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Abstract

In this paper, we define the binomial transform of the generalized Jacobsthal-Padovan sequence and as special cases, the
binomial transform of the Jacobsthal-Padovan, Jacobsthal-Perrin, adjusted Jacobsthal-Padovan, modified Jacobsthal-
Padovan sequences will be introduced. We investigate their properties in details.
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1 Introduction and Preliminaries

Sequences have been fascinating topic for mathematicians for centuries and the sequences of numbers were widely
used in many research areas, such as physics, engineering, architecture, nature and art. The Fibonacci sequence is a
very well-known example of second order recurrence sequences. The Fibonacci numbers are perhaps most famous for
appearing in the rabbit breeding problem, introduced by Leonardo de Pisa in 1202 in his book called Liber Abaci.
The sequence of Fibonacci numbers {Fn} is defined by

Fn = Fn−1 + Fn−2, n ≥ 2, F0 = 0, F1 = 1.

The generalization of Fibonacci sequence leads to several nice and interesting sequences. Horadam [10] defined a
generalization of Fibonacci sequence, that is, he defined a second-order linear recurrence sequence {Wn(W0,W1; r, s)},
or simply {Wn}, as follows:

Wn = rWn−1 + sWn−2; W0 = a, W1 = b, (n ≥ 2)

where W0,W1 are arbitrary real (or complex) numbers and r, s are real numbers, see also Horadam [9], [12], [11].
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In this paper, we introduce the binomial transform of the generalized Jacobsthal-Padovan sequence and we inves-
tigate, in detail, four special cases which we call them the binomial transform of the Jacobsthal-Padovan, Jacobsthal-
Perrin, adjusted Jacobsthal-Padovan, modified Jacobsthal-Padovan sequences. We investigate their properties in the
next sections. In this section, we present some properties of the generalized Tribonacci sequence which is a general-
ization of Fibonacci numbers.

The generalized Tribonacci sequence

{Wn(W0,W1,W2; r, s, t)}n≥0

(or shortly {Wn}n≥0) is defined as follows:

Wn = rWn−1 + sWn−2 + tWn−3, W0 = a,W1 = b,W2 = c, n ≥ 3 (1.1)

where W0,W1,W2 are arbitrary complex (or real) numbers and r, s, t are real numbers. This sequence has been studied
by many authors, see for example [19], [20], [31], [2], [6], [16], [17], [23], [29].

The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n = −s

t
W−(n−1) −

r

t
W−(n−2) +

1

t
W−(n−3)

for n = 1, 2, 3, ... when t ̸= 0. Therefore, recurrence (1.1) holds for all integer n.

As {Wn} is a third order recurrence sequence (difference equation), it’s characteristic equation is

x3 − rx2 − sx− t = 0 (1.2)

whose roots are

α = α(r, s, t) =
r

3
+A+B,

β = β(r, s, t) =
r

3
+ ωA+ ω2B,

γ = γ(r, s, t) =
r

3
+ ω2A+ ωB

where

A =

(
r3

27
+

rs

6
+

t

2
+
√
∆

)1/3

, B =

(
r3

27
+

rs

6
+

t

2
−

√
∆

)1/3

,

∆ = ∆(r, s, t) =
r3t

27
− r2s2

108
+

rst

6
− s3

27
+

t2

4
, ω =

−1 + i
√
3

2
= exp(2πi/3).

Note that we have the following identities

α+ β + γ = r,

αβ + αγ + βγ = −s,

αβγ = t.

If ∆(r, s, t) > 0, then the Equ. (1.2) has one real (α) and two non-real solutions with the latter being conjugate
complex. So, in this case, it is well known that the generalized Tribonacci numbers can be expressed, for all integers
n, using Binet’s formula

Wn =
p1α

n

(α− β)(α− γ)
+

p2β
n

(β − α)(β − γ)
+

p3γ
n

(γ − α)(γ − β)
(1.3)

where

p1 = W2 − (β + γ)W1 + βγW0,

p2 = W2 − (α+ γ)W1 + αγW0,

p3 = W2 − (α+ β)W1 + αβW0.
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(1.3) can be written in the following form:

Wn = M1α
n +M2β

n +M3γ
n

where

M1 =
W2 − (β + γ)W1 + βγW0

(α− β)(α− γ)
,

M2 =
W2 − (α+ γ)W1 + αγW0

(β − α)(β − γ)
,

M3 =
W2 − (α+ β)W1 + αβW0

(γ − α)(γ − β)
.

Note that the Binet form of a sequence satisfying (1.2) for non-negative integers is valid for all integers n, for a
proof of this result see [13]. This result of Howard and Saidak [13] is even true in the case of higher-order recurrence
relations.

Next, we give the ordinary generating function
∞∑

n=0
Wnx

n of the sequence Wn.

Lemma 1.1. Suppose that fWn
(x) =

∞∑
n=0

Wnx
n is the ordinary generating function of the generalized Tribonacci

sequence) {Wn}n≥0. Then,
∞∑

n=0
Wnx

n is given by

∞∑
n=0

Wnx
n =

W0 + (W1 − rW0)x+ (W2 − rW1 − sW0)x
2

1− rx− sx2 − tx3
. (1.4)

We next find Binet’s formula of the generalized Tribonacci sequence {Wn} by the use of generating function for
Wn.

Theorem 1.2. (Binet’s formula of the generalized Tribonacci numbers) For all integers n, we have

Wn =
q1α

n

(α− β)(α− γ)
+

q2β
n

(β − α)(β − γ)
+

q3γ
n

(γ − α)(γ − β)
(1.5)

where

q1 = W0α
2 + (W1 − rW0)α+ (W2 − rW1 − sW0),

q2 = W0β
2 + (W1 − rW0)β + (W2 − rW1 − sW0),

q3 = W0γ
2 + (W1 − rW0)γ + (W2 − rW1 − sW0).

Note that from (1.3) and (1.5) we have

W2 − (β + γ)W1 + βγW0 = W0α
2 + (W1 − rW0)α+ (W2 − rW1 − sW0),

W2 − (α+ γ)W1 + αγW0 = W0β
2 + (W1 − rW0)β + (W2 − rW1 − sW0),

W2 − (α+ β)W1 + αβW0 = W0γ
2 + (W1 − rW0)γ + (W2 − rW1 − sW0).

In this paper we consider the case r = 0, s = 1, t = 2 and in this case we write Vn = Wn. A generalized
Jacobsthal-Padovan sequence {Vn}n≥0 = {Vn(V0, V1, V2)}n≥0 is defined by the third-order recurrence relations

Vn = Vn−2 + 2Vn−3 (1.6)

with the initial values V0 = c0, V1 = c1, V2 = c2 not all being zero.

The sequence {Vn}n≥0 can be extended to negative subscripts by defining

V−n = −1

2
V−(n−1) +

1

2
V−(n−3)
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for n = 1, 2, 3, .... Therefore, recurrence (1.6) holds for all integer n.

(1.3) can be used to obtain Binet’s formula of generalized Jacobsthal-Padovan numbers. Binet’s formula of gener-
alized Jacobsthal-Padovan numbers can be given as

Vn =
p1α

n

(α− β)(α− γ)
+

p2β
n

(β − α)(β − γ)
+

p3γ
n

(γ − α)(γ − β)
(1.7)

where

p1 = V2 − (β + γ)V1 + βγV0 = V0α
2 + V1α+ (V2 − V0) = q1, (1.8)

p2 = V2 − (α+ γ)V1 + αγV0 = V0β
2 + V1β + (V2 − V0) = q2, (1.9)

p3 = V2 − (α+ β)V1 + αβV0 = V0γ
2 + V1γ + (V2 − V0) = q3. (1.10)

Here, α, β and γ are the roots of the cubic equation

x3 − x− 2 = 0.

Moreover

α =
3

√
1 +

√
78

9
+

3

√
1−

√
78

9
≃ 1. 521379706804568,

β = ω
3

√
1 +

√
78

9
+ ω2 3

√
1−

√
78

9
,

γ = ω2 3

√
1 +

√
78

9
+ ω

3

√
1−

√
78

9
,

where

ω =
−1 + i

√
3

2
= exp(2πi/3).

Note that

α+ β + γ = 0,

αβ + αγ + βγ = −1,

αβγ = 2.

