Sakaguchi type function defined by $(\mathfrak{p}, \mathfrak{q})$-derivative operator using Gegenbauer polynomials

S. Baskaran ${ }^{\text {a }}$, G. Saravanan ${ }^{\text {b,* }}$, Sibel Yalçin ${ }^{\text {c }}$, B. Vanithakumari ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Agurchand Manmull Jain college, Meenambakkam, Chennai-600114, Tamil Nadu, India
${ }^{b}$ Department of Mathematics, Patrician College of Arts and Science, Adyar, Chennai-600020, Tamil Nadu, India
${ }^{c}$ Department of Mathematics, Bursa Uludag university, 16059, Bursa, Turkey

(Communicated by Ali Jabbari)

Abstract

An introduction of a new subclass of bi-univalent functions involving Sakaguchi type functions defined by $(\mathfrak{p}, \mathfrak{q})$ Derivative operators using Gegenbauer polynomials have been obtained. Further, the bounds for initial coefficients $\left|a_{2}\right|,\left|a_{3}\right|$ and Fekete Szegö inequality have been estimated.

Keywords: Analytic function, Bi-Univalent function, $(\mathfrak{p}, \mathfrak{q})$ - Derivative operator, Sakaguchi type function, Gegenbauer polynomials
2020 MSC: 30C45, 30C50

1 Introduction and preliminaries

A function of one or more complex variables which is complex-valued is said to be analytic if it is differentiable at every point of the domain. Every normalized analytic function can be expressed as a series of the form

$$
\begin{equation*}
\mathfrak{f}(z)=z+\sum_{t=2}^{\infty} a_{t} z^{t} \tag{1.1}
\end{equation*}
$$

in the complex variable z, that is convergent in $\mathfrak{U}=\{z: z \in \mathbb{C},|z|<1\}$. Let A consists of every such function. A subclass \mathcal{S} of A is defined by $\mathcal{S}=\left\{\mathfrak{f}(z) \in A: \mathfrak{f}\left(z_{1}\right)=\mathfrak{f}\left(z_{2}\right) \Rightarrow z_{1}=z_{2}\right\}$ (i.e.,) \mathcal{S} consists of all univalent functions.

A function $\mathfrak{f}(z) \in A$ is called bi-univalent in \mathfrak{U}, if $\mathfrak{f}(z) \in \mathcal{S}$ and its inverse function has an analytic continuation to $|w|<1$. Let $\sigma=\{\mathfrak{f} \in \mathcal{S}: \mathfrak{f}$ is bi-iunivalent $\}$.

Though Lewin [7] introduced the class of bi-univalent functions, the passion on the bounds for the coefficients of these classes was upraised by Netanyahu, Clunie, Brannan and many others [1, 2, 8, 13, 14, 18, 15, 16, 17, 19, 20,

[^0]This has been a field of fascination for young researchers till date.

If, for $\mathfrak{f}_{1}(z)$ and $\mathfrak{f}_{2}(z)$ analytic in \mathfrak{U}, there exists a Schwarz function $\mathfrak{w}(z)$ with $\mathfrak{w}(0)=0$ and $|\mathfrak{w}(z)|<1$ in \mathfrak{U} such that $\mathfrak{f}_{1}(z)=\mathfrak{f}_{2}(\mathfrak{w}(z))$, then we say that $\mathfrak{f}_{1}(z) \prec \mathfrak{f}_{2}(z)$.

A subclass consisting of functions satisfying the analytic criterion $\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)-f(-z)}\right)>\alpha$ was introduced by Sakaguchi 11 and these functions were named after him as Sakaguchi type functions [9, 10]. Sakaguchi type functions are Starlike with respect to symmetric points. Frasin [5] generalized Sakaguchi type class which had functions of the form (1.1) given by $\operatorname{Re}\left(\frac{\left(s_{1}-s_{2}\right) z f^{\prime}(z)}{\mathfrak{f}\left(s_{1} z\right)-f\left(s_{2} z\right)}\right)>\alpha, 0 \leq \alpha<1, \mathrm{~s}_{1}, \mathrm{~s}_{2} \in \mathbb{C}$ with $\mathrm{s}_{1} \neq \mathrm{s}_{2},\left|\mathrm{~s}_{2}\right| \leq 1, \forall z \in \mathfrak{U}$.

