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Abstract

Let S be a semiring with identity and U be a unitary left S-semimodule. The co-intersection graph of an S-semimodule
U , denoted by Γ(U), is defined to be the undirected simple graph whose vertices are in one-to-one correspondence
with all non-trivial subsemimodules of U , and there is an edge between two distinct vertices N and L if and only if
N + L ̸= U . We study these graphs to relate the combinatorial properties of Γ(U) to the algebraic properties of the
S-semimodule U . We study the connectedness of Γ(U). We investigate some properties of Γ(U) for instance, we find
the domination number and clique number of Γ(U). Also, we study cycles in Γ(U).
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1 Introduction

In 1964, Bosak [9] defined the graph of subsemigroups of a semigroup. In 2012, the intersection graph of submodules
of a module was considered by Akbari et. al. in [1]. Recently many structures of graphs related to the module and
semiring structure are found in [5]-[7]. The co-intersection graph of the proper submodules of a module is studied
in [12]. Encouraged by preceding studies on the intersection graph of algebraic constructions, we describe the co-
intersection graph of subsemimodules of a semimodule in [13]. Here we revise more aspects of the co-intersection
graph of subsemimodules of a semimodule and obtain more results.

A semiring S is algebraic system (S,+, ·) where (S,+) and (S, ·) are commutative semigroups, connected by
z(x+ y) = zx+ zy for all x, y, z ∈ S and there exist 0 ̸= 1 ∈ S such that s+ 0 = s, s0 = 0s = 0 and s1 = 1s = s for
all s ∈ S [2].

Let (U,+) be an additive abelian monoid with additive identity 0U . Then U is called an S-semimodule (a semi-
module over a semiring S ) if there exists a scalar multiplication S × U → U denoted by (s, u) 7→ su, such that
(ss′)u = s (s′u); s (u+ u′) = su+ su′; (s+ s′)u = su+ s′u; 1u = u and s0U = 0U = 0u for all s, s′ ∈ S and all
u, u′ ∈ U . A nonempty subset N of a left S-semimodule U is a subsemimodule of S if and only if N is closed under
addition and scalar multiplication [4]. All semiring in this paper are commutative with non-zero identity and U be a
left S-semimodule.
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We mean from a non-trivial subsemimodule of U is a nonzero proper subsemimodule of U . A semimodule U is
simple if it has no non-trivial subsemimodule. A semimodule U is called indecomposable, if it is not a direct sum of
two non-zero subsemimodules. A subsemimodule of U is minimal if and only if it does not have any subsemimodule
of U other than 0 and itself. We mean by min(U) the set of minimal subsemimodules of U . The length of U is the
length of the composition series of U , represented by lS(U). A subsemimodule N of U is called small in U (we write
N ≪ U), if for every subsemimodule X ⊆ U , with N + X = U implies that X = U , i.e., N is called small in U , if
N +X ̸= U for every proper subsemimodule X of U . The radical of an S-semimodule U , denoted by Rad(U), is the
sum of all small subsemimodules of U [11]. A semimodule U is called hollow, if every proper subsemimodule of U is
small in U [6].

A subsemimodule M of U is called maximal in U if and only if it is not properly contained in any other subsemi-
module of U . If U has a unique maximal subsemimodule then U is named local. max(U) is the set of all maximal
subsemimodules of U . A subsemimodule N of U is called subtractive if x, x+ y ∈ N , implies y ∈ N for all x, y ∈ U . If
each subsemimodule of U is subtractive, we say that U is subtractive see for example [3]. If each proper subtractive
subsemimodule of U is contained in a maximal subtractive subsemimodule, we say that U is coatomic [8].

For the definitions of semirings and semimodules we refer [10]. For graph theory, the reference is [14].

Let Γ = (V (Γ), E(Γ)) be a graph with the set of vertices V (Γ) and the edge set E(Γ) where an edge is an unordered
pair of distinct vertices of Γ. Graph Γ is finite, if card(V (Γ)) < ∞, otherwise Γ is infinite. For two distinct vertices
Q and P represented by Q − P means that Q and P are adjacent. The graph whose vertices can be separated into
two sets W and V such that every edge joins a vertex in W to one in V , and W and V are each independent is called
bipartite. The vertices u and v of a graph Γ are named joined in Γ if a path exists between them. If a path exists
between any two distinct vertices of Γ, we say that a graph Γ is joined (or connected). Or else, Γ is called disconnected.
Let Γ be a joined graph. An E,D-path is a path with starting vertex E and ending vertex D. The distance between
two distinct vertices E and D, indicated by d(E,D), is the length of the shortest E,D− path joining them if a path
exists.