Now, we present four special cases of the generalized Jacobsthal-Padovan sequence {Vn}.
Jacobsthal-Padovan sequence {Qn}n≥0, Jacobsthal-Perrin sequence {Ln}n≥0, adjusted Jacobsthal-Padovan se-

quence {Kn}n≥0, modified Jacobsthal-Padovan sequence {Mn}n≥0 are defined, respectively, by the third-order recur-
rence relations

Qn+3 = Qn+1 + 2Qn, Q0 = 1, Q1 = 1, Q2 = 1, (1.11)

Ln+3 = Ln+1 + 2Ln, L0 = 3, L1 = 0, L2 = 2, (1.12)

Kn+3 = Kn+1 +Kn, K0 = 0,K1 = 1,K2 = 0, (1.13)

Mn+3 = Mn+1 +Mn, M0 = 3,M1 = 1,M2 = 3. (1.14)

The sequences {Qn}n≥0, {Ln}n≥0, {Kn}n≥0 and {Mn}n≥0 can be extended to negative subscripts by defining

Q−n = −1

2
Q−(n−1) +

1

2
Q−(n−3),

L−n = −1

2
L−(n−1) +

1

2
L−(n−3),

K−n = −1

2
K−(n−1) +

1

2
K−(n−3),

M−n = −1

2
M−(n−1) +

1

2
M−(n−3),
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for n = 1, 2, 3, ... respectively. Therefore, recurrences (1.11)-(1.14) hold for all integer n.

For more details on the generalized Jacobsthal-Padovan numbers, see Soykan [25].

Qn is the sequence A159284 in [21] associated with the expansion of x(1+x)/(1−x2−2x3) and Ln is the sequence
A072328 in [21] and Kn is the sequence A159287 in [21] associated with the expansion of x2/(1− x2 − 2x3).

For all integers n, Jacobsthal-Padovan, Jacobsthal-Perrin, adjusted Jacobsthal-Padovan, modified Jacobsthal-
Padovan numbers (using initial conditions in (1.8)-(1.10)) can be expressed using Binet’s formulas as

Qn =
(α+ 1)

(α− β)(α− γ)
αn+1 +

(β + 1)

(β − α)(β − γ)
βn+1 +

(γ + 1)

(γ − α)(γ − β)
γn+1,

Ln = αn + βn + γn,

Kn =
1

(α− β)(α− γ)
αn+1 +

1

(β − α)(β − γ)
βn+1 +

1

(γ − α)(γ − β)
γn+1,

Mn =
(3α+ 1)

(α− β)(α− γ)
αn+1 +

(3β + 1)

(β − α)(β − γ)
βn+1 +

(3γ + 1)

(γ − α)(γ − β)
γn+1,

respectively, see, Soykan [25] for more details.

Next, we give the ordinary generating function
∞∑

n=0
Vnx

n of the generalized Jacobsthal-Padovan sequence Vn (see,

Soykan [25] for more details.).

Lemma 1.3. Suppose that fVn(x) =
∞∑

n=0
Vnx

n is the ordinary generating function of the generalized Jacobsthal-

Padovan sequence {Vn}n≥0. Then,
∞∑

n=0
Vnx

n is given by

∞∑
n=0

Vnx
n =

V0 + V1x+ (V2 − V0)x
2

1− x2 − 2x3
. (1.15)

Proof . Take r = 0, s = 1, t = 2 in Lemma 1.1. □

The previous lemma gives the following results as particular examples.

Corollary 1.4. Generating functions of Jacobsthal-Padovan, Jacobsthal-Perrin, adjusted Jacobsthal-Padovan modi-
fied Jacobsthal-Padovan numbers are

∞∑
n=0

Qnx
n =

1 + x

1− x2 − 2x3
,

∞∑
n=0

Lnx
n =

3− x2

1− x2 − 2x3
,

∞∑
n=0

Knx
n =

x

1− x2 − 2x3
,

∞∑
n=0

Mnx
n =

3 + x

1− x2 − 2x3
,

respectively.

2 Binomial Transform of the Generalized Jacobsthal-Padovan Sequence Vn

In [15], p. 137, Knuth introduced the idea of the binomial transform. Given a sequence of numbers (an), its
binomial transform (ân) may be defined by the rule

ân =

n∑
i=0

(
n

i

)
ai, with inversion an =

n∑
i=0

(
n

i

)
(−1)n−iâi,



648 Soykan, Taşdemir, Özmen

or, in the symmetric version

ân =

n∑
i=0

(
n

i

)
(−1)i+1ai, with inversion an =

n∑
i=0

(
n

i

)
(−1)i+1âi.

For more information on binomial transform, see, for example, [18], [7], [30], [8] and references therein.

In this section, we define the binomial transform of the generalized Jacobsthal-Padovan sequence Vn and as special
cases the binomial transform of the Jacobsthal-Padovan, Jacobsthal-Perrin, adjusted Jacobsthal-Padovan, modified
Jacobsthal-Padovan sequences will be introduced.

Definition 2.1. The binomial transform of the generalized Jacobsthal-Padovan sequence Vn is defined by

bn = V̂n =

n∑
i=0

(
n

i

)
Vi.

The few terms of bn are

b0 =

0∑
i=0

(
0

i

)
Vi = V0,

b1 =

1∑
i=0

(
1

i

)
Vi = V0 + V1,

b2 =

2∑
i=0

(
2

i

)
Vi = V0 + 2V1 + V2.

Translated to matrix language, bn has the nice (lower-triangular matrix) form

b0
b1
b2
b3
b4
...


=



1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
1 2 1 0 0 · · ·
1 3 3 1 0 · · ·
1 4 6 4 1 · · ·
...

...
...

...
...

. . .





V0

V1

V2

V3

V4

...


.

As special cases of bn = V̂n, the binomial transforms of the Jacobsthal-Padovan, Jacobsthal-Perrin, adjusted Jacobsthal-
Padovan, modified Jacobsthal-Padovan sequences are defined as follows: The binomial transform of the Jacobsthal-
Padovan sequence Qn is

Q̂n =

n∑
i=0

(
n

i

)
Qi,

the binomial transform of the Jacobsthal-Perrin sequence Ln is

L̂n =

n∑
i=0

(
n

i

)
Li,

the binomial transform of the adjusted Jacobsthal-Padovan sequence Kn is

K̂n =

n∑
i=0

(
n

i

)
Ki,

the binomial transform of the modified Jacobsthal-Padovan sequence Mn is

M̂n =

n∑
i=0

(
n

i

)
Mi.
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Lemma 2.2. For n ≥ 0, the binomial transform of the generalized Jacobsthal-Padovan sequence Vn satisfies the
following relation:

bn+1 =

n∑
i=0

(
n

i

)
(Vi + Vi+1).

Proof . We use the following well-known identity:(
n+ 1

i

)
=

(
n

i

)
+

(
n

i− 1

)
.

Note also that (
n+ 1

0

)
=

(
n

0

)
= 1 and

(
n

n+ 1

)
= 0.

Then

bn+1 = V0 +

n+1∑
i=1

(
n+ 1

i

)
Vi

= V0 +

n+1∑
i=1

(
n

i

)
Vi +

n+1∑
i=1

(
n

i− 1

)
Vi

= V0 +

n∑
i=1

(
n

i

)
Vi +

n∑
i=0

(
n

i

)
Vi+1

=

n∑
i=0

(
n

i

)
Vi +

n∑
i=0

(
n

i

)
Vi+1

=

n∑
i=0

(
n

i

)
(Vi + Vi+1).

This completes the proof. □

Remark 2.3. From the last Lemma, we see that

bn+1 = bn +

n∑
i=0

(
n

i

)
Vi+1.

The following theorem gives recurrent relations of the binomial transform of the generalized Jacobsthal-Padovan
sequence.

Theorem 2.4. For n ≥ 0, the binomial transform of the generalized Jacobsthal-Padovan sequence Vn satisfies the
following recurrence relation:

bn+3 = 3bn+2 − 2bn+1 + 2bn. (2.1)

Proof . To show (2.1), writing
bn+3 = r1 × bn+2 + s1 × bn+1 + t1 × bn

and taking the values n = 0, 1, 2 and then solving the system of equations

b3 = r1 × b2 + s1 × b1 + t1 × b0

b4 = r1 × b3 + s1 × b2 + t1 × b1

b5 = r1 × b4 + s1 × b3 + t1 × b2

we find that r1 = 3, s1 = −2, t1 = 2. □

The sequence {bn}n≥0 can be extended to negative subscripts by defining

b−n = b−n+1 −
3

2
b−n+2 +

1

2
b−n+3
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for n = 1, 2, 3, .... Therefore, recurrence (2.1) holds for all integer n.

