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Abstract

In this research, we prove the results of n-tuple fixed point in partially ordered cone metric spaces. We will impose some
conditions upon a self-mapping and a sequence of mappings via α-series. This series are wider than the convergent
series. Also, at the end of this paper, an example is provided to illustrate the results.
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1 Introduction

In [12] by replacing an ordered Banach space instead of real numbers, the concept of cone metric space was
introduced and some fixed point theorems for contractive mappings in cone metric spaces have been proved. In
various methods, many authors later generalized their fixed point theorems (see [10, 11, 13, 14, 19]). Some coincidence
point theorems on cone metric spaces have been studied in [1, 3, 9]. In [5] the concept of a coupled coincidence point
was introduced and they studied fixed point theorems in partially ordered metric spaces. In [20], Shatanawi proved
that coupled coincidence point theorems on cone metric spaces are not necessarily normal.

Throughout this article, N is the set of positive integers and N0 = N∪{0}. We establish the results of n-tuple fixed
point for a self mapping g and {Tm}m∈N0

that is a sequence of mappings from Xn into X, in partially ordered cone
metric spaces via α-series, which introduced in [21]. The α-series are wider than the convergent series. We provide
the preliminaries and definitions used throughout the article.

Definition 1.1. ([12]) Let P ⊆ E, where E is a real Banach space with int(P ) ̸= ∅. If P satisfies

1. P is closed and P ̸= {θ}, where θ represents zero.

2. a, b ∈ R+, x, y ∈ P implies ax+ by ∈ P .

3. x ∈ P ∩ −P implies x = θ.

Then P is called a cone.

∗Corresponding author
Email addresses: hasan hz2003@yahoo.com (Hasan Hosseinzadeh), isikhuseyin76@gmail.com (Hüseyin Işık),
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The cone P ⊆ E is given, we define a partial ordering ≤ with respect to P by x ≤ y iff y − x ∈ P . We write x < y to
show that x ≤ y but x ̸= y. We write x≪ y if y−x ∈ IntP . It is easy to show that λInt(P ) ⊆ Int(P ) for all positive
scalar λ.

Definition 1.2. ([12]) A cone metric space is a pair (X, d), where X is a nonempty set and d : X2 → E is a map
such that satisfies

1. θ ≤ d(x, y) for all x, y ∈ X and d(x, y) = θ iff x = y.

2. d(x, y) = d(y, x) for all x, y ∈ X.

3. d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ X.

The map d is called a cone metric on X.

Definition 1.3. ([12]) Let (X, d) be a cone metric space, {xn} be a sequence in X and x ∈ X.

(i) The sequence {xn} is called converges to x, if for every c ∈ E with θ ≪ c there exists a positive integer N ∈ N
such that d(xn, x) ≪ c for all n ≥ N. We denote this by limn→+∞ xn = x.

(ii) The sequence {xn} is called a Cauchy sequence in X, if for every c ∈ E with θ ≪ c, there is an N ∈ N such
that d(xn, xm) ≪ c for all n,m ≥ N.

(iii) The space (X, d) is called a complete cone metric space if every Cauchy sequence is convergent.

Definition 1.4. ([18]) Let (X, d) be a cone metric space, f : X → X and x0 ∈ X. Then f is said to be continuous
at x0 if for any sequence xn → x0, we have fxn → fx0.

Definition 1.5. ([7]) An element (x, y) ∈ X2 is called a coupled fixed point of F : X2 → X if

F (x, y) = x, F (y, x) = y.

Example 1.6. Let X = [0,∞) and F : X2 → X be defined by F (x, y) = xy for all x, y ∈ X. One can easily see that
F has a unique coupled fixed point (1, 1).

Definition 1.7. ([17]) An element (x, y) ∈ X2 is called a coupled coincidence point of the mappings g : X → X and
F : X2 → X if F (x, y) = gx and F (y, x) = gy. In this case, (gx, gy) is called a coupled coincidence point.

Definition 1.8. ([2]) An element (x, y) ∈ X2 is called a common coupled fixed point of mappings g : X → X and
F : X2 → X if x = g(x) = F (x, y) and y = g(y) = F (y, x).

Definition 1.9. ([16]) Let X ̸= ∅. We say that the mappings g : X → X and F : X2 → X are commutative if

gF (x, y) = F (gx, gy), gF (y, x) = F (gy, gx)

Now, inspired by [22], we generalize the concept of compatible mapping for a self-mapping g and a bivariate mapping
F on a cone metric space as follows.