Definition 1.1. For $\mathfrak{p}, \mathfrak{q} \in(0,1]$ and $\mathfrak{q}<\mathfrak{p}$, the $(\mathfrak{p}, \mathfrak{q})$-derivative operator $\mathfrak{D}_{\mathfrak{p}, \mathfrak{q}}(\mathfrak{f}(z))$ [3] is defined as

$$
\begin{equation*}
\mathfrak{D}_{\mathfrak{p}, \mathfrak{q}}(\mathfrak{f}(z))=\frac{\mathfrak{f}(\mathfrak{p} z)-\mathfrak{f}(\mathfrak{q} z)}{(\mathfrak{p}-\mathfrak{q})(z)}, z \neq 0 \tag{1.2}
\end{equation*}
$$

and $\mathfrak{D}_{\mathfrak{p}, \mathfrak{q}}(\mathfrak{f}(0))=\mathfrak{f}^{\prime}(0)$ provided $\mathfrak{f}^{\prime}(0)$ exists. It can be easily deduced that

$$
\mathfrak{D}_{\mathfrak{p}, \mathfrak{q}}(\mathfrak{f}(z))=1+\sum_{t=2}^{\infty}[t]_{\mathfrak{p q}} a_{t} z^{t-1}
$$

where $[t]_{\mathfrak{p q}}=\frac{\mathfrak{p}^{t}-\mathfrak{q}^{t}}{\mathfrak{p}-\mathfrak{q}}$, the $(\mathfrak{p}, \mathfrak{q})$-bracket of t. It is also called a twin-basic number. It is to be noted that $\mathfrak{D}_{p, q}\left(z^{t}\right)=$ $[t]_{\mathfrak{q q}} z^{t-1}$. Also for $\mathfrak{p}=1$, the $(\mathfrak{p}, \mathfrak{q})$-derivative operator $\mathfrak{D}_{\mathfrak{p}, \mathfrak{q}}$ reduces to the \mathfrak{q}-derivative operator $\mathfrak{D}_{\mathfrak{q}}$.

The inverse series of $\sqrt{1.2}$ is given by

$$
\begin{aligned}
\mathfrak{D}_{\mathfrak{p}, \mathfrak{q}}(\mathfrak{g}(w))= & \frac{\mathfrak{g}(\mathfrak{p} w)-\mathfrak{g}(\mathfrak{q} w)}{(\mathfrak{p}-\mathfrak{q}) w} \\
= & 1-[2]_{\mathfrak{p q}} a_{2} w+[3]_{\mathfrak{p q}}\left(2 a_{2}^{2}-a_{3}\right) w^{2} \\
& -[4]_{\mathfrak{p q}}\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{3}+\cdots .
\end{aligned}
$$

For non-zero real constant α, a generating function of Gegenbauer polynomials is defined by

$$
\begin{equation*}
\mathfrak{H}_{\alpha}(y, z)=\frac{1}{\left(1-2 y z+z^{2}\right)^{\alpha}}, \tag{1.3}
\end{equation*}
$$

where $y \in[-1,1]$ and $z \in \mathfrak{U}$. The function \mathfrak{H}_{α} which is analytic in \mathfrak{U}, for fixed y, is expanded in a Taylor series form such as

$$
\begin{equation*}
\mathfrak{H}_{\alpha}(y, z)=\sum_{t=0}^{\infty} C_{t}^{\alpha}(y) z^{t} \tag{1.4}
\end{equation*}
$$

where $C_{t}^{\alpha}(y)$ is Gegenbauer polynomial of degree t. We can see that when $\alpha=0, \mathfrak{H}_{\alpha}$ does not exist. Therefore, the Gegenbauer polynomial is generated by following function

$$
\mathfrak{H}_{0}(y, z)=1-\log \left(1-2 y z+z^{2}\right)=\sum_{t=0}^{\infty} C_{t}^{0}(y) z^{t}
$$

for $\alpha=0$. The function gets normalized when $\alpha>-1 / 2$ [4, 12.
The images of the unit disk under $\mathfrak{H}_{\alpha}(y, z)$ are shown in figure 1 .
The Gegenbauer polynomials are defined by the following recurrence relation

$$
\begin{equation*}
C_{t}^{\alpha}(y)=\frac{1}{t}\left[2 y(t+\alpha-1) C_{t-1}^{\alpha}(y)-(t+2 \alpha-2) C_{t-2}^{\alpha}(y)\right],(t \geq 2) \tag{1.5}
\end{equation*}
$$

with initial coefficients $C_{0}^{\alpha}(y)=1$ and $\quad C_{1}^{\alpha}(y)=2 \alpha y$.
From the above, we get

$$
\begin{equation*}
C_{2}^{\alpha}(y)=2 \alpha(1+\alpha) y^{2}-\alpha \tag{1.6}
\end{equation*}
$$

The special cases of Gegenbauer polynomials:

Figure 1: Image of \mathfrak{U} under $\mathfrak{H}_{\alpha}(y, z)$.

1. For $\alpha=1$, we get the Chebyshev Polynomials.
2. For $\alpha=1 / 2$, we get the Legendre Polynomials.

The Graphs of the Gegenbauer polynomials $C_{t}^{\alpha}(y)$ are shown in figure 2.

$\alpha=0$

$\alpha=0.5$

$\alpha=1$

Figure 2: Graph of $C_{t}^{\alpha}(y)$.

