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Abstract

In this paper we consider a transmission problem for one dimensional waves with nonlinear weights on the frictional
damping and time delay. We prove first, the existence and the uniqueness of the solution using the semigroup theory.
Second, we chow the exponential stability of the solution by introducing a suitable Lyaponov functional.
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1 Introduction

In this paper, we consider global existence and decay properties of solutions for a transmission problem for waves
with nonlinear weights and delay. We consider the following system form

utt (x, t)− auxx (x, t) + µ1(t)ut (x, t)
+µ2(t)ut (x, t− τ) = 0, (x, t) ∈ Ω× ]0,+∞[ ,

vtt (x, t)− bvxx (x, t) = 0, (x, t) ∈ ]L1, L2[× ]0,+∞[ ,

(1.1)

where 0 < L1 < L2 < L3, Ω = ]0, L1[ ∪ ]L2, L3[ , a, b, are positive constants, µ1(t) and µ2(t) are nonlinear weights
acting on the frictional damping τ > 0 is the delay. System (1.1) is subjected to the following boundary conditions,
and transmission conditions: 

u (0, t) = u (L3, t) = 0,

u (Li, t) = v (Li, t) , i = 1, 2

aux (Li, t) = bvx (Li, t) , i = 1, 2

(1.2)

and the initial conditions: 
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

u (x, t− τ) = f0 (x, t− τ) , x ∈ Ω, t ∈ [0, τ ] ,

v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , x ∈ ]L1, L2[ .

(1.3)
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We are interested in proving the exponential stability for the problem (1.1)-(1.3) under the assumption

a

b
<
L1 + L3 − L2

2(L2 − L1)
. (1.4)

Transmission problems are closely related to the design of material components, attracting considerable attention in
recent years, e.g., in the analysis if damping mechanisms in the metallurgical industry or smart material technology,
see [2]. From the mathematical point of view a transmission problem for wave propagation consists on a hyperbolic
equation for the corresponding elliptic operator has discontinuous coefficients.

Time delay is the property of a physical system by which to an applied force is delayed in its effect, and the central
question is that the delays source can destabilize a system that is asymptotically stable in the absence of delay, see
[5, 8, 16]. Another type of works have been done on similar problems but have focused on the asymptotic solution of
different transmission problems in a thin domain. For example, the authors in [4] have proved the asymptotic behavior
of an interface problem in a thin domain. The asymptotic analysis of a frictionless contact between two elastic bodies
with a dissipative term in a dynamic regime was studied in [9].

The first contribution in literature for transmission problem with time delay was given by A. Benseghir in [3].
More precisely, in [3] the transmission problem

utt (x, t)− auxx (x, t) + µ1ut (x, t)
+µ2ut (x, t− τ) = 0, (x, t) ∈ Ω× ]0,+∞[ ,

vtt (x, t)− bvxx (x, t) = 0, (x, t) ∈ ]L1, L2[× ]0,+∞[ ,

(1.5)

with constants µ1, µ2 and time delay τ > 0 was studied. Under appropriate assumption on the weights of the two
feedbacks (µ1 < µ2), it was proved the well-possessedness of the system and, under condition (1.4), it was established
an exponential decay result.
The result in [3] were improved by S. Zitouni et al. [15]. There, the authors considered the system with time-varying
delay τ(t) of the form 

utt (x, t)− auxx (x, t) + µ1ut (x, t)
+µ2ut (x, t− τ(t)) = 0, (x, t) ∈ Ω× ]0,+∞[ ,

vtt (x, t)− bvxx (x, t) = 0, (x, t) ∈ ]L1, L2[× ]0,+∞[ ,

(1.6)

In [13] the authors examined a system of wave equation with a linear boundary damping term with a delay:

utt −∆u = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ Γ0, t > 0,

∂u

∂ν
(x, t) = µ1ut(x, t) + µ2ut(x, t− τ) x ∈ Γ1, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

ut(x, 0) = u1(x) x ∈ Ω,

ut(x, t− τ) = g0(x, t− τ) x ∈ Ω, τ ∈ ]0, 1[ ,

(1.7)

and proved under the assumption
µ2 < µ1, (1.8)

that the solution is exponentially stable. On the contrary, if (1.8) does not hold, they found a sequence of delays
for which the corresponding solution of (1.7) will be unstable. We also recall the result by Xu et al. [16], where the
authors proved the same result as in [13] for the one space dimension by adopting the spectral analysis approach.