Definition 1.10. The mappings g : X → X and F : X2 → X are called compatible if for arbitrary c ∈ intP , there
exists n0 ∈ N such that

d(F (gxn, gyn), g(F (xn, yn)) ≪ c,

d(F (gyn, gxn), g(F (yn, xn)) ≪ c

whenever n > n0; {xn}, {yn} ∈ X, such that

lim
n→+∞

F (xn, yn) = lim
n→+∞

gxn = x,

lim
n→+∞

F (yn, xn) = lim
n→+∞

gyn = y,

for some x, y ∈ X. It called weakly compatible if they commute at coincidence points.
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Example 1.11. Let X = [0, 3] be endowed with d(x, y) = |x− y|.
Define g : X → X and F : X2 → X by

g(x) =

{
x if x ∈ [0, 1)

3 if x ∈ [1, 3]

F (x, y) =

{
x+ y if x, y ∈ [0, 1)

3 elsewhere.

Then for any x, y ∈ [1, 3], F (gx, gy) = gF (x, y) and F (gy, gx) = gF (y, x), show that F and g are weakly compatible
maps on [0, 3].

Example 1.12. Let X = R be endowed with d(x, y) = |x− y|. Define g : X → X and F : X2 → X by

g(x) = x2, F (x, y) = x+ y

Then g and F are not weakly compatible maps on R.

Definition 1.13. ([22]) The mappings g : X → X and F : X2 → X are called reciprocally continuous if

lim
n→+∞

g(F (xn, yn)) = g(x), and lim
n→+∞

F (gxn, gyn) = F (x, y)

lim
n→+∞

g(F (yn, xn)) = g(y), and lim
n→+∞

F (gyn, gxn) = F (y, x)

whenever {xn}, {yn} ∈ X, such that

lim
n→+∞

F (xn, yn) = lim
n→+∞

g(xn) = x,

lim
n→+∞

F (yn, xn) = lim
n→+∞

g(yn) = y,

for some x, y ∈ X.

Definition 1.14. ([4]) Let (X,⪯) be a poset (or partially ordered set) and F : X2 → X. We say that F has the
mixed monotone property if for any x, y ∈ X

x1, x2 ∈ X, x1 ⪯ x2 ⇒ F (x1, y) ⪯ F (x2, y),

y1, y2 ∈ X, y1 ⪯ y2 ⇒ F (x, y1) ⪰ F (x, y2),

That is, F (x, y) is monotone non-decreasing in x and is monotone non-increasing in y.

Definition 1.15. ([6]) Let (X,⪯) be a poset and g : X → X and F : X2 → X. We say that F has the g-mixed
monotone property if for any x, y ∈ X,

x1, x2 ∈ X, gx1 ⪯ gx2 ⇒ F (x1, y) ⪯ F (x2, y),

y1, y2 ∈ X, gy1 ⪯ gy2 ⇒ F (x, y1) ⪰ F (x, y2),

That is, F (x, y) is g-monotone non-decreasing in x, and it is g-monotone non-increasing in y.

We give an n-dimensional case of this definition as follows:
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Definition 1.16. We consider poset (X,⪯◦). We define on Xn the following order:

x = (x1, · · · , xn) ⪯ (y1, · · · , yn) = y ⇔ xi ⪯◦ yi(if i is odd), and

xi ◦⪰ yi(if i is even).

Definition 1.17. Let (X,⪯◦) be a poset and F : Xn → X is given. We say that F is monotone if

x ⪯ y ⇒ F (x) ⪯◦ F (y)

where x = (x1, · · · , xn),y = (y1, · · · , yn), which ⪯ is the same as in definition 1.16.

Definition 1.18. [8]. Let (X,⪯◦) be a poset and g : X → X and F : Xn → X. We say that F is g-mixed monotone
if

gxi ⪯◦ gyi (if i is odd) ⇒ F (x1, · · · , xi, · · · , xn) ⪯◦ F (x1, · · · , yi, · · · , xn)

and
gxi ◦⪰ gyi (if i is even) ⇒ F (x1, · · · , xi, · · · , xn) ⪯◦ F (x1, · · · , yi, · · · , xn).

Definition 1.19. [8]. Let X ̸= ∅. An element (x1, ..., xn) ∈ Xn is called an n-tuple fixed point of the mapping
F : Xn → X if

xi = F (xi, xi+1, ..., xn, x1, ..., xi−1),where 1 ≤ i ≤ n.