Note that the recurence relation (2.1) is independent from initial values. So,

Q̂n+3 = 3Q̂n+2 − 2Q̂n+1 + 2Q̂n,

L̂n+3 = 3L̂n+2 − 2L̂n+1 + 2L̂n,

K̂n+3 = 3K̂n+2 − 2K̂n+1 + 2K̂n,

M̂n+3 = 3M̂n+2 − 2M̂n+1 + 2M̂n.

and

Q̂−n = Q̂−n+1 −
3

2
Q̂−n+2 +

1

2
Q̂−n+3,

L̂−n = L̂−n+1 −
3

2
L̂−n+2 +

1

2
L̂−n+3,

K̂−n = K̂−n+1 −
3

2
K̂−n+2 +

1

2
K̂−n+3,

M̂−n = M̂−n+1 −
3

2
M̂−n+2 +

1

2
M̂−n+3.

The first few terms of the binomial transform of the generalized Jacobsthal-Padovan sequence with positive sub-
script and negative subscript are given in the following Table 1.

Table 1. A few binomial transform (terms) of the generalized Jacobsthal-Padovan sequence.

n bn b−n

0 V0 ...
1 V0 + V1 − 1

2 (V1 − V2)
2 V0 + 2V1 + V2 − 1

2 (2V0 − V2)
3 3V0 + 4V1 + 3V2 − 1

4 (2V0 − 3V1 + V2)
4 9V0 + 10V1 + 7V2

1
4 (4V0 + 2V1 − 3V2)

5 23V0 + 26V1 + 17V2
1
8 (10V0 − 5V1 − V2)

6 57V0 + 66V1 + 43V2 − 1
8 (4V0 + 8V1 − 7V2)

7 143V0 + 166V1 + 109V2 − 1
16 (30V0 − 3V1 − 11V2)

8 361V0 + 418V1 + 275V2 − 1
16 (8V0 − 22V1 + 11V2)

9 911V0 + 1054V1 + 693V2
1
32 (66V0 + 19V1 − 41V2)

10 2297V0 + 2658V1 + 1747V2
1
32 (60V0 − 44V1 + 3V2)

11 5791V0 + 6702V1 + 4405V2 − 1
64 (94V0 + 101V1 − 107V2)

12 14601V0 + 16898V1 + 11107V2 − 1
64 (208V0 − 50V1 − 57V2)

13 36815V0 + 42606V1 + 28005V2 − 1
128 (14V0 − 315V1 + 201V2)

The first few terms of the binomial transform numbers of the Jacobsthal-Padovan, Jacobsthal-Perrin, adjusted
Jacobsthal-Padovan, modified Jacobsthal-Padovan sequences with positive subscript and negative subscript are given
in the following Table 2.

Table 2. A few binomial transform (terms).

n 0 1 2 3 4 5 6 7 8 9 10

Q̂n 1 2 4 10 26 66 166 418 1054 2658 6702

Q̂−n 0 − 1
2 0 3

4
1
2 − 5

8 −1 3
16

11
8

19
32

L̂n 3 3 5 15 41 103 257 647 1633 4119 10385

L̂−n 1 −2 −2 3
2

7
2

1
4 − 17

4 − 23
8

29
8

93
16

K̂n 0 1 2 4 10 26 66 166 418 1054 2658

K̂−n − 1
2 0 3

4
1
2 − 5

8 −1 3
16

11
8

19
32 − 11

8

M̂n 3 4 8 22 58 146 366 922 2326 5866 14790

M̂−n 1 − 3
2 − 3

2
5
4

11
4

1
8 − 27

8 − 35
16

47
16

145
32
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(1.3) can be used to obtain Binet’s formula of the binomial transform of generalized Jacobsthal-Padovan numbers.
Binet’s formula of the binomial transform of generalized Jacobsthal-Padovan numbers can be given as

bn =
c1θ

n
1

(θ1 − θ2)(θ1 − θ3)
+

c2θ
n
2

(θ2 − θ1)(θ2 − θ3)
+

c3θ
n
3

(θ3 − θ1)(θ3 − θ2)
(2.2)

where

c1 = b2 − (θ2 + θ3)b1 + θ2θ3b0 = (V0 + 2V1 + V2)− (θ2 + θ3)(V0 + V1) + θ2θ3V0,

c2 = b2 − (θ1 + θ3)b1 + θ1θ3b0 = (V0 + 2V1 + V2)− (θ1 + θ3)(V0 + V1) + θ1θ3V0,

c3 = b2 − (θ1 + θ2)b1 + θ1θ2b0 = (V0 + 2V1 + V2)− (θ1 + θ2)(V0 + V1) + θ1θ2V0.

Here, θ1, θ2 and θ3 are the roots of the cubic equation x3 − 3x2 + 2x− 2 = 0. Moreover,

θ1 = 1 +
1

3

3

√
27 + 3

√
78 +

1

3

3

√
27− 3

√
78,

θ2 = 1 +
ω

3

3

√
27 + 3

√
78 +

ω2

3

3

√
27− 3

√
78,

θ3 = 1 +
ω2

3

3

√
27 + 3

√
78 +

ω

3

3

√
27− 3

√
78,

where

ω =
−1 + i

√
3

2
= exp(2πi/3).

Note that

θ1 + θ2 + θ3 = 3,

θ1θ2 + θ1θ3 + θ2θ3 = 2,

θ1θ2θ3 = 2.

For all integers n, (Binet’s formulas of) binomial transforms of Jacobsthal-Padovan, Jacobsthal-Perrin, adjusted
Jacobsthal-Padovan, modified Jacobsthal-Padovan numbers (using initial conditions in (2.2)) can be expressed using
Binet’s formulas as

Q̂n =
2(θ21 − θ1 + 1)θn−1

1

(θ1 − θ2)(θ1 − θ3)
+

2(θ22 − θ2 + 1)θn−1
2

(θ2 − θ1)(θ2 − θ3)
+

2(θ23 − θ3 + 1)θn−1
3

(θ3 − θ1)(θ3 − θ2)
,

L̂n = θn1 + θn2 + θn3 ,

K̂n =
(−1 + θ1)θ

n
1

(θ1 − θ2)(θ1 − θ3)
+

(−1 + θ2)θ
n
2

(θ2 − θ1)(θ2 − θ3)
+

(−1 + θ3)θ
n
3

(θ3 − θ1)(θ3 − θ2)
,

M̂n =
2(2θ21 − 2θ1 + 3)θn−1

1

(θ1 − θ2)(θ1 − θ3)
+

2(2θ22 − 2θ2 + 3)θn−1
2

(θ2 − θ1)(θ2 − θ3)
+

2(2θ23 − 2θ3 + 3)θn−1
3

(θ3 − θ1)(θ3 − θ2)
,

respectively.

3 Generating Functions and Obtaining Binet Formula of Binomial Transform From
Generating Function

The generating function of the binomial transform of the generalized Jacobsthal-Padovan sequence Vn is a power
series centered at the origin whose coefficients are the binomial transform of the generalized Jacobsthal-Padovan
sequence.

Next, we give the ordinary generating function fbn(x) =
∞∑

n=0
bnx

n of the sequence bn.
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Lemma 3.1. Suppose that fbn(x) =
∞∑

n=0
bnx

n is the ordinary generating function of the binomial transform of the

Jacobsthal-Padovan sequence {Vn}n≥0. Then, fbn(x) is given by

fbn(x) =
V0 + (V1 − 2V0)x+ (V2 − V1)x

2

1− 3x+ 2x2 − 2x3
. (3.1)

Proof . Using Lemma 1.1, we obtain

fbn(x) =
b0 + (b1 − r1b0)x+ (b2 − r1b1 − s1b0)x

2

1− r1x− s1x2 − t1x3

=
V0 + ((V0 + V1)− 3V0)x+ ((V0 + 2V1 + V2)− 3(V0 + V1)− (−2)V0)x

2

1− 3x− (−2)x2 − 2x3

=
V0 + (V1 − 2V0)x+ (V2 − V1)x

2

1− 3x+ 2x2 − 2x3

where

b0 = V0,

b1 = V0 + V1,

b2 = V0 + 2V1 + V2.

□

Note that P. Barry shows in [1] that if A(x) is the generating function of the sequence {an}, then

S(x) =
1

1− x
A(

x

1− x
)

is the generating function of the sequence {bn} with bn =
n∑

i=0

(
n
i

)
ai. In our case, since

A(x) =
V0 + V1x+ (V2 − V0)x

2

1− x2 − 2x3
, see (1.15),

we obtain

S(x) =
1

1− x

V0 + V1

(
x

1−x

)
+ (V2 − V0)

(
x

1−x

)2
1−

(
x

1−x

)2
− 2

(
x

1−x

)3
=

V0 + (V1 − 2V0)x+ (V2 − V1)x
2

1− 3x+ 2x2 − 2x3
.