The aim of this paper is to study the well-possessedness and asymptotic stability of system (1.1)-(1.3) under proper
conditions on nonlinear weights µ1(t), µ2(t), on the contrary in [3] where the author considered that the weights µ1, µ2

are positive constants, we prove global existence and an estimate for the decay rate of the energy. The paper is
organized as follows. In Section 2 we provide notations that will be used later. In Section 3 we state and prove the
global existence result. In Section 4, we prove the exponential decay of the energy when time goes to infinity.
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2 Notation and preliminaries

In this section, we present some material in the proof of our main result. We assume
(A1) µ1 : R+ −→]0,∞[ is a non-increasing function of class C1(R+) satisfying∣∣∣∣µ′

1(t)

µ2(t)

∣∣∣∣ ≤M1, ∀t ≥ 0, (2.1)

(A2) µ2 : R+ −→]0,∞[ is a non-increasing function of class C1(R+), which is not necessarily positive or monotone,
such that

|µ2(t)| ≤ βµ1(t), (2.2)

|µ′
2(t)| ≤M2µ1(t), (2.3)

for some 0 < β < 1 and M2 > 0

3 Global existence and energy decay

In this section, we prove the local existence and the uniqueness of the solution of system (1.1)-(1.3) by using the
semi-group theory. So let us introduce the following new variable [13]

y(x, ρ, t) = ut(x, t− τρ). (3.1)

Then, we get
τyt(x, ρ, t) + yρ(x, ρ, t) = 0, in Ω× ]0, 1[× ]0,+∞[ . (3.2)

Therefore, problem (1.1) is equivalent to
utt (x, t)− auxx (x, t) + µ1(t)ut(x, t) + µ2(t)y (x, 1, t) = 0, (x, t) ∈ Ω× ]0,+∞[ ,

vtt (x, t)− bvxx (x, t) = 0, (x, t) ∈ ]L1, L2[× ]0,+∞[ ,

τyt(x, ρ, t) + yρ(x, ρ, t) = 0, in Ω× ]0, 1[× ]0,+∞[ ,

(3.3)

which together with (1.3) can be rewritten as:{
U ′ = AU,

U(0) = (u0, u1, v0, v1, f0(.,−.τ))T,
(3.4)

where the operator A is defined by

A


u
φ
v
ψ
y

 =


φ

auxx − µ1(t)φ− µ2(t)y(., 1)
ψ
bvxx
− 1

τ yρ

 (3.5)

with the domain

D(A) =


(u, φ, v, ψ, y)T ∈ H; y(., 0) = φ on Ω

u (Li, t) = v (Li, t) , i = 1, 2

aux (Li, t) = bvx (Li, t) , i = 1, 2

 ,

where
H = H2(Ω) ∩H1(Ω)×H1(Ω)×H2 (]L1, L2[) ∩H1(]L1, L2[)×H1(]L1, L2[)× L2(0, 1, H1(Ω)).

Now the energy space is defined by

K = H1(Ω)× L2(Ω)×H1(]L1, L2[)× L2(]L1, L2[)× L2((Ω)× ]0, 1[).

Let
U = (u, φ, v, ψ, y)T, Ū = (ū, φ̄, v̄, ψ̄, ȳ)T.
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Let ξ be a non-increasing function of class C1(R+) such that

ζ(t) = ζµ1(t), (3.6)

where
τβ < ζ < τ(2− β). (3.7)

We define the inner product in K as follows:

(U, Ū)K =

∫
Ω

{φφ̄+ auxūx}dx+

∫ L2

L1

{ψψ̄ + bvxv̄x}dx+
ζ(t)

2

∫
Ω

∫ 1

0

y(x, ρ)ȳ(x, ρ)dρdx.