Definition 1.20. [8]. Let X ̸= ∅. An element (x1, ..., xn) ∈ Xn is called an n-tuple coincidence point of the mappings
g : X → X and F : Xn → X if

gxi = F (xi, xi+1, ..., xn, x1, ..., xi−1),where 1 ≤ i ≤ n.

Definition 1.21. [15] Let X ̸= ∅. The mappings g : X → X and F : Xn → X are said to be commutating if

gF (x1, ..., xn) = F (gx1, ..., gxn),

for all x1, . . . , xn ∈ X.

We generalize the definitions of compatibility and weakly reciprocally continuity, for a self-mapping g and n-variate
mapping F .

Definition 1.22. Let (X, d) be a cone metric space. The mappings g : X → X and F : Xn → X are called
compatible if for arbitrary c ∈ intP , there exists m0 ∈ N such that

d(g(F (xim, x
i+1
m , . . . , xnm, x

1
m, . . . , x

i−1
m )),

F (gxim, gx
i+1
m , . . . , gxnm, gx

1
m, . . . , gx

i−1
m )) ≪ c,

where 1 ≤ i ≤ n, whenever m > m0, {xim} are sequences in X, such that

lim
m→+∞

F (xim, x
i+1
m , . . . , xnm, x

1
m, . . . , x

i−1
m ) = lim

m→+∞
gxim := xi,

for some xi ∈ X. It is said to be weakly compatible if

gxi = F (xi, xi+1, . . . , xn, x1, . . . , xi−1),

implies
g(F (xi, xi+1, . . . , xn, x1, . . . , xi−1)) = F (gxi, gxi+1, . . . , gxn, gx1, . . . , gxi−1),

where 1 ≤ i ≤ n, for some (x1, · · ·xn) ∈ Xn.
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Definition 1.23. The mappings g : X → X and F : Xn → X are called reciprocally continuous if

lim
m→+∞

g(F (xim, x
i+1
m , . . . , xnm, x

1
m, . . . , x

i−1
m )) = gxi, and

lim
m→+∞

F (gxim, gx
i+1
m , . . . , gxnm, gx

1
m, . . . , gx

i−1
m )

= F (xi, xi+1, . . . , xn, x1, . . . , xi−1),

whenever {xim}, 1 ≤ i ≤ n, are sequences in X, such that

lim
m→+∞

F (xim, x
i+1
m , . . . , xnm, x

1
m, . . . , x

i−1
m ) = lim

m→+∞
gxim := xi,

for some xi ∈ X, 1 ≤ i ≤ n.

The new concept of an α-series was introduced by Sihag et al. [21] as follow.

Definition 1.24. ([21]) Let {an} be a sequence of positive real numbers. We say that a series
∑+∞

n=1 an is an α-series,

if there exist 0 < α < 1 and nα ∈ N such that
∑k

i=1 ai ≤ αk for each k ≥ nα.

For example, we know that every convergent series is bounded hence, every convergent series of non-negative real

terms is an α-series. Moreover, there exists also divergent series that are α-series. For example,
∑+∞

n=1

1

n
is an α-series.

As a main result of this paper, we shall study the existence and uniqueness of n-tuple common fixed point for
self-mapping g : X → X and the sequence of mappings Tm : Xn → X, where (X, d) is a cone metric space.

2 Main results

According to the definition 1.18 we have the following definition.

Definition 2.1. Let (X,⪯) be a poset and g : X → X, and Tm : Xn → X, m ∈ N0 are given. We say that
{Tm}m∈N0

has the g-mixed monotone property if for any xi, yi ∈ X, 1 ≤ i ≤ n,

gxi ⪯ gyi (if i is odd), and gxi ⪰ gyi (if i is even), imply

Tm(xi, xi+1, ..., xn, x1, ..., xi−1) ⪯ Tm+1(y
i, yi+1, ..., yn, y1, ..., yi−1)(if i is odd),

Tm+1(y
i, yi+1, ..., yn, y1, ..., yi−1) ⪯ Tm(xi, xi+1, ..., xn, x1, ..., xi−1)(if i is even),

where 1 ≤ i ≤ n.