The previous lemma gives the following results as particular examples.

Corollary 3.2. Generating functions of the binomial transform of the Jacobsthal-Padovan, Jacobsthal-Perrin, ad-
justed Jacobsthal-Padovan, modified Jacobsthal-Padovan numbers are

∞∑
n=0

Q̂nx
n =

1− x

1− 3x+ 2x2 − 2x3
,

∞∑
n=0

L̂nx
n =

3− 6x+ 2x2

1− 3x+ 2x2 − 2x3
,

∞∑
n=0

K̂nx
n =

x− x2

1− 3x+ 2x2 − 2x3
,

∞∑
n=0

M̂nx
n =

3− 5x+ 2x2

1− 3x+ 2x2 − 2x3
,

respectively.
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We next find Binet’s formula of the Binomial transform of the generalized Jacobsthal-Padovan numbers {Vn} by
the use of generating function for bn.

Theorem 3.3. (Binet’s formula of the Binomial transform of the generalized Jacobsthal-Padovan numbers)

bn =
d1θ

n
1

(θ1 − θ2)(θ1 − θ3)
+

d2θ
n
2

(θ2 − θ1)(θ2 − θ3)
+

d3θ
n
3

(θ3 − θ1)(θ3 − θ2)
(3.2)

where

d1 = V0θ
2
1 + (V1 − 2V0)θ1 + (V2 − V1),

d2 = V0θ
2
2 + (V1 − 2V0)θ2 + (V2 − V1),

d3 = V0θ
2
3 + (V1 − 2V0)θ3 + (V2 − V1).

Proof . By using Lemma 3.1, the proof follows from Theorem 1.2. □

Note that from (2.2) and (3.2), we have

b2 − (θ2 + θ3)b1 + θ2θ3b0 = V0θ
2
1 + (V1 − 2V0)θ1 + (V2 − V1),

b2 − (θ1 + θ3)b1 + θ1θ3b0 = V0θ
2
2 + (V1 − 2V0)θ2 + (V2 − V1),

b2 − (θ1 + θ2)b1 + θ1θ2b0 = V0θ
2
3 + (V1 − 2V0)θ3 + (V2 − V1),

or

(V0 + 2V1 + V2)− (θ2 + θ3)(V0 + V1) + θ2θ3V0 = V0θ
2
1 + (V1 − 2V0)θ1 + (V2 − V1),

(V0 + 2V1 + V2)− (θ1 + θ3)(V0 + V1) + θ1θ3V0 = V0θ
2
2 + (V1 − 2V0)θ2 + (V2 − V1),

(V0 + 2V1 + V2)− (θ1 + θ2)(V0 + V1) + θ1θ2V0 = V0θ
2
3 + (V1 − 2V0)θ3 + (V2 − V1).

Note that we can also write

(b0 + 2b1 + b2)− (θ2 + θ3)(b0 + b1) + θ2θ3b0 = b0θ
2
1 + (b1 − 2b0)θ1 + (b2 − b1),

(b0 + 2b1 + b2)− (θ1 + θ3)(b0 + b1) + θ1θ3b0 = b0θ
2
2 + (b1 − 2b0)θ2 + (b2 − b1),

(b0 + 2b1 + b2)− (θ1 + θ2)(b0 + b1) + θ1θ2b0 = b0θ
2
3 + (b1 − 2b0)θ3 + (b2 − b1).

Next, using Theorem 3.3, we present the Binet’s formulas of binomial transform of Jacobsthal-Padovan, Jacobsthal-
Perrin, adjusted Jacobsthal-Padovan, modified Jacobsthal-Padovan sequences.

Corollary 3.4. Binet’s formulas of binomial transform of Jacobsthal-Padovan, Jacobsthal-Perrin, adjusted Jacobsthal-
Padovan, modified Jacobsthal-Padovan sequences are

Q̂n =
2(θ21 − θ1 + 1)θn−1

1

(θ1 − θ2)(θ1 − θ3)
+

2(θ22 − θ2 + 1)θn−1
2

(θ2 − θ1)(θ2 − θ3)
+

2(θ23 − θ3 + 1)θn−1
3

(θ3 − θ1)(θ3 − θ2)
,

L̂n = θn1 + θn2 + θn3 ,

K̂n =
(−1 + θ1)θ

n
1

(θ1 − θ2)(θ1 − θ3)
+

(−1 + θ2)θ
n
2

(θ2 − θ1)(θ2 − θ3)
+

(−1 + θ3)θ
n
3

(θ3 − θ1)(θ3 − θ2)
,

M̂n =
2(2θ21 − 2θ1 + 3)θn−1

1

(θ1 − θ2)(θ1 − θ3)
+

2(2θ22 − 2θ2 + 3)θn−1
2

(θ2 − θ1)(θ2 − θ3)
+

2(2θ23 − 2θ3 + 3)θn−1
3

(θ3 − θ1)(θ3 − θ2)
,

respectively.

4 Simson Formulas

There is a well-known Simson Identity (formula) for Fibonacci sequence {Fn}, namely,

Fn+1Fn−1 − F 2
n = (−1)n
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which was derived first by R. Simson in 1753 and it is now called as Cassini Identity (formula) as well. This can be
written in the form ∣∣∣∣ Fn+1 Fn

Fn Fn−1

∣∣∣∣ = (−1)n.

The following theorem gives generalization of this result to the generalized Jacobsthal-Padovan sequence {Wn}.

Theorem 4.1 (Simson Formula of Generalized Tribonacci Numbers). For all integers n, we have∣∣∣∣∣∣
Wn+2 Wn+1 Wn

Wn+1 Wn Wn−1

Wn Wn−1 Wn−2

∣∣∣∣∣∣ = tn

∣∣∣∣∣∣
W2 W1 W0

W1 W0 W−1

W0 W−1 W−2

∣∣∣∣∣∣ . (4.1)

Proof . (4.1) is given in Soykan [22]. □

Taking {Wn} = {bn} in the above theorem and considering bn+3 = 3bn+2 − 2bn+1 + 2bn, r = 3, s = −2, t = 2, we
have the following proposition.

Proposition 4.2. For all integers n, Simson formula of binomial transforms of generalized Jacobsthal-Padovan num-
bers is given as ∣∣∣∣∣∣

bn+2 bn+1 bn
bn+1 bn bn−1

bn bn−1 bn−2

∣∣∣∣∣∣ = 2n

∣∣∣∣∣∣
b2 b1 b0
b1 b0 b−1

b0 b−1 b−2

∣∣∣∣∣∣ .
The previous proposition gives the following results as particular examples.

Corollary 4.3. For all integers n, Simson formula of binomial transforms of the Jacobsthal-Padovan, Jacobsthal-
Perrin, adjusted Jacobsthal-Padovan, modified Jacobsthal-Padovan numbers are given as∣∣∣∣∣∣∣

Q̂n+2 Q̂n+1 Q̂n

Q̂n+1 Q̂n Q̂n−1

Q̂n Q̂n−1 Q̂n−2

∣∣∣∣∣∣∣ = −2n,

∣∣∣∣∣∣∣
L̂n+2 L̂n+1 L̂n

L̂n+1 L̂n L̂n−1

L̂n L̂n−1 L̂n−2

∣∣∣∣∣∣∣ = −26× 2n,

∣∣∣∣∣∣∣
K̂n+2 K̂n+1 K̂n

K̂n+1 K̂n K̂n−1

K̂n K̂n−1 K̂n−2

∣∣∣∣∣∣∣ = −2n−1,

∣∣∣∣∣∣∣
M̂n+2 M̂n+1 M̂n

M̂n+1 M̂n M̂n−1

M̂n M̂n−1 M̂n−2

∣∣∣∣∣∣∣ = −23× 2n,

respectively.

5 Some Identities

In this section, we obtain some identities of Jacobsthal-Padovan, Jacobsthal-Perrin, adjusted Jacobsthal-Padovan,
modified Jacobsthal-Padovan numbers. First, we can give a few basic relations between {Q̂n} and {L̂n}.

Lemma 5.1. The following equalities are true:

52Q̂n = 2L̂n+4 + 3L̂n+3 − 15L̂n+2, (5.1)

52Q̂n = 9L̂n+3 − 19L̂n+2 + 4L̂n+1,

26Q̂n = 4L̂n+2 − 7L̂n+1 + 9L̂n,

26Q̂n = 5L̂n+1 + 1L̂n + 8L̂n−1,

13Q̂n = 8L̂n − L̂n−1 + 5L̂n−2,
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and

2L̂n = 5Q̂n+4 − 14Q̂n+3 + 4Q̂n+2,

2L̂n = Q̂n+3 − 6Q̂n+2 + 10Q̂n+1,

2L̂n = −3Q̂n+2 + 8Q̂n+1 + 2Q̂n,

2L̂n = −Q̂n+1 + 8Q̂n − 6Q̂n−1,

2L̂n = 5Q̂n − 4Q̂n−1 − 2Q̂n−2.