2 Main results

Definition 2.1. A function $\mathfrak{f} \in \sigma$ is said to be in the class $\mathcal{S}_{\sigma}^{\mathfrak{p q}}\left(y, \alpha, \mathrm{~s}_{1}, \mathrm{~s}_{2}\right)$, if the following subordination relations hold

$$
\begin{equation*}
\frac{\left(\mathrm{s}_{1}-\mathrm{s}_{2}\right) z \mathfrak{D}_{\mathfrak{p}, \mathfrak{q}}(\mathfrak{f}(z))}{\mathfrak{f}\left(\mathrm{s}_{1} z\right)-\mathfrak{f}\left(\mathrm{s}_{2} z\right)} \prec \mathfrak{H}_{\alpha}(y, z) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left(\mathbf{s}_{1}-\mathbf{s}_{2}\right) w \mathfrak{D}_{\mathfrak{p}, \mathfrak{q}}(\mathfrak{g}(w))}{\mathfrak{g}\left(\mathbf{s}_{1} w\right)-\mathfrak{g}\left(\mathbf{s}_{2} w\right)} \prec \mathfrak{H}_{\alpha}(y, w) \tag{2.2}
\end{equation*}
$$

where $\mathfrak{g}(w)=\mathfrak{f}^{-1}(w), \mathrm{s}_{1}, \mathbf{s}_{2} \in \mathbb{C}$ with $\mathrm{s}_{1} \neq \mathbf{s}_{2},\left|\mathbf{s}_{2}\right| \leq 1$.
Theorem 2.2. Let \mathfrak{f} given by (1.1) be in the class $\mathcal{S}_{\sigma}^{\mathfrak{p q}}\left(y, \alpha, s_{1}, \mathrm{~s}_{2}\right)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2|\alpha y| \sqrt{2|\alpha y|}}{\sqrt{\left|4 \alpha^{2} y^{2} L-\left(2 \alpha(1+\alpha) y^{2}-\alpha\right) M^{2}\right|}} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq\left|\frac{2 \alpha y}{N}\right|+\frac{4 \alpha^{2} y^{2}}{M^{2}} \tag{2.4}
\end{equation*}
$$

where
$L=[3]_{\mathfrak{p q}}-[2]_{\mathfrak{p q}}\left(\mathrm{s}_{1}+\mathrm{s}_{2}\right)+\mathrm{s}_{1} \mathrm{~s}_{2}$,
$M=[2]_{\mathfrak{p q}}-\mathrm{s}_{1}-\mathrm{s}_{2}$,
$N=[3]_{\mathfrak{p q}}-\mathrm{s}_{1}^{2}-\mathrm{s}_{2}^{2}-\mathrm{s}_{1} \mathrm{~s}_{2}$.

Proof . Let $\mathfrak{f} \in \mathcal{S}_{\sigma}^{\mathfrak{p q}}\left(y, \alpha, \mathrm{~s}_{1}, \mathrm{~s}_{2}\right)$. Then, there exist analytic functions $\phi(z), \psi(w): \mathfrak{U} \rightarrow \mathfrak{U}$ given by the 2.1) and 2.2 such that

$$
\begin{equation*}
\frac{\left(\mathrm{s}_{1}-\mathrm{s}_{2}\right) z \mathfrak{D}_{\mathfrak{p}, \mathfrak{q}}(\mathfrak{f}(z))}{\mathfrak{f}\left(\mathrm{s}_{1} z\right)-\mathfrak{f}\left(\mathrm{s}_{2} z\right)}=\mathfrak{H}_{\alpha}(y, \phi(z)) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left(\mathbf{s}_{1}-\mathbf{s}_{2}\right) w \mathfrak{D}_{\mathfrak{p}, \mathfrak{q}}(\mathfrak{g}(w))}{\mathfrak{g}\left(\mathbf{s}_{1} w\right)-\mathfrak{g}\left(\mathbf{s}_{2} w\right)}=\mathfrak{H}_{\alpha}(y, \psi(w)) \tag{2.6}
\end{equation*}
$$

Define the functions $\phi(z)$ and $\psi(w)$ as

$$
\begin{equation*}
\phi(z)=c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(w)=d_{1} w+d_{2} w^{2}+d_{3} w^{3}+\ldots \tag{2.8}
\end{equation*}
$$

which are analytic in \mathfrak{U} with $\phi(0)=0, \psi(0)=0$ and $|\phi(z)|<1,|\psi(w)|<1,(z, w \in \mathfrak{U})$.
It is to be noted that if

$$
|\phi(z)|=\left|c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots\right|<1 \quad(z \in \mathfrak{U})
$$

and

$$
|\psi(w)|=\left|d_{1} w+d_{2} w^{2}+d_{3} w^{3}+\cdots\right|<1 \quad(w \in \mathfrak{U})
$$

then

$$
\begin{equation*}
\left|c_{i}\right| \leq 1, \quad\left|d_{i}\right| \leq 1 \quad(i=1,2,3, \ldots) \tag{2.9}
\end{equation*}
$$