A null graph is a graph with no edges. If there is a path between every pair of vertices of Γ we say that a graph Γ
is named connected.

A complete graph is a graph in which every pair of distinct vertices are adjacent. The complete graph with n
distinct vertices, denoted by Kn.

A complete subgraph in Γ is called a clique in Γ. The number of vertices in the biggest clique of Γ, denoted by
ω(Γ), is called the clique number of Γ. The smallest number of colours which can be assigned to the vertices of Γ such
that every two adjacent vertices have dissimilar colours is called the chromatic number of Γ, denoted by χ(Γ). A graph
Γ in which ω(Γ) = χ(Γ) is called weakly perfect. A graph Γ is planar if it can be drawn in the plane consequently
that its edges intersect only on their ends.

2 Connectivity of Γ(U)

Let U be an S-semimodule. In this section, we characterize all semimodules for which the co-intersection graph of
subsemimodules is not connected. Finally, we study some semimodules whose intersection graphs are complete.

Theorem 2.1. [13, Theorem 2.3] Let U be a subtractive S-semimodule. Then the graph Γ(U) is not connected if
and only if U = T1 ⊕ T2, where T1, T2 are two simple S-semimodules.

Now, we give some corollaries which are direct consequences of Theorem 2.1.

Corollary 2.2. Assume a subtractive S-semimodule U is not simple. Then Γ(U) is connected if and only if either U
is not semisimple or U =

⊕n
i=1 Ui, wherever n ≥ 3 and Ui is a simple semimodule for all 1 ≤ i ≤ n.

Corollary 2.3. Let U be a subtractive S-semimodule and |Γ(U)| > 2. If Γ(U) has at least one edge, then Γ(U) is a
connected graph.

Corollary 2.4. Let U be a subtractive S-semimodule and |Γ(U)| > 2. Then Γ(U) is a null graph if and only if
lS(U) = 2.

Remark 2.5. [13, Remark 2.8] If U is a coatomic subtractive S-semimodule, then every non-maximal subsemimodule
is adjacent to at least one maximal subsemimodule in Γ(U).
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Proof . Let T ∈ V (Γ(U))\max(U). So T ⊂ M , for some M ∈ max(U). Then clearly, T+ M = M . So T is adjacent
to M . □

For any semimodule U , We mean of |max(U)| and |min(U)| are the number of maximal and minimal subsemi-
modules of U , respectively.

Theorem 2.6. Let U be a subtractive S-semimodule with Γ(U) and let N be a minimal subsemimodule of U , such
that deg(N) < ∞. If Γ(U) is connected, then |min(U)| < ∞.

Proof . Let Ω = {K ≤ U | K be a minimal subsemimodule of U}. Clearly, Ω ̸= ∅. Since Γ(U) is connected, according
to [13, Corollary 2.7(2)], for all K ∈ Ω,K + N ̸= U , for N and every K ∈ Ω are minimal subsemimodules of U and
adjacent vertices of Γ(U) with deg(N) < ∞. Thus, |Ω| < ∞, this ends the proof. □

Theorem 2.7. Let U be a Noetherian subtractive S-semimodule. Then Γ(U) is complete if and only if U contains a
unique maximal subsemimodule.

Proof . Assume that U is a subtractive Noetherian S-semimodule, then max(U) ̸= ∅. In addition, each nonzero
subsemimodule T of U there is P ∈ max(U) such that T ⊆ P . Hence, if U possesses a unique maximal subsemimodule,
say M , then M contains every nonzero subsemimodule of U . Suppose that N and L are two different vertices of Γ(U).
So N ⊆ M and L ⊆ M , hence N + L ⊆ M ̸= U . Thus, Γ(U) is complete.

Conversely, assume that Γ(U) is complete. Let X,Y ∈ max(U). Then X + Y ̸= U , since X ⊆ X + Y and
Y ⊆ X + Y , by maximality of X and Y , we have X + Y = X = Y , a contradiction. So, U contains a unique maximal
subsemimodule. □

Corollary 2.8. Let U be an S-semimodule. Then Γ(U) is complete, if one of the following holds:

(i) if U is an indecomposable S-semimodule, such that N ∩ L = (0) for any nontrivial subsemimodules N,L of U .