Proof . Note that all the identities hold for all integers n. We prove (5.1). To show (5.1), writing

Q̂n = a× L̂n+4 + b× L̂n+3 + c× L̂n+2

and solving the system of equations

Q̂0 = a× L̂4 + b× L̂3 + c× L̂2

Q̂1 = a× L̂5 + b× L̂4 + c× L̂3

Q̂2 = a× L̂6 + b× L̂5 + c× L̂4

we find that a = 1
26 , b =

3
52 , c = − 15

52 . The other equalities can be proved similarly. □

Note that all the identities in the above Lemma can be proved by induction as well.

Next, we present a few basic relations between {Q̂n} and {K̂n}.

Lemma 5.2. The following equalities are true:

2Q̂n = K̂n+4 − 3K̂n+3 + 2K̂n+2

Q̂n = K̂n+1

Q̂n = 3K̂n − 2K̂n−1 + 2K̂n−2

and

4K̂n = −Q̂n+4 + 5Q̂n+3 − 6Q̂n+2,

2K̂n = Q̂n+3 − 2Q̂n+2 − Q̂n+1,

2K̂n = Q̂n+2 − 3Q̂n+1 + 2Q̂n,

K̂n = Q̂n−1.

Now, we give a few basic relations between {Q̂n} and {M̂n}.

Lemma 5.3. The following equalities are true:

46Q̂n = 2M̂n+4 + 3M̂n+3 − 17M̂n+2,

46Q̂n = 9M̂n+3 − 21M̂n+2 + 4M̂n+1,

23Q̂n = 3M̂n+2 − 7M̂n+1 + 9M̂n,

23Q̂n = 2M̂n+1 + 3M̂n + 6M̂n−1,

23Q̂n = 9M̂n + 2M̂n−1 + 4M̂n−2,

and

2M̂n = 4Q̂n+4 − 11Q̂n+3 + 3Q̂n+2,

2M̂n = Q̂n+3 − 5Q̂n+2 + 8Q̂n+1,

M̂n = −Q̂n+2 + 3Q̂n+1 + Q̂n,

M̂n = 3Q̂n − 2Q̂n−1.
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Next, we present a few basic relations between {L̂n} and {K̂n}.

Lemma 5.4. The following equalities are true:

2L̂n = K̂n+4 − 6K̂n+3 + 10K̂n+2,

2L̂n = −3K̂n+3 + 8K̂n+2 + 2K̂n+1,

2L̂n = −K̂n+2 + 8K̂n+1 − 6K̂n,

2L̂n = 5K̂n+1 − 4K̂n − 2K̂n−1,

2L̂n = 11K̂n − 12K̂n−1 + 10K̂n−2,

and

104K̂n = −15L̂n+4 + 49L̂n+3 − 24L̂n+2,

52K̂n = 2L̂n+3 + 3L̂n+2 − 15L̂n+1,

52K̂n = 9L̂n+2 − 19L̂n+1 + 4L̂n,

26K̂n = 4L̂n+1 − 7L̂n + 9L̂n−1,

26K̂n = 5L̂n + L̂n−1 + 8L̂n−2.

Now, we give a few basic relations between {L̂n} and {M̂n}.

Lemma 5.5. The following equalities are true:

46L̂n = 29M̂n+4 − 60M̂n+3 − 28M̂n+2,

46L̂n = 27M̂n+3 − 86M̂n+2 + 58M̂n+1,

46L̂n = −5M̂n+2 + 4M̂n+1 + 54M̂n,

46L̂n = −11M̂n+1 + 64M̂n − 10M̂n−1,

46L̂n = 31M̂n + 12M̂n−1 − 22M̂n−2,

and

52M̂n = 21L̂n+4 − 40L̂n+3 − 21L̂n+2

52M̂n = 23L̂n+3 − 63L̂n+2 + 42L̂n+1

26M̂n = 3L̂n+2 − 2L̂n+1 + 23L̂n

26M̂n = 7L̂n+1 + 17L̂n + 6L̂n−1

13M̂n = 19L̂n − 4L̂n−1 + 7L̂n−2

Next, we present a few basic relations between {K̂n} and {M̂n}.

Lemma 5.6. The following equalities are true:

92K̂n = −17M̂n+4 + 55M̂n+3 − 28M̂n+2,

46K̂n = 2M̂n+3 + 3M̂n+2 − 17M̂n+1,

46K̂n = 9M̂n+2 − 21M̂n+1 + 4M̂n,

23K̂n = 3M̂n+1 − 7M̂n + 9M̂n−1,

23K̂n = 2M̂n + 3M̂n−1 + 6M̂n−2,

and

2M̂n = K̂n+4 − 5K̂n+3 + 8K̂n+2,

M̂n = −K̂n+3 + 3K̂n+2 + K̂n+1,

M̂n = 3K̂n+1 − 2K̂n,

M̂n = 7K̂n − 6K̂n−1 + 6K̂n−2.
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6 Sum Formulas

6.1 Sums of Terms with Positive Subscripts

The following proposition presents some formulas of binomial transform of generalized Jacobsthal-Padovan numbers
with positive subscripts.

Proposition 6.1. For n ≥ 0, we have the following formulas:

(a)
∑n

k=0 bk = 1
2 (bn+3 − 2bn+2 − b2 + 2b1).

(b)
∑n

k=0 b2k = 1
16 (3b2n+2 − 4b2n+1 + 10b2n − 3b2 + 4b1 + 6b0).

(c)
∑n

k=0 b2k+1 = 1
16 (5b2n+2 + 4b2n+1 + 6b2n − 5b2 + 12b1 − 6b0).

Proof . Take r = 3, s = −2, t = 2 in Theorem 2.1 in [28] (or take x = 1, r = 3, s = −2, t = 2 in Theorem 2.1 in [26]).
□

From the last proposition, we have the following corollary which gives sum formulas of binomial transform of
Jacobsthal-Padovan numbers (take bn = Q̂n with Q̂0 = 1, Q̂1 = 2, Q̂2 = 4).

Corollary 6.2. For n ≥ 0, we have the following formulas:

(a)
∑n

k=0 Q̂k = 1
2 (Q̂n+3 − 2Q̂n+2).

(b)
∑n

k=0 Q̂2k = 1
16 (3Q̂2n+2 − 4Q̂2n+1 + 10Q̂2n + 2).

(c)
∑n

k=0 Q̂2k+1 = 1
16 (5Q̂2n+2 + 4Q̂2n+1 + 6Q̂2n − 2).

Taking bn = L̂n with L̂0 = 3, L̂1 = 3, L̂2 = 5 in the last proposition, we have the following corollary which presents
sum formulas of binomial transform of Jacobsthal-Perrin numbers.

Corollary 6.3. For n ≥ 0, we have the following formulas:

(a)
∑n

k=0 L̂k = 1
2 (L̂n+3 − 2L̂n+2 + 1).

(b)
∑n

k=0 L̂2k = 1
16 (3L̂2n+2 − 4L̂2n+1 + 10L̂2n + 15).

(c)
∑n

k=0 L̂2k+1 = 1
16 (5L̂2n+2 + 4L̂2n+1 + 6L̂2n − 7).

From the last proposition, we have the following corollary which gives sum formulas of binomial transform of
adjusted Jacobsthal-Padovan numbers (take bn = K̂n with K̂0 = 0, K̂1 = 1, K̂2 = 2).

Corollary 6.4. For n ≥ 0, we have the following formulas:

(a)
∑n

k=0 K̂k = 1
2 (K̂n+3 − 2K̂n+2).

(b)
∑n

k=0 K̂2k = 1
16 (3K̂2n+2 − 4K̂2n+1 + 10K̂2n − 2).

(c)
∑n

k=0 K̂2k+1 = 1
16 (5K̂2n+2 + 4K̂2n+1 + 6K̂2n + 2).

Taking bn = M̂n with M̂0 = 3, M̂1 = 4, M̂2 = 8 in the last proposition, we have the following corollary which
presents sum formulas of binomial transform of modified Jacobsthal-Padovan numbers.

Corollary 6.5. For n ≥ 0 we have the following formulas:

(a)
∑n

k=0 M̂k = 1
2 (M̂n+3 − 2M̂n+2).