Since

$$
\begin{align*}
& \frac{\left(\mathbf{s}_{1}-\mathbf{s}_{2}\right) z \mathfrak{D}_{\mathfrak{p}, \mathfrak{q}}(\mathfrak{f}(z))}{\mathfrak{f}\left(\mathbf{s}_{1} z\right)-\mathfrak{f}\left(\mathbf{s}_{2} z\right)}=1+\left([2]_{\mathfrak{p q}}-\mathbf{s}_{1}-\mathbf{s}_{2}\right) a_{2} z+\left\{\left([3]_{\mathfrak{p q}}-\mathbf{s}_{1}{ }^{2}-\mathbf{s}_{2}{ }^{2}-\mathbf{s}_{1} \mathbf{s}_{2}\right) a_{3}\right. \tag{2.10}\\
&\left.-\left([2]_{\mathfrak{p q}} \mathbf{s}_{1}+[2]_{\mathfrak{p q}} \mathbf{s}_{2}-\mathbf{s}_{1}{ }^{2}-\mathbf{s}_{2}{ }^{2}-2 \mathbf{s}_{1} \mathbf{s}_{2}\right) a_{2}^{2}\right\} \times z^{2}+\cdots \\
& \begin{aligned}
& \frac{\left(\mathbf{s}_{1}-\mathbf{s}_{2}\right) w \mathfrak{D}_{\mathfrak{p}, \mathfrak{q}}(\mathfrak{g}(w))}{\mathfrak{g}\left(\mathbf{s}_{1} w\right)-\mathfrak{g}\left(\mathbf{s}_{2} w\right)}=-\left([2]_{\mathfrak{p q}}-\mathbf{s}_{1}-\mathbf{s}_{2}\right) a_{2} w-\left\{\left([3]_{\mathfrak{p q}}-\mathbf{s}_{1}{ }^{2}-\mathbf{s}_{2}{ }^{2}-\mathbf{s}_{1} \mathbf{s}_{2}\right) a_{3}\right. \\
&\left.-\left(2[3]_{\mathfrak{p q q}}-\mathbf{s}_{1}{ }^{2}-\mathbf{s}_{2}{ }^{2}-[2]_{\mathfrak{p q}} \mathbf{s}_{1}-[2]_{\mathfrak{p q}} \mathbf{s}_{2}\right) a_{2}^{2}\right\} \times w^{2}+\cdots \\
& \frac{\left(\mathbf{s}_{1}-\mathbf{s}_{2}\right) z \mathfrak{D}_{\mathfrak{p}, \mathfrak{q}(\mathfrak{f}(z))}^{\mathfrak{f}\left(\mathbf{s}_{1} z\right)-\mathfrak{f}\left(\mathbf{s}_{2} z\right)}=}{}=\left[C_{1}^{\alpha}(y) c_{1}\right] z+\left[C_{1}^{\alpha}(y) c_{2}+C_{2}^{\alpha}(y) c_{1}^{2}\right] z^{2}+\cdots \\
& \frac{\left(\mathbf{s}_{1}-\mathbf{s}_{2}\right) w \mathfrak{D}_{\mathfrak{p}, \mathfrak{q}}(\mathfrak{g}(w))}{\mathfrak{g}\left(\mathbf{s}_{1} w\right)-\mathfrak{g}\left(\mathbf{s}_{2} w\right)}= {\left[C_{1}^{\alpha}(y) d_{1}\right] w+\left[C_{1}^{\alpha}(y) d_{2}+C_{2}^{\alpha}(y) d_{1}^{2}\right] w^{2}+\cdots . }
\end{aligned} . \tag{2.11}
\end{align*}
$$

We get following equations

$$
\begin{gather*}
{\left[[2]_{p q}-\mathrm{s}_{1}-\mathrm{s}_{2}\right] a_{2}=C_{1}^{\alpha}(y) c_{1}} \tag{2.14}\\
{\left[[3]_{p q}-\mathrm{s}_{1}{ }^{2}-\mathrm{s}_{2}{ }^{2}-\mathrm{s}_{1} \mathrm{~s}_{2}\right] a_{3}-\left[[2]_{p q} \mathrm{~s}_{1}+[2]_{p q} \mathrm{~s}_{2}-\mathrm{s}_{1}{ }^{2}-\mathrm{s}_{2}{ }^{2}-2 \mathrm{~s}_{1} \mathrm{~s}_{2}\right] a_{2}^{2}} \\
=C_{1}^{\alpha}(y) c_{2}+C_{2}^{\alpha}(y) c_{1}^{2} \tag{2.15}\\
-\left[[2]_{p q}-\mathrm{s}_{1}-\mathrm{s}_{2}\right] a_{2} \tag{2.16}
\end{gather*}=C_{1}^{\alpha}(y) d_{1} .
$$

Adding (2.14) and (2.16), we get the following equation

$$
\begin{equation*}
c_{1}=-d_{1} . \tag{2.18}
\end{equation*}
$$

Further squaring and adding 2.14 and 2.16 , we have

$$
\begin{equation*}
2\left[[2]_{p q}-\mathrm{s}_{1}-\mathrm{s}_{2}\right]^{2} a_{2}^{2}=\left[C_{1}^{\alpha}(y)\right]^{2}\left[c_{1}^{2}+d_{1}^{2}\right] . \tag{2.19}
\end{equation*}
$$