The existence and uniqueness result is stated as follows;

Theorem 3.1. Suppose that (A1) and (A2) hold, for any U0 ∈ K there exists a unique solution U ∈ C([0,+∞[,K) of
problem (3.4). Moreover, if U0 ∈ D(A), then

U ∈ C([0,+∞[, D(A)) ∩ C1([0,+∞[,K).

Proof . In order to prove the result stated in Theorem 3.1, we use the semigroup theory, that is, we show that
the operator A generates a C0-semigroup in K. In this step, we concern ourselves to prove that the operator A is
dissipative. Indeed, for U = (u, φ, v, ψ, y)T ∈ D(A), where φ(L2) = ψ(L2), using (3.6) and (3.7), we have

(AU,U)K = a

∫
Ω

uxxφdx+ b

∫ L2

L1

vxxψdx− µ1(t)

∫
Ω

φ2dx

− µ2(t)

∫
Ω

y(., 1)φdx− ζ(t)

τ

∫
Ω

∫ 1

0

y(x, ρ)yρ(x, ρ)dρdx

+ a

∫
Ω

uxφxdx+ b

∫ L2

L1

vxψxdx.

(3.8)

Looking now at the last term of the right-hand side of (3.8), we have

ζ(t)

∫
Ω

∫ 1

0

y(x, ρ)yρ(x, ρ)dρdx = ζ(t)

∫
Ω

1

2

∂

∂ρ
y2(x, ρ)dρdx

=
ζ(t)

2

∫
Ω

(y2(x, 1)− y2(x, 0))dx.

(3.9)

Performing an integration by parts in (3.8), keeping in mind the fact that y(x, 0, t) = φ(x, t) and using (3.9), we have
from (3.8)

(AU,U)K = a[uxφ]∂Ω + b[vxψ]
L2

L1

− µ1(t)

∫
Ω

φ2dx+
ζ(t)

2τ

∫
Ω

φ2dx− µ2(t)

∫
Ω

y(., 1)φdx− ζ(t)

2τ

∫
Ω

y2(x, 1)dx.
(3.10)

Using Young’s inequality, (1.2) and the equality φ(L2) = ψ(L2), we obtain from (3.10), that

(AU,U)K ≤ −µ1(t)

(
1− ζ

2τ
− β

2

)∫
Ω

φ2dx− µ1(t)

(
ζ

2τ
− β

2

)∫
Ω

y2(x, 1)dx. (3.11)

Consequently, using (3.7), then we deduce that (AU,U)K ≤ 0. Thus, the operator A is dissipative.

Now to show that the operator A is maximal monotone, it is sufficient to show that the operator λI−A is surjective
for a fixed λ > 0. Indeed, given (f1, f2, g1, g2, h)

T ∈ K, we seek U = (u, φ, v, ψ, y)T ∈ D(A) solution of
λu− φ

λφ− auxx + µ1(t)y(., 0) + µ2(t)y(., 1)
λv − ψ

λψ − bvxx
λy + 1

τ yρ

 =


f1
f2
g1
g2
h

 . (3.12)
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Suppose we have find (u, v) with the appropriate regularity, then

φ = λu− f1,

ψ = λv − g1.
(3.13)

It is clear that φ ∈ H1(Ω) and ψ ∈ H1(L1, L2), furthermore, by (3.12), we can find y as y(x, 0) = φ(x), x ∈ Ω , using
the approach as in Nicaise & Pignotti [13], we obtain, by using the equation in (3.12)

y(x, ρ) = φ(x)e−λρτ + τe−λρτ

∫ ρ

0

h(x, σ)eλστdσ.

From (3.13), we obtain

y(x, ρ) = λu(x)e−λρτ − f1(x)e
−λρτ + τe−λρτ

∫ ρ

0

h(x, σ)eλστdσ.

