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Abstract

In this paper by taking into account three trends, prevalent in metric fixed point theory, namely, use of control
functions instead of contraction constants, consideration of relational structure in the metric space and fixed point
studies of discontinuous functions, we formulate and solve a new problem in relational metric fixed point theory. Our
result extends the well known result of Kannan. The theorems are illustrated with examples. Further the problem is
shown to have Hyers-Ulam-Rassias stability property. We make an application of our main result to a problem of a
nonlinear integral equation.
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1 Introduction and mathematical preliminaries

The present paper is about a problem formulated in metric fixed point theory. It is well known that the aforesaid
domain of mathematics is an expanding area of research even after about hundred years of its initiation through the
famous result due to Banach in 1922 [8]. Several books like [30, 32, 40] comprehensively describe the subject along
with its modern development. Particularly we deal with a discontinuous class of functions which are known as Kannan
type mappings. We solve the problem of existence of fixed points for such mappings under certain conditions. Further
we study the Hyers-Ulam-Rassias stability of the problem which is answering the question whether an approximate
fixed point of the operator has an actual fixed point approximation. This is an instance of a general approach to
stability studies, particularly in nonlinear analysis, which has come up prominently in the recent literature [1, 2, 18,
23, 21, 27, 44, 46].

Kannan-type mappings are considered important in the metric fixed point theory. A reason for their important
position is that they can be discontinuous. In fact the work of Kannan [25] is considered to have initiated the line
of research for investigating fixed points of discontinuous function. A further distinguishing feature of Kannan’s
contraction is that the existence of fixed points for such mappings on metric spaces implies the completeness of the
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space [50] which is not shared by Banch’s contraction. References [15, 20, 26, 31, 50] are some instances of works on
Kannan type mappings along with their extensions.

Definition 1.1. [25]A mapping T : X → X, where (X, d) is a metric space, is called a Kannan type mapping if there
exists 0 ≤ k < 1

2 such that, for all x, y ∈ X,

d(Tx, Ty) ≤ k[d(x, Tx) + d(y, Ty)]. (1.1)

Theorem 1.2 (Kannan). [25] Let (X, d) be a complete metric space and T : X → X, be a map satisfying (1.1).
Then T has a unique fixed point.

If k ≥ 1
2 in the inequality (1.1), then the theorem fails to hold, that is the function T may not have a fixed point.

So it is pertinent to search for additional conditions on the behaviour of the function under which the range of k can
be extended. One such set of conditions was developed by Górnicki in [15], which, if assumed, allows the value of k to
be any value, less than 1.

On the other hand replacing the contractive constants by a suitable function opens up the scope of encompassing
more functions to follow the conclusion of that theorem. This is one of the ways by which more generalised results
are produced. Few works in this line are [7, 12, 14, 16, 34]. Getting inspired by the work of Rakotch [42], Geraghty
in his paper [14] made such attempt and was successful to generalise the results of Rakotch [42] and that of Boyd and
Wong [10]. Geraghty used the class S of all such functions β : [0,∞) → [0, 1) such that

β(tn) → 1 implies tn → 0, (1.2)

and concluded the following theorem.

Theorem 1.3 (Geraghty). [14] Let f : X → X be a map on a complete metric space X satisfying d(f(x), f(y)) ≤
β(d(x, y))d(x, y) where β ∈ S. Then T has a unique fixed point in X.

Here in our paper we replace the contractive constant by a Geraghty type function.

The main results of this paper are derived without using any continuity assumption. So the results are applicable
to non continuous functions as well.

Use of binary relation is a new trend of research in fixed point theory. For details we refer the reader to the papers
of [3, 4, 5, 11, 28, 29, 47]. The use of binary relations are effective in weakening the contractive map in a way that
the contractive condition is not supposed to hold for any pair of points in the space but only for those which are
related. In this work we make use of the notion of binary relation to relax the contractive conditions. Furthermore,
the assumption in our result lies on the notion of R-complete metric space, which is a more general structure than
the complete metric space.