Then the addition of 2.15 and 2.17 gives

$$
\begin{equation*}
2\left[[3]_{p q}-[2]_{p q}\left(\mathrm{~s}_{1}+\mathrm{s}_{2}\right)+\mathrm{s}_{1} \mathrm{~s}_{2}\right] a_{2}^{2}=C_{1}^{\alpha}(y)\left(c_{2}+d_{2}\right)+C_{2}^{\alpha}(y)\left(c_{1}^{2}+d_{1}^{2}\right) \tag{2.20}
\end{equation*}
$$

From above equations, we obtain

$$
\begin{equation*}
\left[2\left[[3]_{p q}-[2]_{p q}\left(\mathrm{~s}_{1}+\mathrm{s}_{2}\right)+\mathrm{s}_{1} \mathrm{~s}_{2}\right]\left[C_{1}^{\alpha}(y)\right]^{2}-2\left([2]_{p q}-\mathrm{s}_{1}-\mathrm{s}_{2}\right)^{2} C_{2}^{\alpha}(y)\right] a_{2}^{2}=\left[C_{1}^{\alpha}(y)\right]^{3}\left(c_{2}+d_{2}\right) \tag{2.21}
\end{equation*}
$$

A small computation leads to

$$
\left|a_{2}\right| \leq \frac{2|\alpha y| \sqrt{2|\alpha y|}}{\sqrt{\left|4 \alpha^{2} y^{2} L-\left(2 \alpha(1+\alpha) y^{2}-\alpha\right) M^{2}\right|}}
$$

Next, in order to obtain the bound for $\left|a_{3}\right|$, subtracting 2.17 from 2.15 we have

$$
\begin{equation*}
2\left[[3]_{p q}-\mathrm{s}_{1}^{2}-\mathrm{s}_{2}^{2}-\mathrm{s}_{1} \mathrm{~s}_{2}\right]\left[a_{3}-a_{2}^{2}\right]=C_{1}^{\alpha}(y)\left(c_{2}-d_{2}\right)+C_{2}^{\alpha}(y)\left(c_{1}^{2}-d_{1}^{2}\right) . \tag{2.22}
\end{equation*}
$$

Using the equations 2.18 and 2.19 in 2.22, we get

$$
\begin{equation*}
a_{3}=\frac{C_{1}^{\alpha}(y)\left(c_{2}-d_{2}\right)}{2 N}+\frac{\left(C_{1}^{\alpha}(y)\right)^{2}\left(c_{1}^{2}+d_{1}^{2}\right)}{2 M^{2}} . \tag{2.23}
\end{equation*}
$$

Applying the value of $C_{1}^{\alpha}(y)$ and taking modulus, we have the desired bound for $\left|a_{3}\right|$

$$
\left|a_{3}\right| \leq\left|\frac{2 \alpha y}{N}\right|+\frac{4 \alpha^{2} y^{2}}{M^{2}}
$$

Corollary 2.3. Let \mathfrak{f} given by (1.1) be in the class $\mathcal{S}_{\sigma}^{\mathfrak{p q}}\left(y, 1, \mathrm{~s}_{1}, \mathrm{~s}_{2}\right)$. Then

$$
\left|a_{2}\right| \leq \frac{2|y| \sqrt{2|y|}}{\sqrt{\left|4 y^{2} L-\left(4 y^{2}-1\right) M^{2}\right|}}
$$

and

$$
\left|a_{3}\right| \leq\left|\frac{2 y}{N}\right|+\frac{4 y^{2}}{M^{2}}
$$

where L, M, N are as defined in Theorem 1.2.
Corollary 2.4. Let \mathfrak{f} given by (1.1) be in the class $\mathcal{S}_{\sigma}^{\mathfrak{p} \mathfrak{q}}\left(y, 1 / 2, \mathrm{~s}_{1}, \mathrm{~s}_{2}\right)$. Then

$$
\left|a_{2}\right| \leq \frac{|y| \sqrt{2|y|}}{\sqrt{\left|2 y^{2} L-\left(3 y^{2}-1\right) M^{2}\right|}}
$$

and

$$
\left|a_{3}\right| \leq\left|\frac{y}{N}\right|+\frac{y^{2}}{M^{2}},
$$

where L, M, N are as defined in Theorem 1.2.
Corollary 2.5. Let \mathfrak{f} given by (1.1) be in the class $\mathcal{S}_{\sigma}\left(y, \alpha, \mathrm{~s}_{1}, \mathrm{~s}_{2}\right)$. Then

$$
\left|a_{2}\right| \leq \frac{2|\alpha y| \sqrt{2|\alpha y|}}{\sqrt{\left|4 \alpha^{2} y^{2} L_{1}-\left(2 \alpha(1+\alpha) y^{2}-\alpha\right) M_{1}^{2}\right|}}
$$