Definition 2.2. Let g : X −→ X and Tm : Xn → X are given. {Tm}m∈N0 and g enjoy the (K) property if

d(Tm(x1, . . . , xn), Tm′(y1, . . . , yn)) ≤ βm,m′ [d(gx1, Tm(x1, . . . , xn))

+ d(gy1, Tm′(y1, . . . , yn))]

+ γm,m′d(gy1, gx1) (2.1)

for all xi, yi ∈ X, where 1 ≤ i ≤ n, with gxi ⪯ gyi (if i is odd), and gxi ⪰ gyi (if i is even) or gxi ⪰

gyi (if i is odd), and gxi ⪯ gyi(if i is even), 0 ≤ βm,m′ , γm,m′ < 1 for m,m′ ∈ N0, and
∑+∞

m=1

(
βm,m+1 + γm,m+1

1− βm,m+1

)
is

an α-series.

Definition 2.3. If T0 and g have non-decreasing transcendence point in its odd position arguments and non-
increasing transcendence point in its even position arguments, then we call T0 and g have mixed n-tuple transcendence
point, if there exists xi0 ∈ Xn, 1 ≤ i ≤ n, such that

gxi0 ⪯ T0(x
i
0, x

i+1
0 , . . . xn0 , x

1
0, . . . x

i−1
0 ), (if i is odd),

gxi0 ⪰ T0(x
i
0, x

i+1
0 , . . . xn0 , x

1
0, . . . x

i−1
0 ), (if i is even). (2.2)

Before presenting the main result, first consider the sequences that are made in the following lemma.
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Lemma 2.4. Let (X, d,⪯) be a partially ordered cone metric space and g and {Tm}m∈N0
are given. Let{Tm}m∈N0

has the g-mixed monotone property with Tm(Xn) ⊆ g(X). If T0 and g have mixed n-tuple transcendence point, then

(a) there are sequences {xi} ∈ X, 1 ≤ i ≤ n, such that

gxim = Tm−1(x
i
m−1, x

i+1
m−1, ..., x

n
m−1, x

1
m−1, ..., x

i−1
m−1), 1 ≤ i ≤ n,

for m ∈ N0.

(b) The sequences {gxir}, 1 ≤ i ≤ n, are non-decreasing if i is odd and non-increasing if i is even.

(c) if {Tm}m∈N0 and g satisfy the condition (K), then {gxir}, 1 ≤ i ≤ n are Cauchy sequences.

Proof . By hypothesis, let xi0 ∈ X, 1 ≤ i ≤ n, such that condition (2.2) holds. Since T0(X
n) ⊆ g(X), we can define

xi1 ∈ X, 1 ≤ i ≤ n such that
gxi1 = T0(x

i
0, x

i+1
0 , . . . xn0 , x

1
0, . . . x

i−1
0 ).

Again since T0(X
n) ⊆ g(X), there exists xi2 ∈ X, 1 ≤ i ≤ n such that

gxi2 = T1(x
i
1, x

i+1
1 , . . . xn1 , x

1
1, . . . x

i−1
1 ).

Continuing this process, we can construct sequences {xir}, 1 ≤ i ≤ n, such that

gxir+1 = Tr(x
i
r, x

i+1
r , . . . xnr , x

1
r, . . . x

i−1
r ), (2.3)

for all r ≥ 0. Now, by mathematical induction, we show that

gxir ⪯ gxir+1 (if i is odd),

gxir ⪰ gxir+1 (if i is even), 1 ≤ i ≤ n, (2.4)

for all r ≥ 0. To show this, since (2.2) holds in view of

gxi1 = T0(x
i
0, x

i+1
0 , . . . xn0 , x

1
0, . . . x

i−1
0 ), 1 ≤ i ≤ n,

we have

gxi0 ⪯ gxi1 (if i is odd),

gxi0 ⪰ gxi1 (if i is even), 1 ≤ i ≤ n, (2.5)

that is, (2.4) holds for r = 0. We presume that (2.4) holds for some r > 0. Now, by (2.3) and (2.4), we deduce that

gxir+1 = Tr(x
i
r, x

i+1
r , . . . xnr , x

1
r, . . . x

i−1
r )

⪯ Tr+1(x
i
r+1, x

i+1
r+1, . . . x

n
r+1, x

1
r+1, . . . x

i−1
r+1)

= gxir+2, (if i is odd)

gxir+1 = Tr(x
i
r, x

i+1
r , . . . xnr , x

1
r, . . . x

i−1
r )

⪰ Tr+1(x
i
r+1, x

i+1
r+1, . . . x

n
r+1, x

1
r+1, . . . x

i−1
r+1)

= gxir+2, (if i is even).