By using (3.12) and (3.13), the functions u, v satisfying the following equations:

λ2u− auxx + µ1(t)φ+ µ2(t)y(x, 1) = f2 + λf1,

λ2v − bvxx = g2 + λg1.
(3.14)

Since

y(x, 1) = φ(x)e−λτ + τe−λτ

∫ 1

0

h(x, σ)eλτdσ,

= λue−λτ + y0(x),

for x ∈ Ω, we have

y0(x) = −f1(x) + τe−λτ

∫ 1

0

h(x, σ)eλτdσ. (3.15)

The problem (3.14) can be reformulated as∫
Ω

(λ2u− auxx + µ1(t)λu+ µ2(t)λue
−λτ )ω1dx

=

∫
Ω

(f2 + λf1 − µ2(t)λy0(x))ω1dx, ∀ω1 ∈ H1(Ω).∫ L2

L1

(λ2v − bvxx)ω2dx

=

∫ L2

L1

(g2 + λg1)ω2dx, ∀ω2 ∈ H1(]L1, L2[).

(3.16)

Integrating the first equation in (3.16) by parts, we obtain∫
Ω

(λ2u− auxx + µ1(t)u+ µ2(t)λue
−λτ )ω1dx

=

∫
Ω

λ2uω1dx− a

∫
Ω

uxxω1dx+ µ1(t)

∫
Ω

λudx+ µ2(t)

∫
Ω

λue−λτω1dx

=

∫
Ω

λ2uω1dx+ a

∫
Ω

ux(ω1)xdx− [auxω1]∂Ω + µ1(t)

∫
Ω

λudx+ µ2(t)

∫
Ω

λue−λτω1dx

=

∫
Ω

(λ2 + µ1(t)λ+ µ2(t)λe
−λτ )uω1dx+ a

∫
Ω

ux(ω1)xdx− [auxω1]∂Ω.

(3.17)

Integrating the second equation in (3.16) by parts, we obtain∫ L2

L1

(λ2v − bvxx)ω2dx =

∫ L2

L1

λ2v ω2dx+ b

∫ L2

L1

vx(ω2)xdx− [bvxω2]
L2

L1
. (3.18)
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Using (3.17) and (3.18), the problem (3.16) is equivalent to the problem

Φ((u, v), (ω1, ω2)) = l(ω1, ω2), (3.19)

where the bilinear form Φ : (H1(Ω))2 × (H1(]L1, L2[)
2) → R and the linear form l : H1(Ω) × H1(]L1, L2[) → R are

defined by

Φ((u, v), (ω1, ω2)) =

∫
Ω

(λ2 + µ1(t)λ+ µ2(t)λe
−λτ )uω1dx+ a

∫
Ω

ux(ω1)xdx− [auxω1]∂Ω

+

∫ L2

L1

λ2v ω2dx+ b

∫ L2

L1

vx(ω2)xdx− [bvxω2]
L2

L1
,

and

l(ω1, ω2) =

∫
Ω

(f2 + λf1 − µ2(t)λy0(x))ω1dx +

∫ L2

L1

(g2 + λg1)ω2dx.

It is clear that Φ is continuous and coercive, and l is continuous. So applying the Lax-Milgram theorem, we deduce
that for all (ω1, ω2) ∈ H1(Ω)×H1(]L1, L2[), problem (3.19) admits a unique solution (u, v) ∈ H1(Ω)× (H1(]L1, L2[).
It follows from (3.17) and (3.18) that (u, v) ∈ (H2(Ω)∩H1(Ω)×H2(]L1, L2[)∩H1(]L1, L2[)). Therefore, the operator
(λI −A) is dissipative for any λ > 0. Then the result in Theorem 3.1 follows from the Hille-Yoshida theorem. □

4 Exponential decay of the solution

In this section we investigate the asymptotic of the system (1.1)-(1.3). For any regular solution of (1.1)-(1.3), we
define the energy as:

E1(t) =
1

2

∫
Ω

u2t (x, t)dx+
a

2

∫
Ω

u2x(x, t)dx, (4.1)

and

E2(t) =
1

2

∫ L2

L1

v2t (x, t)dx+
b

2

∫ L2

L1

v2x(x, t)dx. (4.2)

The total energy is defined as:

E(t) = E1(t) + E2(t) +
ζ(t)

2

∫
Ω

∫ 1

0

y2(x, ρ, t)dρdx, (4.3)

where ζ defined in (3.6).