(ii) if U is a local S-semimodule.

Proof . (i) Clear.
(ii) Since local S-semimodules are hollow, by [13, Theorem 2.12], Γ(U) is complete. □

Example 2.9. For all n ∈ Z+with n ≥ 2 and each prime number p, the Z-semimodule Zpn is local. By Corollary
2.8,Γ (Zpn) is complete. Also, Γ (Zpn) has n− 1 vertices (See Figure 1 for p = 2 and n = 5).

Example 2.10. Assume Z0 = Z+U{0} is the semiring of non-negative integers, then the Z0− semimodule Z0 is local
with maximal subsemimodule N = Z0\{1}. By Corollary 2.8,Γ (Z0) is a complete graph.

Example 2.11. Set S = B
(
ph, 0

)
=

{
0, 1, · · · , ph − 1

}
, where p is a prime integer and h ∈ Z+ and define an operation

⊕ on S as follows: If a, b ∈ S then a ⊕ b = a + b if a + b ≤ ph − 1 and, otherwise, a ⊕ b is the unique element c of
S satisfying c ≡ a + b

(
modph

)
. Define the an operation ⊙ on S similarly. Then, (S,⊕,⊙) is a local semiring [10,

Example 6.1, p. 65]. So, by Corollary 2.8, the graph of the S-semimodule S is complete.
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3 Cycles in Co-intersection Graphs of semimodules

In this section, the existence of cycles in Γ(U) are studied.

Definition 3.1. In any graph, a cycle is a path of length at least 3 through distinct vertices which begins and ends
at the same vertex.

Remark 3.2. A cycle of n vertices is denoted by Cn and is called an n-cycle. By (x, y, z) we mean a 3-cycle.

Proposition 3.3. Assume that U be a subtractive semimodule and Γ(U) be a connected graph. If U has at least
three minimal subsemimodules, then Γ(U) contains a cycle.

Proof . Suppose that M1,M2 and M3 are three minimal subsemimodules of U and Γ(U) is a connected graph. Then
by [13, Corollary 2.7(2)], (M1,M2,M3) is a 3-cycle of Γ(U). □

Proposition 3.4. Let U be a subtractive S-semimodule and Γ(U) be a connected graph. If U has at least three
minimal subsemimodules, then Γ(U) is not bipartite graph.

Proof . Suppose M1,M2 and M3 are three minimal subsemimodules of U and Γ(U) is a connected graph. Then by
[13, Corollary 2.7(2)], (M1,M2,M3) is a 3-cycle of Γ(U). It is clear that a simple graph is bipartite if and only if it
has no odd cycle. Hence, Γ(U) is not bipartite graph. □

Proposition 3.5. Suppose H1 and H2 are two adjacent non-maximal subsemimodules of a semimodule U such that
H1 ⊈ H2 ∧H2 ⊈ H1, then the set {H1, H2, H1 +H2} forms a triangle in Γ(U)

Proof . It is clear. □

Example 3.6. (1) A graph Γ (Zn) has a cycle if and only if n = km, where k is a positive integer and m is one of
the forms: p4, p2q or pqr, where p, q and r are different primes.

(2) A graph Γ (Zn) contains no a cycle if and only if n = pq, p2 or p3 such that p and q are two different primes. It
contains a 3 -cycle, in all other cases.

4 Clique Number and Domination Number of Γ(U)

Let U be an S-semimodule. In this section, we get some results on the clique number of Γ(U). Lastly, it is showed
that χ(Γ(U)) < ∞, provided ω(Γ(U)) < ∞. We determine the domination number in the co-intersection graphs of
Γ(U). Also, we note here that Γ(U) has a minimal dominating set for any S-semimodule U .

Lemma 4.1. Let U be a subtractive S-semimodule such that 1 < ω(Γ(U)) < ∞. Then |min(U)| < ∞.