The concept of Hyers-Ulam-Rassias stability has its root in a question which Ulam [53] has raised in 1940. This
question was partially addressed affirmatively by Hyers in the context of Banach spaces [17] and was further elaborated
by Rassias [43]. Today it is a specialized category of stability which is applicable to diverse domains of mathematics.
Several works in this line are [6, 17, 19, 41, 43, 45, 48]. For more information on functional equations we refer, e.g., to
[9, 13, 22, 24, 21, 27, 35, 36, 38, 39, 49, 51, 54]. Here we discuss the Hyers-Ulam-Rassias stability of our fixed point
problem.

In the last section of this paper we give an application of our main result to a problem of a nonlinear integral
equation.

In the following we shall have few definitions which are used in the paper.

Definition 1.4. [37] Any subset R of A×B is called a relation from A to B.
The domain and range of the relation R are defined respectively as, Dom R := {a ∈ A | ∃ b ∈ B such that (a, b) ∈ R}
and Range R = {b ∈ B | ∃ a ∈ A such that (a, b) ∈ R}.

Definition 1.5. [3] Let X be a nonempty set. A subset R of X ×X is a binary relation on X. We say that x and
y are R-comparative if either (x, y) ∈ R or (y, x) ∈ R. We denote it by [x, y] ∈ R.

Definition 1.6. [52] Let X be a nonempty set and R be a binary relation on X. A sequence {xn} ⊂ X is called
R-preserving if (xn, xn+1) ∈ R for all n ∈ N.
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Definition 1.7. [4] Let (X, d) be a metric space and R be a binary relation on X. We say that (X, d) is R-complete
if every R-preserving Cauchy sequence in X is convergent.

Definition 1.8. [3] Let (X, d) be a metric space. A binary relation R defined on X is called d-self closed if every
R-preserving convergent sequence {xn} ( with xn −→ x, as n −→ ∞), has a subsequence {xnk

} such that [xnk
, x] ∈ R

for all k ∈ N.

Definition 1.9. [37] Let X be a nonempty set and R be a binary relation on X.

(1) The inverse, transpose or dual relation of R, denoted by R−1, is defined by

R−1 = {(x, y) ∈ X ×X | (y, x) ∈ R}.

(2) The symmetric closure of R, denoted by Rs, is defined by Rs := R
⋃

R−1.
Indeed, Rs is the smallest symmetric relation on X containing R.

Definition 1.10. [33] Let X be a nonempty set and R be a binary relation on X. For x, y ∈ X, a path of length
k ( where k is a natural number) in R from x to y is a finite sequence {z0, z1, z2, ..., zk} ⊂ X satisfying the following
conditions:

(i) z0 = x and zk = y,

(ii) (zi, zi+1) ∈ R for each i where 0 ≤ i ≤ k − 1.

Note that a path of length k involves k + 1 elements of X, although they are not necessarily distinct.

Definition 1.11. [5] A relation R is called transitive if (x, z) ∈ R, whenever (x, y), (y, z) ∈ R.

Definition 1.12. [5] Given a mapping T : X → X , a relation R is called T -transitive if (Tx, Tz) ∈ R whenever
(Tx, Ty), (Ty, Tz) ∈ R, for all x, y, z ∈ X.

Definition 1.13. [5] Let (X, d) be a metric space and R be a relation on it. X is called R-connected if Υ(x, y,R) ̸= ∅
for all x, y ∈ X, where Υ(x, y,R) is defined to be the class of all paths in R from x to y.

In the following we use the following notations:
• F (T ) := {x | x = Tx}.
• G(T, ε) := {x | d(x, Tx) ≤ ε}.

Definition 1.14. [48] Let X be a nonempty set and T be a self-mapping on X. The fixed point problem -“ Solve
x = Tx” is said to be generalized Hyers-Ulam-Rassias stable if there exists a function f : [0,∞) → [0,∞), which is
non-decreasing, continuous at 0 with f(0) = 0, such that for each ε > 0 and each w ∈ G(T, ε) there exists x0 ∈ F (T ),
with d(x0, w) < f(ε).
If f(t) = ct for some c > 0 then the problem is called Hyers-Ulam-Rassias stable.

2 Main Results

2.1 Result for the existence of fixed point

Theorem 2.1. Let (X, d) be a metric space, equipped with a binary relation R and a self map T on X. Assume
that the following conditions hold -

(i) (X, d) is Rs-complete.