Our decay result reads as follows:

Theorem 4.1. Let (u, v) be the solution of (1.1)-(1.3). Assume that (2.1)-(2.3) and

a

b
<
L3 + L1 − L2

2(L2 − L1)
(4.4)

hold. Then there exist two positive constants C and d such that

E(t) ≤ Ce−dt, ∀t ≥ 0. (4.5)

The proof of Theorem 4.1 will be done through some lemmas:

Lemma 4.2. Let (u, v, y) be the solution of (3.3), (1.3). Then the energy functional defined by (4.3) satisfies

dE(t)

dt
≤ −µ1(t)

(
1− ζ

2τ
− β

2

)∫
Ω

y2(x, 0, t)dx− µ1(t)

(
ζ

2τ
− β

2

)∫
Ω

y2(x, 1, t)dx. (4.6)
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Proof . We have from (4.3) that

dE1(t)

dt
=

∫
Ω

utt(x, t)ut(x, t)dx+ a

∫
Ω

uxt(x, t)ux(x, t)dx. (4.7)

Using system (3.3), and integrating by parts, we obtain

dE1(t)

dt
= a[uxut]∂Ω − µ1(t)

∫
Ω

u2t (x, t)− µ2(t)

∫
Ω

ut(x, t)y (x, 1, t))dx. (4.8)

On the other hand, we have
dE2(t)

dt
= b[vxvt]

L2

L1
. (4.9)

Using the fact that

d

dt

ζ(t)

2

∫
Ω

∫ 1

0

y2(x, ρ, t)dρdx = ζ(t)

∫
Ω

∫ 1

0

y(x, ρ, t)yt(x, ρ, t)dρdx

+
ζ ′(t)

2

∫
Ω

∫ 1

0

y2(x, ρ, t)dρdx,

= −ζ(t)
τ

∫
Ω

∫ 1

0

yρ(x, ρ, t)y(x, ρ, t)dρdx

+
ζ ′(t)

2

∫
Ω

∫ 1

0

y2(x, ρ, t)dρdx

= −ζ(t)
2τ

∫
Ω

∫ 1

0

d

dρ
y2(x, ρ, t)dρdx

+
ζ ′(t)

2

∫
Ω

∫ 1

0

y2(x, ρ, t)dρdx

= −ζ(t)
2τ

∫
Ω

(y2(x, 1, t)− y2(x, 0, t))dx

+
ζ ′(t)

2

∫
Ω

∫ 1

0

y2(x, ρ, t)dρdx.

(4.10)

From (4.8), (4.9), (4.10) and using the conditions (1.2), we know that

E′(t) =
ζ(t)

2τ

∫
Ω

y2(x, 0, t)dx− ζ(t)

2τ

∫
Ω

y2(x, 1, t)dx+
ζ ′(t)

2

∫
Ω

∫ 1

0

y2(x, ρ, t)dρdx

− µ1(t)

∫
Ω

u2t (x, t)− µ2(t)

∫
Ω

ut(x, t)y (x, 1, t))dx,

(4.11)

Due to the Young’s inequality, we have

µ2(t)

∫
Ω

ut(x, t)y (x, 1, t))dx ≤ |µ2(t)|
2

∫
Ω

u2t (x, t)dx+
|µ2(t)|

2

∫
Ω

y2(x, 1, t)dx. (4.12)

□ Inserting (4.12) in (4.11), we obtain

E′(t) ≤
(
−µ1(t)−

ζ(t)

2τ
− |µ2(t)|

2

)∫
Ω

u2t (x, t)dx

−
(
ζ(t)

2τ
− |µ2(t)|

2

)∫
Ω

y2(x, 1, t)dx

+
ζ ′(t)

2

∫
Ω

∫ 1

0

y2(x, ρ, t)dρdx

≤ −µ1(t)

(
1− ζ

2τ
− β

2

)∫
Ω

u2t (x, t)dx

− µ1(t)

(
ζ

2τ
− β

2

)
≤ 0.