Thus we have done. Then, by (2.1), we get

d(gx1r, gx
1
r+1) = d(Tr−1(x

1
r−1, . . . , x

n
r−1), Tr(x

1
r, . . . , x

n
r ))

≤ βr−1,r[d(gx
1
r−1, Tr−1(x

1
r−1, . . . , x

n
r−1))

+ d(gx1r, Tr(x
1
r, . . . , x

n
r ))] + γr−1,rd(gx

1
r, gx

1
r−1)

= βr−1,r[d(gx
1
r−1, gx

1
r) + d(gx1r, gx

1
r+1)]

+ γr−1,rd(gx
1
r, gx

1
r−1).

It follows that

(1− βr−1,r)d(gx
1
r, gx

1
r+1) ≤ (βr−1,r + γr−1,r)d(gx

1
r, gx

1
r−1).
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Equivalently,

d(gx1r, gx
1
r+1) ≤

(
βr−1,r + γr−1,r

1− βr−1,r

)
d(gx1r, gx

1
r−1). (2.6)

Similarly, we get

d(gx2r, gx
2
r+1) ≤

(
βr−1,r + γr−1,r

1− βr−1,r

)
d(gx2r, gx

2
r−1)

...

d(gxnr , gx
n
r+1) ≤

(
βr−1,r + γr−1,r

1− βr−1,r

)
d(gxnr , gx

n
r−1). (2.7)

Adding (2.6)-(2.7), we set

δr :=

n∑
i=1

d(gxir, gx
i
r+1).

Then, we have

δr =

n∑
i=1

d(gxir, gx
i
r+1) ≤

(
βr−1,r + γr−1,r

1− βr−1,r

)
[

n∑
i=1

d(gxir, gx
i
r−1)]

=

(
βr−1,r + γr−1,r

1− βr−1,r

)
δr−1

≤
(
βr−1,r + γr−1,r

1− βr−1,r

)
(
βr−2,r−1 + γr−2,r−1

1− βr−2,r−1

)
δr−2

≤ . . .

≤
r−1∏
m=0

(
βm,m+1 + γm,m+1

1− βm,m+1

)
δ0.

Let r, p ∈ N whit p > r, and α and nα as in Definition 1.24. Then for r ≥ nα also, with repeated use of the triangle
inequality, we obtain

n∑
i=1

d(gxir, gx
i
r+p) ≤

n∑
i=1

d(gxir, gx
i
r+1) +

n∑
i=1

d(gxir+1, gx
i
r+2) + · · ·

+

n∑
i=1

d(gxir+p−1, gx
i
r+p)

≤
r−1∏
m=0

(
βm,m+1 + γm,m+1

1− βm,m+1

)
δ0 +

r∏
m=0

(
βm,m+1 + γm,m+1

1− βm,m+1

)
δ0

+ . . .+

r+p−2∏
m=0

(
βm,m+1 + γm,m+1

1− βm,m+1

)
δ0

=

r+p−1∑
k=r

k−1∏
m=0

(
βm,m+1 + γm,m+1

1− βm,m+1

)
δ0

≤
r+p−1∑
k=r

[
1

k

k−1∑
m=0

(
βm,m+1 + γm,m+1

1− βm,m+1

)]k
δ0

≤

(
r+p−1∑
k=r

αk

)
δ0

≤ αr

1− α
δ0.
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Now, we prove that {gxir} are Cauchy sequences in (X, d). Let θ ≪ c be given. There is a neighborhood of θ such as

Nδ(θ) = {y ∈ E : ∥ y ∥< δ}

where δ > 0, such that c+Nδ(θ) ⊆ IntP , since c ∈ IntP . Choose N1 ∈ N such that

∥ − αN1

1− α
δ0 ∥< δ.

Then

− αr

1− α
δ0 ∈ Nδ(θ),

for all r ≥ N1. Hence

c− αr

1− α
δ0 ∈ c+Nδ(θ) ⊆ IntP.

Thus we have
αr

1− α
δ0 ≪ c,

for all r ≥ N1. Therefore
n∑

i=1

d(gxir, gx
i
r+p) ≤

αr

1− α
δ0 ≪ c,

for all p > r ≥ N1. So we conclude {gxir}, 1 ≤ i ≤ n are Cauchy in g(X). □ Now, we revise Definitions 1.22 and 1.23.