and

$$
\left|a_{3}\right| \leq\left|\frac{2 \alpha y}{N_{1}}\right|+\frac{4 \alpha^{2} y^{2}}{M_{1}^{2}}
$$

where
$L_{1}=3-2\left(\mathrm{~s}_{1}+\mathrm{s}_{2}\right)+\mathrm{s}_{1} \mathrm{~s}_{2}$,
$M_{1}=2-\mathrm{s}_{1}-\mathrm{s}_{2}$,
$N_{1}=3-\mathrm{s}_{1}^{2}-\mathrm{s}_{2}^{2}-\mathrm{s}_{1} \mathrm{~s}_{2}$.
Corollary 2.6. Let \mathfrak{f} given by (1.1) be in the class $\mathcal{S}_{\sigma}(y, \alpha, 1,-1)$. Then

$$
\left|a_{2}\right| \leq \frac{|\alpha y| \sqrt{2|\alpha y|}}{\sqrt{\left|2 \alpha^{2} y^{2}-\left(2 \alpha(1+\alpha) y^{2}-\alpha\right)\right|}}
$$

and

$$
\left|a_{3}\right| \leq|\alpha y|+\alpha^{2} y^{2} .
$$

Corollary 2.7. Let \mathfrak{f} given by (1.1) be in the class $\mathcal{S}_{\sigma}(y, \alpha, 1,0)$. Then

$$
\left|a_{2}\right| \leq \frac{2|\alpha y| \sqrt{2|\alpha y|}}{\sqrt{\left|4 \alpha^{2} y^{2}-\left(2 \alpha(1+\alpha) y^{2}-\alpha\right)\right|}}
$$

and

$$
\left|a_{3}\right| \leq|\alpha y|+4 \alpha^{2} y^{2}
$$

2.1 Fekete-Szegö Problem for the Functions in the Class $\mathcal{S}_{\sigma}^{\mathfrak{p q}}\left(y, \alpha, s_{1}, s_{2}\right)$

In this section, for functions belonging to the class $\mathcal{S}_{\sigma}^{\mathfrak{p q}}\left(y, \alpha, \mathrm{~s}_{1}, \mathrm{~s}_{2}\right)$, we have estimated the bounds for the linear functional.

Theorem 2.8. Let \mathfrak{f} given by (1.1) be in the class $\mathcal{S}_{\sigma}^{\mathfrak{p q}}\left(y, 1, \mathrm{~s}_{1}, \mathrm{~s}_{2}\right)$. Then

$$
\left|a_{3}-\gamma a_{2}^{2}\right| \leq\left\{\begin{array}{cc}
\left|\frac{2 \alpha y}{N}\right| & \text { if } \quad 0 \leq|\gamma-1| \leq\left|\frac{D}{N}\right| \\
\frac{\left|4 \alpha^{3} y^{3}(1-\gamma)\right|}{\left|2 \alpha^{2} y^{2} L-\left(2 \alpha(1+\alpha) y^{2}-\alpha\right) M^{2}\right|}, & \text { if } \quad|\gamma-1| \geq\left|\frac{D}{N}\right| .
\end{array}\right.
$$

where $\mathrm{L}, \mathrm{M}, \mathrm{N}$ are as defined in Theorem 1.2 and $D=L-\frac{\left(2 \alpha(1+\alpha) y^{2}-\alpha\right) M^{2}}{4 \alpha^{2} y^{2}}$.
Proof . From (2.22), for $\gamma \in \mathbb{R}$, we have

$$
\begin{equation*}
a_{3}-\gamma a_{2}^{2}=(1-\gamma) a_{2}^{2}+\frac{\left(c_{2}-d_{2}\right) C_{1}^{\alpha}(y)}{2 N} \tag{2.24}
\end{equation*}
$$

By using (2.21) in 2.24), we have

$$
\begin{aligned}
a_{3}-\gamma a_{2}^{2} & =(1-\gamma)\left[\frac{\left(c_{2}+d_{2}\right)\left(C_{1}^{\alpha}(y)\right)^{3}}{2\left(C_{1}^{\alpha}(y)\right)^{2} L-2 C_{2}^{\alpha}(y) M^{2}}\right]+\frac{\left(c_{2}-d_{2}\right) C_{1}^{\alpha}(y)}{2 N} \\
& =C_{1}^{\alpha}(y)\left[\left(\xi(\gamma, y)+\frac{1}{2 N}\right) c_{2}+\left(\xi(\gamma, y)-\frac{1}{2 N}\right) d_{2}\right]
\end{aligned}
$$

where

$$
\xi(\gamma, y)=\frac{(1-\gamma)\left[C_{1}^{\alpha}(y)\right]^{2}}{2\left[C_{1}^{\alpha}(y)\right]^{2} L-2 M^{2} C_{2}^{\alpha}(y)} .
$$