(b)
∑n

k=0 M̂2k = 1
16 (3M̂2n+2 − 4M̂2n+1 + 10M̂2n + 10).

(c)
∑n

k=0 M̂2k+1 = 1
16 (5M̂2n+2 + 4M̂2n+1 + 6M̂2n − 10).
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6.2 Sums of Terms with Negative Subscripts

The following proposition presents some formulas of binomial transform of generalized Jacobsthal-Padovan numbers
with negative subscripts.

Proposition 6.6. For n ≥ 1 we have the following formulas:

(a)
∑n

k=1 b−k = 1
2 (−3b−n−1 − 2b−n−3 + b2 − 2b1).

(b)
∑n

k=1 b−2k = 1
16 (−5b−2n+1 + 12b−2n − 6b−2n−1 + 3b2 − 4b1 − 6b0).

(c)
∑n

k=1 b−2k+1 = 1
16 (−3b−2n+1 + 4b−2n − 10b−2n−1 + 5b2 − 12b1 + 6b0).

Proof . Take r = 3, s = −2, t = 2 in Theorem 3.1 in [28] or (or take x = 1, r = 3, s = −2, t = 2 in Theorem 3.1 in
[26]). □

From the last proposition, we have the following corollary which gives sum formulas of binomial transform of
Jacobsthal-Padovan numbers (take bn = Q̂n with Q̂0 = 1, Q̂1 = 2, Q̂2 = 4).

Corollary 6.7. For n ≥ 1, binomial transform of Jacobsthal-Padovan numbers have the following properties.

(a)
∑n

k=1 Q̂−k = 1
2 (−3Q̂−n−1 − 2Q̂−n−3).

(b)
∑n

k=1 Q̂−2k = 1
16 (−5Q̂−2n+1 + 12Q̂−2n − 6Q̂−2n−1 − 2).

(c)
∑n

k=1 Q̂−2k+1 = 1
16 (−3Q̂−2n+1 + 4Q̂−2n − 10Q̂−2n−1 + 2).

Taking bn = L̂n with L̂0 = 3, L̂1 = 3, L̂2 = 5 in the last proposition, we have the following corollary which presents
sum formulas of binomial transform of Jacobsthal-Perrin numbers.

Corollary 6.8. For n ≥ 1, binomial transform of Jacobsthal-Perrin numbers have the following properties.

(a)
∑n

k=1 L̂−k = 1
2 (−3L̂−n−1 − 2L̂−n−3 − 1).

(b)
∑n

k=1 L̂−2k = 1
16 (−5L̂−2n+1 + 12L̂−2n − 6L̂−2n−1 − 15).

(c)
∑n

k=1 L̂−2k+1 = 1
16 (−3L̂−2n+1 + 4L̂−2n − 10L̂−2n−1 + 7).

From the last proposition, we have the following corollary which gives sum formulas of binomial transform of
adjusted Jacobsthal-Padovan numbers (take bn = K̂n with K̂0 = 0, K̂1 = 1, K̂2 = 2).

Corollary 6.9. For n ≥ 1, binomial transform of adjusted Jacobsthal-Padovan numbers have the following properties.

(a)
∑n

k=1 K̂−k = 1
2 (−3K̂−n−1 − 2K̂−n−3).

(b)
∑n

k=1 K̂−2k = 1
16 (−5K̂−2n+1 + 12K̂−2n − 6K̂−2n−1 + 2).

(c)
∑n

k=1 K̂−2k+1 = 1
16 (−3K̂−2n+1 + 4K̂−2n − 10K̂−2n−1 − 2).

Taking bn = M̂n with M̂0 = 3, M̂1 = 4, M̂2 = 8 in the last proposition, we have the following corollary which
presents sum formulas of binomial transform of modified Jacobsthal-Padovan numbers.

Corollary 6.10. For n ≥ 1, binomial transform of modified Jacobsthal-Padovan numbers have the following proper-
ties.

(a)
∑n

k=1 M̂−k = 1
2 (−3M̂−n−1 − 2M̂−n−3).

(b)
∑n

k=1 M̂−2k = 1
16 (−5M̂−2n+1 + 12M̂−2n − 6M̂−2n−1 − 10).

(c)
∑n

k=1 M̂−2k+1 = 1
16 (−3M̂−2n+1 + 4M̂−2n − 10M̂−2n−1 + 10).
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6.3 Sums of Squares of Terms with Positive Subscripts

The following proposition presents some formulas of binomial transform of generalized Jacobsthal-Padovan numbers
with positive subscripts.

Proposition 6.11. For n ≥ 0, we have the following formulas:

(a)
∑n

k=0 b
2
k = 1

16 (−7b2n+3 − 64b2n+2 − 44b2n+1 +40bn+3bn+2 − 4bn+3bn+1 +48bn+2bn+1 +7b22 +64b21 +44b20 − 40b2b1 +
4b2b0 − 48b1b0).

(b)
∑n

k=0 bk+1bk = 1
16 (−b2n+3 − 16b2n+2 − 4b2n+1 + 4bn+3bn+1 + 8bn+3bn+2 + b22 + 16b21 + 4b20 − 8b2b1 − 4b2b0).

(c)
∑n

k=0 bk+2bk = 1
16 (9b

2
n+3 + 48b2n+2 + 36b2n+1 − 40bn+3bn+2 + 12bn+3bn+1 − 48bn+2bn+1 − 9b22 − 48b21 − 36b20 + 40

b2b1 − 12b2b0 + 48b1b0).

Proof . Take x = 1, r = 3, s = −2, t = 2 in Theorem 4.1 in [27], see also [24]. □

From the last proposition, we have the following Corollary which gives sum formulas of binomial transform of
Jacobsthal-Padovan numbers (take bn = Q̂n with Q̂0 = 1, Q̂1 = 2, Q̂2 = 4).

Corollary 6.12. For n ≥ 0, binomial transform of Jacobsthal-Padovan numbers have the following properties:

(a)
∑n

k=0 Q̂
2
k = 1

16 (−7Q̂2
n+3 − 64Q̂2

n+2 − 44Q̂2
n+1 + 40Q̂n+3Q̂n+2 − 4Q̂n+3Q̂n+1 + 48Q̂n+2Q̂n+1 + 12).

(b)
∑n

k=0 Q̂k+1Q̂k = 1
16 (−Q̂2

n+3 − 16Q̂2
n+2 − 4Q̂2

n+1 + 4Q̂n+3Q̂n+1 + 8Q̂n+3Q̂n+2 + 4).

(c)
∑n

k=0 Q̂k+2Q̂k = 1
16 (9Q̂

2
n+3 + 48Q̂2

n+2 + 36Q̂2
n+1 − 40Q̂n+3Q̂n+2 + 12Q̂n+3Q̂n+1 − 48Q̂n+2Q̂n+1 − 4).

Taking bn = L̂n with L̂0 = 3, L̂1 = 3, L̂2 = 5 in the last Proposition, we have the following Corollary which presents
sum formulas of binomial transform of Jacobsthal-Perrin numbers.

Corollary 6.13. For n ≥ 0, binomial transform of Jacobsthal-Perrin numbers have the following properties:

(a)
∑n

k=0 L̂
2
k = 1

16 (−7L̂2
n+3 − 64L̂2

n+2 − 44L̂2
n+1 + 40L̂n+3L̂n+2 − 4L̂n+3L̂n+1 + 48L̂n+2L̂n+1 + 175).

(b)
∑n

k=0 L̂k+1L̂k = 1
16 (−L̂2

n+3 − 16L̂2
n+2 − 4L̂2

n+1 + 4L̂n+3L̂n+1 + 8L̂n+3L̂n+2 + 25).

(c)
∑n

k=0 L̂k+2L̂k = 1
16 (9L̂

2
n+3 + 48L̂2

n+2 + 36L̂2
n+1 − 40L̂n+3L̂n+2 + 12L̂n+3L̂n+1 − 48L̂n+2L̂n+1 − 129).

From the last proposition, we have the following corollary which gives sum formulas of binomial transform of
adjusted Jacobsthal-Padovan numbers (take bn = K̂n with K̂0 = 0, K̂1 = 1, K̂2 = 2).

Corollary 6.14. For n ≥ 0, binomial transform of adjusted Jacobsthal-Padovan numbers have the following proper-
ties:

(a)
∑n

k=0 K̂
2
k = 1

16 (−7K̂2
n+3 − 64K̂2

n+2 − 44K̂2
n+1 + 40K̂n+3K̂n+2 − 4K̂n+3K̂n+1 + 48K̂n+2K̂n+1 + 12).