(ii) Dom R ⊆ Range R.

(iii) There exists a ∈ [0, 1) such that for all x ∈ Range R, there exists u ∈ Dom R such that

d(u, Tu) ≤ ad(x, Tx). (2.1)

(iv) Rs is d-self closed.
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(v) There exists a function β : [0, ∞) → [0, 1) with β(tn) → 1 =⇒ tn → 0, such that for all x, y ∈ X, with [x, y] ∈
R the following condition holds:

d(Tx, Ty) ≤ β (d (x, Tx) + d (y, Ty)) {d (x, Tx) + d (y, Ty)} . (2.2)

Then T has a fixed point.

Proof . Let x0 ∈ Range R. Then by (2.1) there exists x1 ∈ Dom R such that d(x1, Tx1) ≤ ad(x0, Tx0).
As x1 ∈ Dom R ⊆ Range R, there exists x2 ∈ Dom R such that d(x2, Tx2) ≤ ad(x1, Tx1).
Inductively, we can construct a sequence {xn} such that

(xn+1, xn) ∈ R and d(xn+1, Txn+1) ≤ ad(xn, Txn). (2.3)

From (2.3) we get, d(xn+1, Txn+1) ≤ ad(xn, Txn) ≤ ... ≤ an+1d(x0, Tx0).

Since a ∈ [0, 1), as n→ 0, d(xn, Txn) → 0. (2.4)

For m,n ∈ N, with m < n we have

d(xm, xn) ≤ d(xm, Txm) + d(Txm, Txm+1) + ...+ d(Txn−1, Txn) + d(Txn, xn)

< d(xm, Txm) + {d (xm, Txm) + d (xm+1, Txm+1)}+ ...+ {d (xn−1, Txn−1) + d (xn, Txn)}+ d(Txn, xn)

= 2 {d (xm, Txm) + d (xm+1, Txm+1) + d (xm+2, Txm+2) + ...+ d (xn, Txn)}
≤ 2

{
d (xm, Txm) + ad (xm, Txm) + a2d (xm, Txm) + ...+ an−md (xm, Txm)

}
≤ 2

{
1 + a+ a2 + ...+ an−m

}
d (xm, Txm)

≤ 2

1− a
d (xm, Txm) → 0 as m,n→ ∞. (2.5)

From (2.5) it is seen that {xn} is a Cauchy sequence. Also for every n ∈ N, (xn+1, xn) ∈ R. Thus by condition
(i), xn → z for some z ∈ X as n → ∞. Now by condition (iv) there exists a subsequence {xnk

} of {xn} such that
[xnk

, z] ∈ R for all k ∈ N. Therefore,

d(z, Tz) ≤ d(z, xnk
) + d(xnk

, Txnk
) + d(Txnk

, T z)

≤ d(z, xnk
) + d(xnk

, Txnk
) + β(d(xnk

, Txnk
) + d(z, Tz)) {d(xnk

, Txnk
) + d(z, Tz)} . (2.6)

Taking limit k → ∞ in above relation, and using (2.4) we get,

d(z, Tz) ≤ 0 + 0 + lim
k→∞

β(d(xnk
, Txnk

) + d(z, Tz)) {0 + d(z, Tz)}

= lim
k→∞

β(d(xnk
, Txnk

) + d(z, Tz))d(z, Tz)

≤ d(z, Tz). (2.7)

The relation (2.7) implies either d(z, Tz) = 0 or lim
k→∞

β(d(xnk
, Txnk

) + d(z, Tz)) = 1. If lim
k→∞

β(d(xnk
, Txnk

) +

d(z, Tz)) = 1, then lim
k→∞

{d(xnk
, Txnk

) + d(z, Tz)} = 0. That is, d(z, Tz) = 0. So in any case d(z, Tz) = 0, which

implies z = Tz.Hence, z is a fixed point of T . □

Example 2.2. Let us consider the metric space X = [0, 1) with usual metric d on it. Let T : X → X be defined as

Tx =

{
0, if x ∈ [0, 13 ],
1
4 , if x ∈ ( 13 , 1).