Proof . As ω(Γ) > 1, by [13, Proposition 3.1(2)] , U is not a direct sum of two simple S semimodules. Then, Γ(U)
is not joined according to Theorem 2.1. Thus, by [12, Corollary 2.7(2)], N + L ̸= U for any N,L ∈ min(U). Assume
that Γ⋆(U) is a subgraph of Γ(U) has the vertex set V ⋆ = {L ≤ U | L is minimal subsemimodule of U}. Now Γ⋆(U)
is a clique in U , and |V ⋆| = ω (Γ⋆(U)) ≤ ω(Γ(U)) < ∞. So, |min(U)| < ∞. □

Theorem 4.2. If |Γ(U)| = ∞ and ω(Γ(U)) < ∞. Then the following hold.

(1) |max(U)| = ∞;

(2) χ(Γ(U)) < ∞

Proof . (1) By the contrary way, assume |max(U)| < ∞. Since |Γ(U)| = ∞, so Γ(U) has an infinite clique, a
contradiction because ω(Γ(U)) < ∞.
(2) If ω(Γ(U)) = 1, there is nothing to show. Assume ω(Γ(U)) > 1. As, M +N = U for any M,N ∈ max(U), so M,N
are not two adjacent vertices of Γ(U). Now, by Part (1), |max(U)| = ∞. Henceforth, we can color all N ∈ max(U)
by a color, and other vertices, which are finite number, by a new color, to get a proper vertex coloring of Γ(U). So,
χ(Γ(U)) < ∞. □

Now, we prove that if ω(Γ(U)) is infinite, then there is an infinite clique in Γ(U).
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Proposition 4.3. If |Γ(U)| = ∞. Then there is an infinite clique of Γ(U), if one of the following holds.

(1) The subsemimodules of U form a chain.

(2) The semimodule U is hollow or local.

Proof .

(1) Use Remark 2.11 in [13].

(2) Use [13, Theorem 2.12] and part 2 of Corollary 2.8.

□

Example 4.4. For every prime number p, we consider the graph Γ (Zp∞). Since the Z-semimodule Zp∞ is hollow, by
Proposition 4.3 (2), Γ (Zp∞) contains an infinite clique.

Example 4.5. Any induced subgraph on the set of any finitely generated subsemimodules of the Z-semimodule Q is
clique in Γ(Q). Toward realize this, suppose that N ⊆ Q and N is finitely generated. Let N =< x1, x2, · · · , xn >,
where xi ∈ Q, for 1 ≤ i ≤ n. Hence N = x1Z + x2Z + · · · + xnZ. Note, for L ⊆ Q, if N + L = Q, then as N
has a spanning set {x1, x2, · · · , xn}, thus {x1, x2, · · · , xn} ∪ L is a generated set of Q and it can be possible if L is
a generated set of Q. Hence L = Q. So, all finitely generated subsemimodule of Q as a Z semimodule, is a small
subsemimodule. Thus it obtains from [13, Theorem 2.12].

Definition 4.6. A graph Γ is called weakly perfect graph if ω(Γ) = χ(Γ).

At present we provide particular examples of co-intersection graphs of non-semisimple semimodules.

Example 4.7. Let p and q be two different prime numbers. Clearly, Zpq3 as a Z-semimodule is not semisimple and
Γ
(
Zpq3

)
is a weakly perfect (See Figure 2 ).

Example 4.8. We consider Z8 as Z-semimodule. The non-trivial subsemimodules of Z8 are L = {0, 4} and N =
{0, 2, 4, 6}. Since L + N = N ̸= Z8, L and N are adjacent vertices in Γ (Z8). Hence, Γ (Z8) ∼= K2, then ω(Γ(U)) =
χ(Γ(U)) = 2.

Definition 4.9. Let Γ be a graph. By a DS (dominating set) for Γ we mean a subset D of V (Γ(U)) such that
each vertex not in D is joined to at least one vertex in D by some edge. A dominating set DS is named a minimal
dominating set if D′ is not a dominating set for every subset D′ of D with D′ ̸= D. The smallest of the cardinalities of
the minimal dominating sets for Γ, indicated by γ(Γ) is named the domination number of Γ. An infinite graph may not
have a minimal dominating set, in which case, the domination number is not defined. For references on Domination
Theory, see [14].

Remark 4.10. In our case, a set D of non-trivial S-subsemimodules of U is a dominating set for Γ(U) if and only if
for any non-trivial S-subsemimodule X of U there is a Y in D such that X + Y ̸= U .
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Definition 4.11. If a vertex u is adjacent to any vertex in Γ(U) then u is called universal.