(b)
∑n

k=0 K̂k+1K̂k = 1
16 (−K̂2

n+3 − 16K̂2
n+2 − 4K̂2

n+1 + 4K̂n+3K̂n+1 + 8K̂n+3K̂n+2 + 4).

(c)
∑n

k=0 K̂k+2K̂k = 1
16 (9K̂

2
n+3 + 48K̂2

n+2 + 36K̂2
n+1 − 40K̂n+3K̂n+2 + 12K̂n+3K̂n+1 − 48K̂n+2K̂n+1 − 4).

Taking bn = M̂n with M̂0 = 3, M̂1 = 4, M̂2 = 8 in the last proposition, we have the following corollary which
presents sum formulas of binomial transform of modified Jacobsthal-Padovan numbers.

Corollary 6.15. For n ≥ 0, binomial transform of modified Jacobsthal-Padovan numbers have the following proper-
ties:

(a)
∑n

k=0 M̂
2
k = 1

16 (−7M̂2
n+3 − 64M̂2

n+2 − 44M̂2
n+1 + 40M̂n+3M̂n+2 − 4M̂n+3M̂n+1 + 48M̂n+2M̂n+1 + 108).

(b)
∑n

k=0 M̂k+1M̂k = 1
16 (−M̂2

n+3 − 16M̂2
n+2 − 4M̂2

n+1 + 4M̂n+3M̂n+1 + 8M̂n+3M̂n+2 + 4).

(c)
∑n

k=0 M̂k+2M̂k = 1
16 (9M̂

2
n+3 + 48M̂2

n+2 + 36M̂2
n+1 − 40M̂n+3M̂n+2 + 12M̂n+3M̂n+1 − 48M̂n+2M̂n+1 − 100).
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7 Matrices related with Binomial Transform of Generalized Jacobsthal-Padovan num-
bers

Matrix formulation of Wn can be given as Wn+2

Wn+1

Wn

 =

 r s t
1 0 0
0 1 0

n W2

W1

W0

 . (7.1)

For matrix formulation (7.1), see [14]. In fact, Kalman gave the formula in the following form Wn

Wn+1

Wn+2

 =

 0 1 0
0 0 1
r s t

n W0

W1

W2

 .

We define the square matrix A of order 3 as:

A =

 3 −2 2
1 0 0
0 1 0


such that detA = 2. From (2.1) we have bn+2

bn+1

bn

 =

 3 −2 2
1 0 0
0 1 0

 bn+1

bn
bn−1

 (7.2)

and from (7.1) (or using (7.2) and induction) we have bn+2

bn+1

bn

 =

 3 −2 2
1 0 0
0 1 0

n b2
b1
b0

 .

If we take bn = Q̂n in (7.2) we have  Q̂n+2

Q̂n+1

Q̂n

 =

 3 −2 2
1 0 0
0 1 0


 Q̂n+1

Q̂n

Q̂n−1

 . (7.3)

For n ≥ 0, we define

Bn =


∑n+1

k=0 Q̂k −2
∑n

k=0 Q̂k + 2
∑n−1

k=0 Q̂k 2
∑n

k=0 Q̂k∑n
k=0 Q̂k −2

∑n−1
k=0 Q̂k + 2

∑n−2
k=0 Q̂k 2

∑n−1
k=0 Q̂k∑n−1

k=0 Q̂k −2
∑n−2

k=0 Q̂k + 2
∑n−3

k=0 Q̂k 2
∑n−2

k=0 Q̂k


and

Cn =

 bn+1 −2bn + 2bn−1 2bn
bn −2bn−1 + 2bn−2 2bn−1

bn−1 −2bn−2 + 2bn−3 2bn−2

 .

By convention, we assume that

−1∑
k=0

Q̂k = 0,

−2∑
k=0

Q̂k =
1

2
,

−3∑
k=0

Q̂k =
1

2
.

Theorem 7.1. For all integers m,n ≥ 0, we have

(a) Bn = An.
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(b) C1A
n = AnC1.

(c) Cn+m = CnBm = BmCn.

Proof .

(a) Proof can be done by mathematical induction on n.

(b) After matrix multiplication, (b) follows.

(c) We have

ACn−1 =

 3 −2 2
1 0 0
0 1 0

 bn −2bn−1 + 2bn−2 2bn−1

bn−1 −2bn−2 + 2bn−3 2bn−2

bn−2 −2bn−3 + 2bn−4 2bn−3


=

 bn+1 −2bn + 2bn−1 2bn
bn −2bn−1 + 2bn−2 2bn−1

bn−1 −2bn−2 + 2bn−3 2bn−2

 = Cn.

i.e. Cn = ACn−1. From the last equation, using induction, we obtain Cn = An−1C1. Now

Cn+m = An+m−1C1 = An−1AmC1 = An−1C1A
m = CnBm

and similarly
Cn+m = BmCn.

□

Some properties of matrix An can be given as

An = 3An−1 − 2An−2 + 2An−3 = An+1 − 3

2
An+2 +

1

2
An+3

and
An+m = AnAm = AmAn

and
det(An) = 2n

for all integers m,n ≥ 0.

Theorem 7.2. For m,n ≥ 0, we have

bn+m = bn

m+1∑
k=0

Q̂k + bn−1

(
−2

m∑
k=0

Q̂k + 2

m−1∑
k=0

Q̂k

)
+ 2bn−2

m∑
k=0

Q̂k

= bn

m+1∑
k=0

Q̂k + (−2bn−1 + 2bn−2)

m∑
k=0

Q̂k + 2bn−1

m−1∑
k=0

Q̂k.

Proof . From the equation Cn+m = CnBm = BmCn, we see that an element of Cn+m is the product of row Cn and a
column Bm. From the last equation, we say that an element of Cn+m is the product of a row Cn and column Bm. We
just compare the linear combination of the 2nd row and 1st column entries of the matrices Cn+m and CnBm. This
completes the proof. □
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Corollary 7.3. For m,n ≥ 0, we have

Q̂n+m = Q̂n

m+1∑
k=0

Q̂k + Q̂n−1

(
−2

m∑
k=0

Q̂k + 2

m−1∑
k=0

Q̂k

)
+ 2Q̂n−2

m∑
k=0

Q̂k,

L̂n+m = L̂n

m+1∑
k=0

Q̂k + L̂n−1

(
−2

m∑
k=0

Q̂k + 2

m−1∑
k=0

Q̂k

)
+ 2L̂n−2

m∑
k=0

Q̂k,

K̂n+m = K̂n

m+1∑
k=0

Q̂k + K̂n−1

(
−2

m∑
k=0

Q̂k + 2

m−1∑
k=0

Q̂k

)
+ 2K̂n−2

m∑
k=0

Q̂k,

M̂n+m = M̂n

m+1∑
k=0

Q̂k + M̂n−1

(
−2

m∑
k=0

Q̂k + 2

m−1∑
k=0

Q̂k

)
+ 2M̂n−2

m∑
k=0

Q̂k.

From Corollary 6.2, we know that for n ≥ 0,

n∑
k=0

Q̂k =
1

2
(Q̂n+3 − 2Q̂n+2).

So, Theorem 7.2 and Corollary 7.3 can be written in the following forms:

Theorem 7.4. For m,n ≥ 0, we have

bn+m =
1

2
(Q̂m+4 − 2Q̂m+3)bn + (−Q̂m+3 + 3Q̂m+2 − 2Q̂m+1)bn−1

+(Q̂m+3 − 2Q̂m+2)bn−2 (7.4)

Remark 7.5. By induction, it can be proved that for all integers m,n ≤ 0, (7.4) holds. So, for all integers m,n, (7.4)
is true.

Corollary 7.6. For all integers m,n, we have

Q̂n+m =
1

2
(Q̂m+4 − 2Q̂m+3)Q̂n + (−Q̂m+3 + 3Q̂m+2 − 2Q̂m+1)Q̂n−1

+(Q̂m+3 − 2Q̂m+2)Q̂n−2,

L̂n+m =
1

2
(Q̂m+4 − 2Q̂m+3)L̂n + (−Q̂m+3 + 3Q̂m+2 − 2Q̂m+1)L̂n−1

+(Q̂m+3 − 2Q̂m+2)L̂n−2,

K̂n+m =
1

2
(Q̂m+4 − 2Q̂m+3)K̂n + (−Q̂m+3 + 3Q̂m+2 − 2Q̂m+1)K̂n−1

+(Q̂m+3 − 2Q̂m+2)K̂n−2,

M̂n+m =
1

2
(Q̂m+4 − 2Q̂m+3)M̂n + (−Q̂m+3 + 3Q̂m+2 − 2Q̂m+1)M̂n−1

+(Q̂m+3 − 2Q̂m+2)M̂n−2.