Taking modulus, we have

$$
\left|a_{3}-\gamma a_{2}^{2}\right| \leq\left\{\begin{array}{rc}
\left|\frac{2 \alpha y}{N}\right|, & \text { if } \quad 0 \leq|\xi(\gamma, y)| \leq \frac{1}{2|N|}, \\
4|\alpha y \xi(\gamma, y)|, & \text { if } \quad|\xi(\gamma, y)| \geq \frac{1}{2|N|}
\end{array}\right.
$$

Corollary 2.9. Let $\mathfrak{f} \in \sigma$ given by (1.1) belongs to the class $\mathcal{S}_{\sigma}^{\mathfrak{p q}}\left(y, 1, \mathrm{~s}_{1}, \mathrm{~s}_{2}\right)$. Then

$$
\left|a_{3}-\gamma a_{2}^{2}\right| \leq\left\{\begin{array}{cc}
\left|\frac{2 y}{N}\right| & \text { if } 0 \leq|\gamma-1| \leq\left|\frac{D_{1}}{N}\right|, \tag{2.25}\\
\frac{\left|4 y^{3}(1-\gamma)\right|}{\left|2 y^{2} L-\left(4 y^{2}-1\right) M^{2}\right|}
\end{array} \quad, \text { if } \quad|\gamma-1| \geq\left|\frac{D_{1}}{N}\right| . ~ l\right.
$$

where L,M,N are as defined in Theorem 1.2 and $D_{1}=L-\frac{\left(4 y^{2}-1\right) M^{2}}{4 y^{2}}$.
Corollary 2.10. Let $\mathfrak{f} \in \sigma$ given by (1.1) belongs to the class $\mathcal{S}_{\sigma}^{\mathfrak{p q}}\left(y, 1 / 2, \mathrm{~s}_{1}, \mathrm{~s}_{2}\right)$. Then

$$
\left|a_{3}-\gamma a_{2}^{2}\right| \leq\left\{\begin{array}{cc}
\left|\frac{y}{N}\right| & \text { if } 0 \leq|\gamma-1| \leq\left|\frac{D_{2}}{N}\right| \tag{2.26}\\
\frac{\left|y^{3}(1-\gamma)\right|}{\left|y^{2} L-\left(3 y^{2}-1\right) M^{2}\right|} & \text { if }|\gamma-1| \geq\left|\frac{D_{2}}{N}\right| .
\end{array}\right.
$$

where L,M,N are as defined in Theorem 1.2 and $D_{2}=L-\frac{\left(3 y^{2}-1\right) M^{2}}{2 y^{2}}$.

Corollary 2.11. Let $\mathfrak{f} \in \sigma$ given by 1.1 be in the class $\mathcal{S}_{\sigma}\left(y, \alpha, \mathrm{~s}_{1}, \mathrm{~s}_{2}\right)$. Then

$$
\left|a_{3}-\gamma a_{2}^{2}\right| \leq\left\{\begin{array}{cc}
\left|\frac{2 \alpha y}{N_{1}}\right| & \text { if } \quad 0 \leq|\gamma-1| \leq\left|\frac{D_{3}}{N_{1}}\right| \tag{2.27}\\
\frac{\left|4 \alpha^{3} y^{3}(1-\gamma)\right|}{\left|2 \alpha^{2} y^{2} L_{1}-\left(2 \alpha(1+\alpha) y^{2}-\alpha\right) M_{1}{ }^{2}\right|} \quad, \quad \text { if } \quad|\gamma-1| \geq\left|\frac{D_{3}}{N_{1}}\right|
\end{array}\right.
$$

where
$L_{1}=3-2\left(\mathrm{~s}_{1}+\mathrm{s}_{2}\right)+\mathrm{s}_{1} \mathrm{~s}_{2}$,
$M_{1}=2-\mathrm{s}_{1}-\mathrm{s}_{2}$,
$N_{1}=3-\mathrm{s}_{1}^{2}-\mathrm{s}_{2}^{2}-\mathrm{s}_{1} \mathrm{~s}_{2}$,
$D_{3}=L_{1}-\frac{\left(2 \alpha(1+\alpha) y^{2}-\alpha\right) M_{1}{ }^{2}}{4 \alpha^{2} y^{2}}$.
Corollary 2.12. Let $\mathfrak{f} \in \sigma$ given by (1.1) be in the class $\mathcal{S}_{\sigma}(y, \alpha, 1,-1)$. Then

$$
\left|a_{3}-\gamma a_{2}^{2}\right| \leq\left\{\begin{array}{cc}
|\alpha y| & \text { if } \quad 0 \leq|\gamma-1| \leq\left|\frac{D_{4}}{2}\right|, \tag{2.28}\\
\frac{\left|\alpha^{3} y^{3}(1-\gamma)\right|}{\left|\alpha^{2} y^{2}-\left(2 \alpha(1+\alpha) y^{2}-\alpha\right)\right|} & \text { if } \quad|\gamma-1| \geq\left|\frac{D_{4}}{2}\right| .
\end{array}\right.
$$