Definition 2.5. Let (X, d) be a cone metric space. The mappings g : X → X and Tm : Xn → X are compatible, if
for arbitrary c ∈ intP , there exists m0 ∈ N such that

d(g(Tm(xim, . . . , x
n
m, x

1
m, . . . , x

i−1
m )), Tm(gxim, . . . , gx

n
m, gx

1
m, . . . , gx

i−1
m )) ≪ c,

where 1 ≤ i ≤ n; only, m > m0 and {xim}, 1 ≤ i ≤ n are sequences in X, such that

lim
m→+∞

Tm(xim, x
i+1
m , . . . , xnm, x

1
m, . . . , x

i−1
m ) = lim

m→+∞
gxim+1 := xi,

for some xi ∈ X. It is said to be weakly compatible if

gxi = Tm(xi, xi+1, . . . , xn, x1, . . . , xi−1),

implies
g(Tm(xi, xi+1, . . . , xn, x1, . . . , xi−1)) = Tm(gxi, . . . , gxn, gx1, . . . , gxi−1),

where 1 ≤ i ≤ n.

Definition 2.6. Let (X, d) be a cone metric space and g : X → X and Tm : Xn → X are given. {Tm}m∈N0
and g

are called reciprocally continuous if

lim
m→+∞

g(Tm(xim, x
i+1
m , . . . , xnm, x

1
m, . . . , x

i−1
m )) = gxi, and

lim
m→+∞

Tm(gxim, gx
i+1
m , . . . , gxnm, gx

1
m, . . . , gx

i−1
m )

= lim
m→+∞

Tm(xi, xi+1, . . . , xn, x1, . . . , xi−1),

whenever {xim}, 1 ≤ i ≤ n are sequences in X, such that

lim
m→+∞

Tm(xim, x
i+1
m , . . . , xnm, x

1
m, . . . , x

i−1
m ) = lim

m→+∞
gxim+1 := xi,

for some xi ∈ X and 1 ≤ i ≤ n.
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Theorem 2.7. In addition to the assumptions of Lemma 2.4, let Tm : Xn → X and g be reciprocally continuous and
compatible, g is continuous and g(X) ⊆ X be complete. Also, suppose that X has the following properties:

1. if an increasing sequence xm → x, then xm ⪯ x for all m,

2. if a decreasing sequence xm → x, then x ⪯ xm for all m.
Then Tm : Xn → X and g have a n-tuple coincidence point.

Proof . Let {xir} are the same sequence which appear in the lemma 2.4. Since g(X) is complete, then there exist
si ∈ X, with limr→+∞{gxir} = g(si) := xi, 1 ≤ i ≤ n. By construction we have

lim
r→+∞

g(xir+1) = lim
r→+∞

Tr(x
i
r, x

i+1
r , . . . xnr , x

1
r, . . . x

i−1
r ) = xi, 1 ≤ i ≤ n.

Since {Tm}m∈N0
and g are reciprocally continuous and compatible, we have

lim
r→+∞

Tr(gx
i
r, gx

i+1
r , . . . , gxnr , gx

1
r, . . . , gx

i−1
r ) = gxi, 1 ≤ i ≤ n.

Also from continuity of g, we have

lim
r→+∞

Tr(x
i, xi+1, . . . , xn, x1, . . . , xi−1) = gxi, 1 ≤ i ≤ n.

From the non-decreasing sequence {gxir} when i is odd, we have g(xir) ⪯ xi(if i is odd). Also, from the non-decreasing
sequence {gxir} when i is even, we have g(xir) ⪰ xi(if i is even), 1 ≤ i ≤ n. Then applying condition (2.1), we get

d(Tr(gx
i
r, gx

i+1
r , . . . ,gxnr , gx

1
r, . . . , gx

i−1
r ), Tm(xi, xi+1, . . . , xn, x1, . . . , xi−1))

≤ βr,m[d(ggxir, Tr(gx
i
r, gx

i+1
r , . . . , gxnr , gx

1
r, . . . , gx

i−1
r ))

+ d(gxi, Tm(xi, xi+1, . . . , xn, x1, . . . , xi−1))]

+ γr,md(gx
i, ggxir).

Let θ ≪ c be given. Choose N1, N2 ∈ N such that

βr,m[d(ggxir, Tr(gx
i
r, gx

i+1
r , . . . , gxnr , gx

1
r, . . . , gx

i−1
r ))

+ d(gxi, Tm(xi, xi+1, . . . , xn, x1, . . . , xi−1))] ≪ c

2
for all r ≥ N1,

as βr,m < 1, and

γr,md(gx
i, ggxir) ≪

c

2
for all r ≥ N2.