(4.13)
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Hence, the proof is complete.
Following [1], we define the functional

I(t) =

∫
Ω

∫ t

t−τ

es−tu2t (x, s)dsdx,

and we have the following lemma.

Lemma 4.3. Let (u, v) be the solution of (1.1)-(1.3). Then we have

dI(t)

dt
≤
∫
Ω

u2t (x, t)dx− e−τ

∫
Ω

u2t (x, t− τ)dx− e−τ

∫
Ω

∫ t

t−τ

u2t (x, s)dsdx. (4.14)

The proof of Lemma 4.3 is straightforward, we omit the details.

Now, we define the functional D(t) as follows:

D(t) =

∫
Ω

uutdx+

∫ L2

L1

vvtdx. (4.15)

Thus, we have the following estimate.

Lemma 4.4. For any ε1 > 0 and Cp is the Poincaré’s constant, the functional D(t) satisfies the following estimate:

d

dt
D(t) ≤

(
1 +

1

2ε1

)∫
Ω

u2tdx−
(
a− µ2

1(0)Cpε1
) ∫

Ω

u2xdx− b

∫ L2

L1

v2xdx

+

∫ L2

L1

v2t dx+
β2

2ε1

∫
Ω

y2(x, 1, t)dx.

(4.16)

Proof . Taking the derivative of D(t) with respect to t, we find

d

dt
D(t) =

∫
Ω

u2tdx− a

∫
Ω

u2xdx− µ1(t)

∫
Ω

uutdx+

∫ L2

L1

v2t dx− b

∫ L2

L1

v2xdx

− µ2(t)

∫
Ω

u(x, t)y(x, 1, t)dx+ [auxu]∂Ω + [bvxv]
L2

L1
.

(4.17)

From hypothesis (A1) and (A2), we have

d

dt
D(t) ≤

∫
Ω

u2tdx− a

∫
Ω

u2xdx+ µ1(0)

∣∣∣∣∫
Ω

uutdx

∣∣∣∣+ βµ1(0)

∣∣∣∣∫
Ω

u(x, t)y(x, 1, t)dx

∣∣∣∣
+

∫ L2

L1

v2t dx− b

∫ L2

L1

v2xdx+ [auxu]∂Ω + [bvxv]
L2

L1
.

(4.18)

Using the boundary conditions (1.2), we have

[auxu]∂Ω + [bvxv]
L2

L1
= aux(L1, t)u(L1, t)− aux(L2, t)u(L2, t)

+ bvx(L2, t)v(L2, t)− bvx(L1, t)v(L1, t) = 0.

Now, by Young’s inequality and Poincaré’s inequality we conclude the lemma. □

Now, inspired by [10], we introduce the functional

q (x) =



x− L1

2
, x ∈ [0, L1] ,

x− L2 + L3

2
, x ∈ [L2, L3] ,

L2 − L3 − L1

2 (L2 − L1)
(x− L1) +

L1

2
, x ∈ [L1, L2] .

(4.19)
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It is easy to see that q(x) is bounded, i.e., |q(x)| ≤M , where

M = max

{
L1

2
,
L3 − L2

2

}
.

Next, we define the following functionals

F1(t) = −
∫
Ω

q(x)uxutdx,

and

F2(t) = −
∫ L2

L1

q(x)vxvtdx.