Now, we consider non-positive subscript cases. For n ≥ 0, we define

B−n =

 −
∑n−2

k=0 Q̂−k 2
∑n−1

k=0 Q̂−k − 2
∑n

k=0 Q̂−k) −2
∑n−1

k=0 Q̂−k

−
∑n−1

k=0 Q̂−k 2
∑n

k=0 Q̂−k − 2
∑n+1

k=0 Q̂−k) −2
∑n

k=0 Q̂−k

−
∑n

k=0 Q̂−k 2
∑n+1

k=0 Q̂−k − 2
∑n+2

k=0 Q̂−k) −2
∑n+1

k=0 Q̂−k


and

C−n =

 b−n+1 −2b−n + 2b−n−1 2b−n

b−n −2b−n−1 + 2b−n−2 2b−n−1

b−n−1 −2b−n−2 + 2b−n−3 2b−n−2

 .
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By convention, we assume that
−1∑
k=0

Q̂−k = 0,

−2∑
k=0

Q̂−k = −1.

Theorem 7.7. For all integers m,n ≥ 0, we have

(a) B−n = A−n.

(b) C−1A
−n = A−nC−1.

(c) C−n−m = C−nB−m = B−mC−n.

Proof .

(a) Proof can be done by mathematical induction on n.

(b) After matrix multiplication, (b) follows.

(c) We have

A−1C−n−1 =

 3 −2 2
1 0 0
0 1 0

 b−n −2b−n−1 + 2b−n−2 2b−n−1

b−n−1 −2b−n−2 + 2b−n−3 2b−n−2

b−n−2 −2b−n−3 + 2b−n−4 2b−n−3


=

 b−n+1 −2b−n + 3b−n−1 2b−n

b−n −2b−n−1 + 3b−n−2 2b−n−1

b−n−1 −2b−n−2 + 3b−n−3 2b−n−2

 = C−n,

i.e. C−n = A−1C−n−1. From the last equation, using induction, we obtain C−n = A−n−1C−1. Now,

C−n−m = A−n−m−1C−1 = A−n−1A−mC−1 = A−n−1C−1A
−m = C−nB−m

and similarly,
C−n−m = B−mC−n.

□

Some properties of matrix A−n can be given as

A−n = 3A−n−1 − 2A−n−2 + 2A−n−3 = A−n+1 − 3

2
A−n+2 +

1

2
A−n+3

and
A−n−m = A−nA−m = A−mA−n

and
det(A−n) = 2−n

for all integers m,n ≥ 0.

Theorem 7.8. For m,n ≥ 0, we have

b−n−m = −b−n

m−2∑
k=0

Q̂−k − b−n−1

(
−2

m−1∑
k=0

Q̂−k + 2

m∑
k=0

Q̂−k

)
− 2b−n−2

m−1∑
k=0

Q̂−k

= −b−n

m−2∑
k=0

Q̂−k − (−2b−n−1 + 2b−n−2)

m−1∑
k=0

Q̂−k − 2b−n−1

m∑
k=0

Q̂−k.

Proof . From the equation C−n−m = C−nB−m = B−mC−n, we see that an element of C−n−m is the product of row
C−n and a column B−m. From the last equation, we say that an element of C−n−m is the product of a row C−n and
column B−m. We just compare the linear combination of the 2nd row and 1st column entries of the matrices C−n−m

and C−nB−m. This completes the proof. □
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Corollary 7.9. For m,n ≥ 0, we have

Q̂−n−m = −Q̂−n

m−2∑
k=0

Q̂−k − Q̂−n−1

(
−2

m−1∑
k=0

Q̂−k + 2

m∑
k=0

Q̂−k

)
− 2Q̂−n−2

m−1∑
k=0

Q̂−k,

L̂−n−m = −L̂−n

m−2∑
k=0

Q̂−k − L̂−n−1

(
−2

m−1∑
k=0

Q̂−k + 2

m∑
k=0

Q̂−k

)
− 2L̂−n−2

m−1∑
k=0

Q̂−k,

K̂−n−m = −K̂−n

m−2∑
k=0

Q̂−k − K̂−n−1

(
−2

m−1∑
k=0

Q̂−k + 2

m∑
k=0

Q̂−k

)
− 2K̂−n−2

m−1∑
k=0

Q̂−k,

M̂−n−m = −M̂−n

m−2∑
k=0

Q̂−k − M̂−n−1

(
−2

m−1∑
k=0

Q̂−k + 2

m∑
k=0

Q̂−k

)
− 2M̂−n−2

m−1∑
k=0

Q̂−k,

From Corollary 6.7, we know that for n ≥ 1,

n∑
k=1

Q̂−k =
1

2
(−3Q̂−n−1 − 2Q̂−n−3).

Since Q̂0 = 0, it follows that
n∑

k=0

Q̂−k =
1

2
(−3Q̂−n−1 − 2Q̂−n−3).

So, Theorem 7.8 and Corollary 7.9 can be written in the following forms.

Theorem 7.10. For m,n ≥ 0, we have

b−n−m =
1

2
(3Q̂−m+1 + 2Q̂−m−1)b−n + (−3Q−m + 3Q−m−1 − 2Q−m−2 + 2Q−m−3)b−n−1

+(3Q̂−m + 2Q̂−m−2)b−n−2. (7.5)

Remark 7.11. By induction, it can be proved that for all integers m,n ≤ 0, (7.5) holds. So, for all integers m,n,
(7.5) is true.

Corollary 7.12. For all integers m,n, we have

Q̂−n−m =
1

2
(3Q̂−m+1 + 2Q̂−m−1)Q̂−n + (−3Q−m + 3Q−m−1 − 2Q−m−2 + 2Q−m−3)Q̂−n−1

+(3Q̂−m + 2Q̂−m−2)Q̂−n−2,

L̂−n−m =
1

2
(3Q̂−m+1 + 2Q̂−m−1)L̂−n + (−3Q−m + 3Q−m−1 − 2Q−m−2 + 2Q−m−3)L̂−n−1

+(3Q̂−m + 2Q̂−m−2)L̂−n−2,

K̂−n−m =
1

2
(3Q̂−m+1 + 2Q̂−m−1)K̂−n + (−3Q−m + 3Q−m−1 − 2Q−m−2 + 2Q−m−3)K̂−n−1

+(3Q̂−m + 2Q̂−m−2)K̂−n−2,

M̂−n−m =
1

2
(3Q̂−m+1 + 2Q̂−m−1)M̂−n + (−3Q−m + 3Q−m−1 − 2Q−m−2 + 2Q−m−3)M̂−n−1

+(3Q̂−m + 2Q̂−m−2)M̂−n−2.

8 Conclusions

In the literature, there have been so many studies of the sequences of numbers and the sequences of numbers were
widely used in many research areas, such as physics, engineering, architecture, nature and art. We introduced the
binomial transform of the generalized Jacobsthal-Padovan sequence and as special cases, the binomial transform of
the Jacobsthal-Padovan, Jacobsthal-Perrin, adjusted Jacobsthal-Padovan, modified Jacobsthal-Padovan sequences has
been defined.
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� In section 1, we present some background about the generalized 3-step Fibonacci numbers (also called the
generalized Tribonacci numbers).

� In section 2, we defined the binomial transform of the generalized Jacobsthal-Padovan sequence.

� In section 3, we gave Binet’s formulas and generating functions of the binomial transform of the generalized
Jacobsthal-Padovan sequence.

� In section 4, we present Simson formulas of the binomial transform of the generalized Jacobsthal-Padovan
sequence.

� In section 5, we obtained some identities of the binomial transform of the generalized Jacobsthal-Padovan
sequence.

� In section 6, we present sum formulas of the binomial transform of the generalized Jacobsthal-Padovan sequence.

� In section 7, we gave some matrix formulation of the binomial transform of the generalized Jacobsthal-Padovan
sequence.

Our work can be carried to other number sequences. For example, we can suggest the following titles for new
research papers:

� On Binomial Transform of the Oresme Numbers (second order recurrence relation).

� A Study on Binomial Transform of the third order Jacobsthal Numbers (third order recurrence relation).

� Binomial Transform of the Tetranacci Numbers (fourth order recurrence relation).

� A Note on Binomial Transform of the Pentanacci Numbers (fifth order recurrence relation).

� Binomial Transform of the Hexanacci Numbers (sixth order recurrence relation).
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