Let N0 = max{N1, N2}. Then

βr,m[d(ggxir, Tr(gx
i
r, gx

i+1
r , . . . , gxnr , gx

1
r, . . . , gx

i−1
r ))

+ d(gxi, Tm(xi, xi+1, . . . , xn, x1, . . . , xi−1))]

+ γr,md(gx
i
r, gx

i+1
r , . . . , gxnr , gx

1
r, . . . , gx

i−1
r ) ≪ c,

for all r ≥ N0. Hence, Tr(gx
i
r, gx

i+1
r , . . . , gxnr , gx

1
r, . . . , gx

i−1
r ) converges to

Tm(xi, xi+1, . . . , xn, x1, . . . , xi−1). Let θ ≪ c be given. We choose k1, k2, k3 ∈ N such that

d(Tr(x
i, xi+1, . . . , xn, x1, . . . , xi−1), Tr(gx

i
r, . . . , gx

n
r , gx

1
r, . . . , gx

i−1
r ))) ≪ c

3
,

for all r ≥ k1,

d(Tr(gx
i
r, . . . , gx

n
r , gx

1
r, . . . , gx

i−1
r ), g(Tr(x

i
r, . . . , x

n
r , x

1
r, . . . , x

i−1
r ))) ≪ c

3
,

for all r ≥ k2, and

d(g(Tr(x
i
r, . . . , x

n
r , x

1
r, . . . , x

i−1
r ))), gxi) ≪ c

3
for all r ≥ k3.
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Let k0 = max{k1, k2, k2}. Then
d(Tr(x

i, xi+1, . . . , xn, x1, . . . , xi−1), gxi) ≪ c.

Since c is arbitrary, we have

d(Tr(x
i, xi+1, . . . , xn, x1, . . . , xi−1), gxi) ≪ c

n′
∀n′ ∈ N

According to the fact that as n′ → +∞, then
c

n′
→ θ, we conclude that

c

n′
−d(Tr(xi, xi+1, . . . , xn, x1, . . . , xi−1), gxi)

−→ −d(Tr(xi, xi+1, . . . , xn, x1, . . . , xi−1), gxi), as n′ → +∞.

Because P is closed, we get−d(Tr(xi, xi+1, . . . , xn, x1, . . . , xi−1), gxi) ∈ P . Thus, d(Tr(x
i, xi+1, . . . , xn, x1, . . . , xi−1), gxi) ∈

P ∩ −P . Hence,

d(Tr(x
i, xi+1, . . . , xn, x1, . . . , xi−1), gxi) = θ.

Therefore, gxi = Tr(x
i, xi+1, . . . , xn, x1, . . . , xi−1). Thus, (x1, · · · , xn) is a n-tuple coincidence point of {Tm}m∈N0

and
g. □

Definition 2.8. For all xi, ui ∈ X, 1 ≤ i ≤ n; we say that (xi)
n
i=1 is n-tuple comparable whit (ui)

n
i=1 if

xi ≥ uσ(i)(if i is odd), xi ≤ uσ(i)(if i is even)

or

xi ≤ uσ(i)(if i is odd), xi ≥ uσ(i)(if i is even),

where

σ ∈ Π =

{
σj | σj : n → n, σj(i) = k, k

mod n≡ i+ j, 0 ≤ k ≤ n− 1

}
.

In the other word, the member of Π are the permutation of n, which preserve order (modulus n).

If in the above, we definition replace xi and uσ(i) with gxi and guσ(i), we call (xi)
n
i=1 is n-tuple comparable with

(ui)
n
i=1 with respect to g.

Theorem 2.9. Let (X, d,⪯) be a partially ordered cone metric space. Let g and {Tm}m∈N0 are given. g and {Tm}m∈N0

are w-compatible and satisfy the condition (K). If {Tm}m∈N0
have n-tuple coincidence points comparable with respect

to g, then g and {Tm}m∈N0
have a unique n-tuple common fixed point, that is, there exists a unique (x1, · · · , xn) ∈ Xn

such that
xi = g(xi) = Tm(xi, xi+1, ..., xn, x1, ..., xi−1),where 1 ≤ i ≤ n.

Moreover, the common fixed point of {Tm}m∈N0
and g is of the form (p, . . . , p) for some p ∈ X.