We define a relation R = [0, 13 ]× ([0, 13 ] ∪ ( 94 −
√
3, 1)).

We note that any Rs preserving Cauchy sequence has at most a finite number of terms in ( 94 −
√
3, 1). For, let {xn}

be any Rs preserving Cauchy sequence. If possible, let {xn} contains infinite number of points in ( 94 −
√
3, 1). This

means there is a subsequence {xnk
} of {xn} such that xnk

∈ ( 94 −
√
3, 1) for all k ∈ N. Also, {xn} is Rs preserving

and for every k ∈ N, xnk
∈ Range R implies xnk+1 ∈ Dom R. Now, {xn} being a Cauchy sequence its subsequence
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{xnk+1} is also Cauchy in the complete subspace [0, 13 ]. Thus {xnk+1} converges to some point in [0, 13 ]. Which means
{xn}, and thus {xnk

} are also convergent to the same point. This is absurd since [0, 13 ] has no point in the closure of

( 94−
√
3, 1) in which {xnk

} is fully contained. Thus by the method of contradiction we establish that any Rs-preserving
sequence in X has all its elements in [0, 13 ], except possibly finitely many. As [0, 13 ] is complete it is seen that X is
Rs-complete.

Here Dom R = [0, 13 ] and Range R = [0, 13 ] ∪ ( 94 −
√
3, 1). Thus, Dom R ⊆ Range R.

Now let 0 ≤ a < 1. Then for each x ∈ [0, 13 ] we can find u = ax ∈ [0, 13 ] and for each x ∈ ( 94 −
√
3, 1), we can find

u = min{a(x − 1
4 ),

1
3} ∈ [0, 13 ] such that (2.1) holds. Thus for each x ∈ Range R there exists u ∈ Dom R such that

(2.1) holds.

Now let {xn} be any Rs preserving sequence converging to v ∈ X. Clearly {xn} is eventually contained in [0, 13 ],
which is a closed set. So v ∈ [0, 13 ]. Thus R

s is d-self closed.

We now define β : [0,∞) → [0, 1) as β(t) =

1− t

4
, if 0 ≤ t ≤ 1,

1

2
, otherwise.

.

Let [x, y] ∈ R. If both x, y ∈ [0, 13 ], then L.H.S of (2.2) becomes 0, and the relation holds trivially. Otherwise,

to check the relation (2.2), without the loss of any generality, we consider x ∈ [0, 13 ] and y ∈ ( 94 −
√
3, 1). Then,

d(Tx, Ty) = 1
4 and d(x, Tx) + d(y, Ty) = x+ y − 1

4 .
We consider two cases here.

Case-I: When 2 −
√
3 < x + y − 1

4
≤ 1, β(t) = 1 − t

4 . The inequality (2.2) in this case then becomes 1
4 ≤

{1− 1
4 (x+ y − 1

4 )}(x+ y − 1
4 ). The value of the right hand side is greater than 1

4 . Thus (2.2) is satisfied.

Case-II: When 1 < x+ y − 1

4
≤ 1 +

1

3
− 1

4
, β(t) = 1

2 .

Therefore, β (d (x, Tx) + d (y, Ty)) {d (x, Tx) + d (y, Ty)} = 1
2 × (x+ y − 1

4 ) ≥
1
2 × 1

2 = 1
4 = d(Tx, Ty).

This shows that the inequality (2.2) is satisfied in this case also.
So for all [x, y] ∈ R, the inequality (2.2) is satisfied.

Hence all the conditions of Theorem 2.1 are satisfied. It is seen that ′0′ is a fixed point of T .

Remark 2.3. X = [0, 1) is not complete. So Theorem 2.1 is applicable in non complete spaces also.

Remark 2.4. The map T is not continuous. So Theorem 2.1 is applicable for non continuous maps.

Remark 2.5. It is to be noted that the map T is not of the Kannan Type. For x = 0 and y = 3
4 , we have d(Tx, Ty) =

1
4

and d(x, Tx) + d(y, Ty) = x+ y − 1
4 = 1

2 . In order to satisfy (1.1) one must take k ≥ 1
2 .

