1

. (4.14)

Hence,

∣∣∣∣g(z)− 1

g(z) + 1

∣∣∣∣ ≤

dk+1

k+1

∞∑
n=k+1

n|an|

2− 2
k∑

n=2
n|an| − dk+1

k+1

∞∑
n=k+1

n|an|
. (4.15)

Now
∣∣∣ g(z)−1
g(z)+1

∣∣∣ ≤ 1 if

k∑
n=2

n|an|+
dk+1

k + 1

∞∑
n=k+1

n|an| ≤ 1. (4.16)

Since the left hand side of (4.16) is bounded above by
k∑

n=2
dn|an| if

k∑
n=2

(dn − n)|an|+
∞∑

n=k+1

dn − dk+1

k + 1
n|an| ≥ 0 (4.17)

and the proof is complete. The result is sharp for the extremal function f(z) = z + zk+1

ck+1
. □

Theorem 4.3. If f(z) of the form (1.1) satisfies the condition (2.1) then

Re

{
f ′
k(z)

f ′(z)

}
≥ dk+1

k + 1 + dk+1
. (4.18)
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Proof . By setting

g(z) = [(k + 1) + dk+1]

{
f ′
k(z)

f ′(z)
− dk+1

k + 1 + dk+1

}

= 1−

(
1 + dk+1

k+1

) ∞∑
n=k+1

nanz
n−1

1 +
k∑

n=2
nanzn−1

and making use of (4.17), we deduce that

∣∣∣∣g(z)− 1

g(z) + 1

∣∣∣∣ ≤
(
1 + dk+1

k+1

) ∞∑
n=k+1

n|an|

2− 2
k∑

n=2
n|an| −

(
1 + dk+1

k+1

) ∞∑
n=k+1

n|an|
≤ 1,

which leads us immediately to the assertion of the Theorem 4.3. □

5 Integral Means Inequalities

In 1925, Littlewood [17] proved the following subordination theorem.

Lemma 5.1. If the functions f and g are analytic in U with g ≺ f, then for ρ > 0, and 0 < r < 1,

2π∫
0

∣∣g(reiθ)∣∣ρ dθ ≤
2π∫
0

∣∣f(reiθ)∣∣ρ dθ. (5.1)

In [24], Silverman found that the function f2(z) = z − z2

2 is often extremal over the family T. He applied this
function to resolve his integral means inequality, conjectured in [25] and settled in [26], that

2π∫
0

∣∣f(reiθ)∣∣ρ dθ ≤
2π∫
0

∣∣f2(reiθ)∣∣ρ dθ,
for all f ∈ T, ρ > 0 and 0 < r < 1. In [26], he also proved his conjecture for the subclasses T ∗(α) = S∗(α) ∩ T and
K(α) = C(α) ∩ T of T. Using Lemma 5.1, Theorem 2.2 and Corollary 2.3, in the following theorem we obtain integral
means inequalities for the functions in the family T Pa,c

ϑ,τ (α, β).

Theorem 5.2. Suppose f ∈ T Pa,c
ϑ,τ (α, β), ρ > 0, 0 ≤ α < 1, β ≥ 0 and f2(z) is defined by

f2(z) = z − 1− α

(2− α)(1 + τ)Φa,c
ϑ (2)

z2.

where Φa,c
ϑ (2) is given by (1.6). Then for z = reiθ, 0 < r < 1, we have

2π∫
0

|f(z)|ρ dθ ≤
2π∫
0

|f2(z)|ρ dθ. (5.2)

Proof . For f ∈ T, (5.2) is equivalent to proving that

2π∫
0

∣∣∣∣∣1−
∞∑

n=2

anz
n−1

∣∣∣∣∣
ρ

dθ ≤
2π∫
0

∣∣∣∣1− 1− α

(2− α)(1 + τ)Φa,c
ϑ (2)

z

∣∣∣∣ρ dθ.
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By Lemma 5.1, it suffices to show that

1−
∞∑

n=2

|an|zn−1 ≺ 1− 1− α

(2− α)(1 + τ)Φa,c
ϑ (2)

z.

Setting

1−
∞∑

n=2

|an|zn−1 = 1− 1− α

(2− α)(1 + τ)Φa,c
ϑ (2)

w(z) (5.3)

and using (2.2), we obtain

|w(z)| =

∣∣∣∣∣
∞∑

n=2

(1 + τ(n− 1))[n(1 + β)− (α+ β)

1− α
anΦ

a,c
ϑ (n)zn−1

∣∣∣∣∣
≤ |z|

∞∑
n=2

(1 + τ(n− 1))[n(1 + β)− (α+ β)

1− α
Φa,c

ϑ (n)|an|

≤ |z|

where Φa,c
ϑ (n) is given by (1.6). Which completes the proof by Theorem 5.2. □

By taking appropriate choices of the parameters we obtain the integral means inequalities for several known as
well as new subclasses given in Examples 1.3 to 1.7 in Section 1 and Theorem 5.2.

6 Conclusion

By suitably specializing the values of a, c, α, β and τ the class T Pa,c
ϑ,τ (α, β) yields to the various new subclasses

associated with the linear operator listed in Remark 1.2, and we can deduce the above results easily by proceeding as
in Theorems 2.1 to 5.2 for several known as well as new subclasses given in Examples 1.3 to 1.5 in Section 1.
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