Proof . From Theorem 2.7, the set of n-tuple coincidence points is non-empty. First, we show that if (x1, · · · , xn)
and (u1, · · · , un) are n-tuple coincidence points then gxi = gui, 1 ≤ i ≤ n. Since the set of n-tuple coincidence points
is n-tuple comparable, applying condition (2.1), we get

d(gx1, gu1) = d(Tm(x1, . . . , xn), Tm′(u1, . . . , un))

≤ βm,m′ [d(gx1, Tm(x1, . . . , xn) + d(gu1, Tm′(y1, , . . . , yn))]

+ γm,m′d(gu1, gx1).

Since γm,m′ < 1, it follows that d(gx1, gu1) = 0, that is, gx1 = gu1. Similarly, it can be proved that gxi = guj , where
1 ≤ i, j ≤ n. So

gx1 = · · · = gxn = gu1 · · · = gun.

Therefore {Tm}m∈N0
and g have a unique n-tuple coincidence point

(gx1, · · · , gx1). Now, let gx1 = p. Then we have

p = gx1 = Tm(x1, · · · , x1).
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By w-compatibility of {Tm}m∈N0
and g, we have

gp = ggx1 = g(Tm(x1, · · · , x1)) = Tm(gx1, · · · , gx1) = Tm(p, · · · , p).

On the other hand, Tm(gx1, · · · , gx1) = gx1. So, (gp, . . . , gp) is an n-tuple coincidence point of {Tm}m∈N0 and g. So,
gp = gx1. Hence,

p = gp = Tm(p, · · · , p).
Therefore, (p, · · · , p) is a unique n-tuple common fixed point of {Tm}m∈N0 and g. □

Example 2.10. Let X = [0, 1] and

P = {(x1, . . . , xn) ∈ Rn : xi ≥ 0, 1 ≤ i ≤ n} ⊆ E = Rn.

Define d(x, y) = (|x − y|, |x − y|). Then (X, d) is a partially ordered complete cone metric space. Define βm,m′ =
1

n2m+1
, γm,m′ =

1

nm
for all m,m′ ∈ N, and consider the mappings g : X → X and Tm : Xn → X with

g(x) = 3nx, Tm(x1, · · · , xn) =
x1 + · · ·+ xn

nm

for all m = 1, 2, . . . ; x1, · · · , xn ∈ X. By mathematical induction we can easily show that {Tm}m∈N0 and g satisfy
the condition (K). For this, we know that the greatest value of the first side in (2.1) is when m = 1,m′ → ∞. Suppose
that for m = 1,m′ = k, we take Tm(x1, · · · , xn) = U, Tm′(y1, · · · , yn) = V . Then, we have

(| U − V |, | U − V |) ≤ 1

n3
[(| 3nx1 − U |, | 3nx1 − U |)

+ (| 3ny1 − V |, | 3ny1 − V |)]

+
1

n
(| 3n(y1 − x1) |, | 3n(y1 − x1) |).

For m′ = k + 1 we have

A := (| U − 1

n
V ) |, | U − 1

n
V ) |) ≤ 1

n3
[(| 3nx1 − U |, | 3nx1 − U |)

+ (| 3y1 −
1

n
V ) |, | 3y1 −

1

n
V ) |]

+ 3(| y1
n

− x1 |, | y1
n

− x1 |) := B.

So,

A ≤ 1

n
[(| U − V |, | U − V |)] + n− 1

n
| U |

≤ 1

n
(
1

n3
[(| 3nx1 − U |, | 3nx1 − U |) + (| 3ny1 − V |, | 3ny1 − V |)])

+
1

n
(3(| y1 − x1 |, | y1 − x1 |)) + n− 1

n
| U |≤ B.

Since d(x, y) is symmetric, therefore, the role of m,m′ can be changed together and a similar result can be reached.
Thus, the inequality (2.1) for every m,m′ is holds. Moreover, the series

+∞∑
m=1

(
βm,m+1 + γm,m+1

1− βm,m+1

)
=

+∞∑
m=1

nm+1 + 1

n2m+1 − 1
, n > 1

is an α-series with α =
1

2
. So, all conditions of Theorem 2.7 are satisfied and (0, · · · , 0) are the n-tuple coincident

points of g and {Tm}m∈N0
. Moreover, using the same mappings in Theorem 2.9, (0, · · · , 0) is the unique n-tuple

common fixed point of g and {Tm}m∈N0
.
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