Remark 2.6. The inequality (2.2) is not satisfied for any pair of points x, y from the set X. For example if we take
x = 0 and y = 1

2 then d(Tx, Ty) = d(x, Tx) + d(y, Ty), which is not satisfied for any β ∈ S as β(t) ̸= 1 for all
t ∈ [0,∞). However, the inequality (2.2) is satisfied for every pair of points which are related by a relation R. This
shows that our result generalizes the result of [15] also.

Remark 2.7. In the Example 2.2 it is seen that there exists no constant k ∈ [0, 1) such that the inequality (1.1) holds
for all [x, y] ∈ R. Therefore replacement of the contractive constant k by the function β is effective to address a more
general fixed point result.

Remark 2.8. Theorem 2.1 requires lesser conditions than Lemma 1.2 of [15]. In that result, they have assumed that
there is some b ≥ 0 such that d(u, x) ≤ bd(x, Tx), which we do not require in proving our result.

2.2 Uniqueness result of Fixed points.

In Theorem 2.1 we have only assured the existence of the fixed point. Now we find conditions for such fixed point
to be unique. First we give a lemma.

Lemma 2.9. Let (X, d) be a metric space equipped with a binary relation R, a self map T on X. Suppose further
that there exists a function β : [0, ∞) → [0, 1) satisfying (1.2), such that for all x, y ∈ X, with [x, y] ∈ R, (2.2) holds.
If T has two distinct fixed points x0 and y0, then [x0, y0] /∈ R.
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Proof . If possible let T has two distinct fixed points x0, y0, and [x0, y0] ∈ R.
By equation (2.2) we have,

d(Tx0, T y0) ≤ β(d(x0, Tx0) + d(y0 Ty0))(d(x0, Tx0) + d(y0, T y0))

= β(d(x0, Tx0) + d(y0 Ty0))× 0 [since x0 = Tx0, y0 = Ty0]

= 0.

Thus we have Tx0 = Ty0, that is x0 = y0, which is a contradiction to our assumption that x0, y0 are distinct.
Hence the result is proved. □

Note: If T has fixed points x0, y0 with [x0, y0] ∈ R, then x0 = y0.

Theorem 2.10. In addition to the conditions stated in Theorem 2.1, if the following conditions hold
(vi) T (X) is R-connected;
(vii) R is T -transitive;

then the fixed point is unique.

Proof . Let, along with the conditions stated in Theorem 2.1, the above conditions (vi) and (vii) also hold and x, y
be two fixed points of T .
By (vi), we have Υ(x, y,R) ̸= ∅, that is, there is a path {z0, z1, ..., zk} of finite length such that x = z0, y = zk, zi ∈
T (X) and (zi, zi+1) ∈ R for 0 ≤ i ≤ k − 1.
As R is T -transitive, we have (x, y) ∈ R. Then, by the Lemma 2.9, we conclude that x = y.
Thus the fixed point is unique. □

Theorem 2.1 and Theorem 2.10 do not require completeness assumption. However results for complete metric
spaces can also be concluded from these results. We have the following corollaries.

Corollary 2.11. Let (X, d) be a complete metric space. Let the following conditions hold:

(i) There exists a ∈ [0, 1) such that for each x ∈ X there exists u ∈ X such that (2.1) holds.

(ii) There exists a function β : [0, ∞) → [0, 1) satisfying (1.2), such that for all x, y ∈ X, (2.2) holds.

Then T has a unique fixed point.

Proof . For the metric space X if R is taken to be X × X, i.e. the universal relation on it, then the notion of
Rs-completeness reduces to the completeness. So all the conditions of Theorem 2.1 holds. So there exists a fixed point
of T .

Moreover the condition of the Lemma 2.9 is also satisfied. Thus the fixed point would be unique. □

We illustrate the fact with the following example.

Example 2.12. Let us consider the metric space X = [0,∞) with the usual metric. Let T : X → X be defined as

Tx =

{
2, if x ̸= 3,

1, if x = 3.

We define a relation R = [0,∞)× [0,∞). Then X is clearly Rs-complete. Also, Dom R ⊆ Range R.
Now, let 0 ≤ a < 1. Then for each x ∈ [0,∞) we can choose u = 2 ∈ [0,∞) such that (2.1) holds. Thus for all x ∈
Range R, there exists u ∈ Dom R such that (2.1) holds.
Clearly Rs is d-self closed.