Lemma 4.12. Let U be an S-semimodule and N a non-trivial subsemimodule of U . Then N is a universal vertex in
Γ(U) if and only if N ≪ U .

Proof . Clear. □

We begin by the next obvious lemma.

Lemma 4.13. For a semimodule U with |Γ(U)| ≥ 2, then the next hold:

(1) If a subset D of V (Γ(U)) which contains a universal vertex, then D is a DS in Γ(U).

(2) If Γ(U) contains a universal vertex, then for each universal vertex M of Γ(U), {M} is a minimal dominating set
and γ(Γ(U)) = 1.

Proof . This is clear. □

Example 4.14. Consider Q as Z-semimodule and Zpq2 as Zpq2-semimodule such that p and q are two distinct prime
numbers. Since Z ≪ Q and < pq >≪ Zpq2 , it is not difficult to see that Z is a universal vertex of Γ(Q) and < pq > is
a universal vertex of Γ

(
Zpq2

)
. Then by Lemma 4.12, we conclude that:

(1) {< pq >} is a minimal dominating set and γ
(
Γ
(
Zpq2

))
= 1.

(2) {Z} is a minimal dominating set and γ(Γ(Q)) = 1.

Corollary 4.15. Let U be a subtractive semimodule over a semiring S and Rad(U) ̸= (0). Then the next situations
hold:

(1) {Rad(U)} is a minimal dominating set if U is finitely generated.

(2) The graph Γ(U) has a minimal dominating set if every non-trivial subsemimodule of U is contained in a maximal
subsemimodule.

Proof .

(1) Let U be a finitely generated subtractive semimodule. So, Rad(U) ≪ U . Since Rad(U) ̸= (0), Rad(U) is a
vertex of Γ(U). Thus Rad(U) is adjacent to every other vertex of Γ(U). So, {Rad(U)} is a dominating set.

(2) From the assumption, we have Rad(U) ≪ U . From part (1), {Rad(U)} is a dominating set.

□

Theorem 4.16. Let U be a subtractive S-semimodule with Rad(U) ̸= (0) and |Γ(U)| ≥ 2. If U is hollow, then the
next hold:

(1) Every subset of V (Γ(U)) is a dominating set in Γ(U).

(2) γ(Γ(U)) = 1

(3) If Γ(U) is a finite graph, then the number of the dominating set is equal to 2|Γ(U)| − 2.

(4) If Γ(U) is an infinite graph, then the number of the dominating set is infinite.

Proof . (1) Assume the semimodule U is hollow. By [13, Theorem 2.12], Γ(U) is complete. Thus, every subset of
V (Γ(U)) is a DS in Γ(U).
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(2) Since the semimodule U is hollow, L ≪ U for every non-trivial subsemimodule L of U . Henceforth, by Lem-
mas 4.12 and 4.13, γ(Γ(U)) = 1.

(3) Let |Γ(U)| = n, where 2 ≤ n < ∞. As Γ(U) is a complete graph with n vertices, then the number of non-

empty proper subsets of the vertex set V (Γ(U)), which are DS, is equal to
∑k−1

t=1 C(k, t) = 2k − 2, where C(k, t) is an
t-combination of V (Γ(U)) with k elements, and for a positive integer t ≤ k.

(4) It follows from (3). □

Example 4.17. For each prime number p and n ∈ Z, n ≥ 2, we get:

(1) γ (Γ (Zpn)) = γ (Γ (Zp∞)) = 1

(2) The number of the dominating set of Γ (Zpn) is 2n−1 − 2.

(3) The number of the dominating set of Γ (Zp∞) is infinite.

Corollary 4.18. Let U be a subtractive S-semimodule. Then each D ⊆ V (Γ(U) ) is a dominating set of Γ(U) and
γ(Γ(U)) = 1, if one of the next statements holds:

(a) The semimodule U contains a unique maximal subsemimodule and it is Noetherian.

(b) The semimodule U is an indecomposable semimodule such that N ∩L = (0) for any non-trivial subsemimodules
N and L of U .

(c) U is local semimodule.

Proof . (a) It follows from Theorem 2.7 and Lemmas 4.12 and 4.13.

(b) By Corollary 2.8.

(c) It follows from Corollary 2.8 and Theorem 4.16, since every local semimodule is hollow as in [15]. □
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