where
$D_{4}=2-\frac{\left(2 \alpha(1+\alpha) y^{2}-\alpha\right)}{\alpha^{2} y^{2}}$.
Corollary 2.13. Let $\mathfrak{f} \in \sigma$ given by (1.1) be in the class $\mathcal{S}_{\sigma}(y, \alpha, 1,0)$. Then

$$
\left|a_{3}-\gamma a_{2}^{2}\right| \leq\left\{\begin{array}{cll}
|\alpha y| \quad, & \text { if } & 0 \leq|\gamma-1| \leq\left|\frac{D_{5}}{2}\right| \tag{2.29}\\
\frac{\left|4 \alpha^{3} y^{3}(1-\gamma)\right|}{\left|2 \alpha^{2} y^{2}-\left(2 \alpha(1+\alpha) y^{2}-\alpha\right)\right|}, & \text { if } & |\gamma-1| \geq\left|\frac{D_{5}}{2}\right|
\end{array}\right.
$$

where $D_{5}=1-\frac{\left(2 \alpha(1+\alpha) y^{2}-\alpha\right)}{4 \alpha^{2} y^{2}}$.

3 Conclusion

We have calculated the bounds for $\left|a_{2}\right|$ and $\left|a_{3}\right|$ and Fekete-Szegö inequality for the Sakaguchi-Type function defined by $(\mathfrak{p}, \mathfrak{q})$-Derivative operator using Gegenbauer polynomials defined by us in this paper.

References

[1] D.A. Brannan and J.Clunie, Aspects of contemporary complex analysis, Academic Press, 1980.
[2] S. Baskaran, G. Saravanan and B. Vanithakumari, Sakaguchi type function defined by (p, q)-fractional operator using Laguerre polynomials, Palestine J. Math. 11 (2022), 41-47.
[3] R. Chakrabarti and R.Jagannathan, A (p, q)-oscillator realization of two-parameter quantum algebras, J. Phys. A, Math. Gen. 24 (1991), no. 13, 7-11.
[4] A. Amourah, A. Alamoush and M. Al-Kaseasbeh, Gegenbauer polynomials and bi-univalent functions, Palestine J. Math. 10 (2021), no. 2, 625-632.
[5] B.A. Frasin, Coefficient inequalities for certain classes of Sakaguchi type functions. Int. J. Nonlinear Sci. 10 (2010), no. 2, 206-211.
[6] N.N. Lebedev, Special functions and their applications. Prentice-Hall, 1965.
[7] M. Lewin, On a coefficient problem for bi-univalent functions. Proc. Amer. Math. Soc. 18 (1967), no. 1, 63-68.
[8] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal. 32 (1969), no. 2, 100-112.
[9] S. Owa, T. Sekine and R. Yamakawa, Notes on Sakaguchi functions (Coefficient Inequalities in Univalent Function Theory and Related Topics), RIMS Kokyuroku 1414 (2005), 76-82.
[10] S. Owa, T. Sekine and R.Yamakawa, On Sakaguchi type functions, Appl Math. Comput. 187 (2007), 356-361.
[11] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan. 11 (1959), no. 1, 72-75.
[12] M. Reimer, Multivariate polynomial approximation, Birkhauser, 2012.
[13] G. Saravanan and K.Muthunagai, Co-efficient estimates for the class of bi-quasi-convex functions using Faber polynomials,. Far East J. Math. Sci. 102 (2017), no. 10, 2267-2276.
[14] G. Saravanan and K. Muthunagai, Coefficient estimates and Fekete-Szegö inequality for a subclass of Bi-univalent functions defined by symmetric Q-derivative operator by using Faber polynomial techniques, Period. Engin. Natural Sci. 6 (2018), no. 1, 241-250.
[15] T.G. Shaba and A.K. Wanas, Coefficients bounds for a new family of bi-univalent functions associated with (U,V)-Lucas polynomials. Int.,J.Nonlinear Anal, Appl. 13 (2022), no. 1, 615-626.
[16] A.K. Wanas, L.I Cotirlă, New applications of Gegenbauer polynomials on a new family of Bi-Bazilevič functions governed by the q-srivastava-Attiya operator, Math. 10 (2022), 1-9, Article ID 1309.
[17] A.K. Wanas and A. Lupaş, Applications of Laguerre polynomials on a new family of bi-prestarlike functions, Symmetry 14 (2022), 1-10, Article ID 645.
[18] Q.H. Xu, Y.C. Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), no. 6, 990-994.
[19] Q.H. Xu, H.G. Xiao and H.M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), no. 23, 11461-11465.
[20] S. Yalçin, K. Muthunagai and G. Saravanan, A subclass with bi-univalence involving (p, q)-Lucas polynomials and its coefficient bounds, Bol. Soc. Mat. Mex. 26 (2020), 1015-1022.

[^0]: * Corresponding author

 Email addresses: sbas9991@gmail.com (S. Baskaran), gsaran825@yahoo.com (G. Saravanan), sibelyalcin34@gmail.com (Sibel Yalçin), vanithagft@gmail.com (B. Vanithakumari)