We now define β : [0,∞) → [0, 1) as β(t) =


2

3
, if t ≥ 1,

e−t, if 0 < t ≤ 1,

0, t = 0.

Let x, y ∈ X. If x = y = 3 or x ̸= 3, y ̸= 3, then

L.H.S of (2.2) becomes 0, and thus the inequality holds trivially. Otherwise, to check the inequality (2.2), without the
loss of any generality, consider the case when x = 3 and y ̸= 3.
For x = 3 and y ̸= 3, d(Tx, Ty) = 1.
d(x, Tx) + d(y, Ty) = 2 + |y − 2| ≥ 2. In this case β(d(x, Tx) + d(y, Ty)) = 2

3 . Thus d(Tx, Ty) ≤ β(d(x, Tx) +
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d(y, Ty))d(x, Tx) + d(y, Ty).
This shows that (2.2) is satisfied.
Hence all the conditions of Theorem 2.1 are satisfied. It is seen that ‘2′ is a fixed point of T .
Also T (X) = {2, 1}. Clearly conditions of Theorem 2.10 are also satisfied. It is seen that ′2′ is the only fixed point of
T .

Remark 2.13. The map T in the Example 2.12 is not a Kannan type map. Because for x = 2, y = 3, d(Tx, Ty) = 1
and d(x, Tx) + d(y, Ty) = 2, the inequality (1.1) is not satisfied unless k ≥ 1

2 .

Corollary 2.14 (Kannan). [25] Let (X, d) be a complete metric space and T : X → X be a map satisfying inequality
(1.1), where 0 ≤ k < 1

2 . Then T has a unique fixed point.

Proof . Let x be any element of X. If we set u = Tx then from (1.1) we have

d(u, Tu) = d(Tx, Tu)

≤ k(d(x, Tx) + d(u, Tu)).

Therefore we have,

d(u, Tu) ≤ k

1− k
d(x, Tx). (2.8)

As 0 ≤ k < 1
2 , choosing a =

k

1− k
< 1, we observe that condition (i) of Corollary 2.11 is satisfied.

If we choose β(t) = k for all t ∈ [0,∞) then such β satisfies condition (ii) of Corollary 2.11.
Thus by Corollary 2.11 we conclude that T has a unique fixed point in X. □

Remark 2.15. Thus we see that Corollary 2.11 is a proper generalization of the result of Kannan[25].

2.3 Hyers-Ulam-Rassias Stability

In this section we show that our problem is Hyers-Ulam-Rassias Stable.

Theorem 2.16. Let X, T and R be as in Theorem 2.1. Consider the fixed point problem :

Solve x = Tx. (2.9)

In addition to the conditions in Theorem 2.1, if for all ε > 0, w ∈ G(T, ε) implies there exists z ∈ F (T ) such that
[w, z] ∈ R, then the problem (2.9) is Hyers-Ulam-Rassias stable (see definition 1.14).

Proof . Let ε > 0 and consider w ∈ G(T, ε). Then d(w, Tw) ≤ ε. According to the hypothesis of this theorem, there
exists z ∈ F (T ) such that [w, z] ∈ R. So from relation (2.2), we have

d(Tz, Tw) ≤ β(d(z, Tz) + d(w, Tw))(d(z, Tz) + d(w, Tw))

≤ β(d(z, z) + d(w, Tw))(d(z, z) + d(w, Tw))

≤ β(d(w, Tw))d(w, Tw)).

Then we have,

d(w, z) ≤d(w, Tw) + d(Tw, z)

=d(w, Tw) + d(Tw, Tz)

≤d(w, Tw) + β(d(w, Tw))d(w, Tw))

≤ε+ β(d(w, Tw))× ε

≤ε+ ε [since β(d(w, Tw)) < 1].

=2ε.

Thus taking f(ε) = 2ε, we have for each ε > 0 and each w ∈ G(T, ε) there exists x0 ∈ F (T ), with d(x0, w) < f(ε).
Hence the problem is Hyers-Ulam-Rassias stable. □

Remark 2.17. The significance of Theorem 2.16 is that approximate fixed point can be actually approximated by a
fixed point.
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3 Application

In this section, we present an application of our fixed point results to establish the existence of solution of integral
equations.

We consider here a homogeneous nonlinear integral equation as follows

x(t) =
∫ 1

0
h(t, s, x(s))ds where t, s ∈ [0, 1] (3.1)

where x(t) takes values from [0, 1].

Let X = C([0, 1]), be the set of all real valued continuous functions defined on [0, 1]. Consider the Banach space
(X, ∥.∥) equipped with the norm:

∥x∥ = sup
t∈[0, 1]

| x(t) | .

Then the metric space (X, d), where d is the metric induced by the norm ∥.∥ defined as

d(x, y) = max
t∈[0, 1]

| x(t)− y(t) | (3.2)

is complete.

Consider the relation ≾ on C[0, 1], defined by x ≾ y if x(t) ≤ y(t) for all t ∈ [0, 1].

Next, we define a mapping T : X → X by

T (x)(t) =

∫ 1

0

h(t, s, x(s))ds, for all t, s ∈ [0, 1] (3.3)

with the following assumptions:
A1 : h : [0, 1] × [0, 1] × [0, 1] → [0, 1] is a continuous mapping and h(t, s, x) → θ as x → θ, where θ is the zero
function, θ(t) = 0, for all t ∈ [0, 1];
A2 : For x ≾ y, | h(t, s, x(s))−h(t, s, y(s)) |≤ e−{d(x,Tx)+d(y,Ty)}{d(x, Tx)+d(y, Ty)}, for all x, y ∈ X and for all t, s ∈
[0, 1] ].

Theorem 3.1. Let X, ≾, T, h(t, s, x) satisfy the assumptions A1 and A2. Then the nonlinear integral equation (3.1)
has a solution x ∈ C([0, 1]).

Proof . We first note that the space X being complete, it is ≾-complete also.

Next we note, Dom R ⊆ Range R.

Now, let a ∈ [0, 1) and for each x ∈ Range ≾, take u = θ. Then By assumptions A1

d(u, Tu) = sup
t∈[0,1]

{| θ(t)−
∫ 1

0

h(t, s, θ(s))ds |}

= sup
t∈[0,1]

{| θ(t)−
∫ 1

0

θ(s)ds |}

= 0

≤ ad(x, Tx).

Thus the inequality (2.1) is satisfied.

Now, let {xn} be any ≾-preserving sequence in X converging to x ∈ X. Then we have, x0(t) ≤ x1(t) ≤ x2(t) ≤
.... ≤ xn(t) ≤ xn+1(t) ≤ ..., for all t ∈ [0, 1].

Thus, xn(t) ≤ x(t) for all t ∈ [0, 1]. Therefore, xn ≾ x for all n ∈ N. So ≾ is d-self-closed.
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Also, for x, y ∈ X with x ≾ y,

d(Tx, Ty) = sup
t∈[0,1]

| T (x)(t)− T (y)(t) |

= sup
t∈[0,1]

|
∫ 1

0

[h(t, s, x(s))ds− h(t, s, y(s))]ds |

≤ sup
t∈[0,1]

∫ 1

0

| [h(t, s, x(s))− h(t, s, y(s)))] | ds

≤ sup
t∈[0,1]

∫ 1

0

[e−{d(x,Tx)+d(y,Ty)}{d(x, Tx) + d(y, Ty)}]ds

≤ sup
t∈[0,1]

e−{d(x,Tx)+d(y,Ty)}{d(x, Tx) + d(y, Ty)}
∫ 1

0

ds

≤ e−{d(x,Tx)+d(y,Ty)}{d(x, Tx) + d(y, Ty)}.

So we have,

d(Tx, Ty) ≤ β(d(x, Tx) + d(y, Ty))(d(x, Tx) + d(y, Ty)) where β(t) = e−t → 1 implies t→ 0.

Therefore, all the conditions of Theorem 2.1 are satisfied. Therefore, Theorem 2.1 applies to T , which guarantees the
existence of a fixed point x in X. That is, there is a solution of the integral equation (3.1). □
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