Then, we have the following estimates:

Lemma 4.5. For any ε2 > 0, we have the estimates:

d

dt
F1(t) ≤

(
1

2
+

1

2ε2

)∫
Ω

u2tdx+
(a
2
+M2µ1(0)

2ε2

)∫
Ω

u2xdx+
β2

2ε2

∫
Ω

y2 (x, 1, t) dx

− a

4

[
(L3 − L2)u

2
x(L2, t) + L1u

2
x(L1, t)

]
− 1

4

[
(L3 − L2)u

2
t (L2, t) + L1u

2
t (L1, t)

]
,

(4.20)

and

d

dt
F2(t) ≤

L2 − L3 − L1

4 (L2 − L1)

(∫ L2

L1

v2t dx+

∫ L2

L1

bv2xdx

)

+
b

4

(
(L3 − L2)v

2
x(L2, t) + L1v

2
x(L1, t)

)
+

1

4

(
(L3 − L2)v

2
t (L2, t) + L1v

2
t (L1, t)

)
.

(4.21)

Proof . Taking the derivative of F1(t) with respect to t and using equation (3.3), we get

d

dt
F1(t) = −

∫
Ω

q(x)utxutdx−
∫
Ω

q(x)uxuttdx,

= −
∫
Ω

q(x)utxutdx

−
∫
Ω

q(x)ux (auxx (x, t)− µ1(t)ut(x, t)− µ2(t)y (x, 1, t)) dx,

= −
∫
Ω

q(x)utxutdx− a

∫
Ω

q(x)uxuxx(x, t)dx

+ µ1(t)

∫
Ω

ut(x, tdx+ µ2

∫
Ω

y(x, 1, t)dx.

Using integration by parts, we find∫
Ω

q(x)utxutdx = −1

2

∫
Ω

q′(x)u2tdx+
1

2

[
q(x)u2t

]
∂Ω
. (4.22)

On the other hand, we have ∫
Ω

aq(x)uxxuxdx = −1

2

∫
Ω

aq′(x)u2xdx+
1

2

[
aq(x)u2x

]
∂Ω
. (4.23)

Inserting (4.22) and (4.23) into (4.22), we find

d

dt
F1(t) =

1

2

∫
Ω

q′(x)u2tdx+
1

2

∫
Ω

aq′(x)u2xdx− 1

2

[
q(x)u2t

]
∂Ω

− 1

2

[
aq(x)u2x

]
∂Ω

+

∫
Ω

q(x)ux (µ1(t)ut(x, t) + µ2(t)y (x, 1, t)) dx.

(4.24)
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By (A1) and (A2), we have

d

dt
F1(t) ≤

1

2

∫
Ω

q′(x)u2tdx+
1

2

∫
Ω

aq′(x)u2xdx− 1

2

[
q(x)u2t

]
∂Ω

− 1

2

[
aq(x)u2x

]
∂Ω

+ µ1(0)

∣∣∣∣∫
Ω

q(x)uxut(x, t)dx

∣∣∣∣+ βµ1(0)

∣∣∣∣∫
Ω

q(x)uxy(x, 1, t)dx

∣∣∣∣ ,
≤ 1

2

∫
Ω

u2tdx+
1

2

∫
Ω

au2xdx− 1

2

[
q(x)u2t

]
∂Ω

− 1

2

[
aq(x)u2x

]
∂Ω

+ µ1(0)M

∣∣∣∣∫
Ω

uxut(x, t)dx

∣∣∣∣+ βµ1(0)M

∣∣∣∣∫
Ω

uxy(x, 1, t)dx

∣∣∣∣ .
(4.25)

By using the boundary conditions, we have

1

2

[
q(x)u2t

]
∂Ω

=
1

4

[
(L3 − L2)u

2
t (L2, t) + L1u

2
t (L1, t)

]
,

−a
2

[
q(x)u2t

]
∂Ω

≤ a

4

[
(L3 − L2)u

2
x(L2, t) + L1u

2
x(L1, t)

]
.

Inserting the above two equalities into (4.25) and by Young’s inequality we obtain (4.20).

By the same method, taking the derivative of F2(t) with respect to t, we get

d

dt
F2(t) = −

∫ L2

L1

q(x)vtxvtdx−
∫ L2

L1

q(x)vxvtt,

=
1

2

∫ L2

L1

q′(x)v2t dx− 1

2

[
q(x)v2t

]L2

L1
+

1

2

∫ L2

L1

bq′(x)v2xdx− b

2

[
q(x)v2x

]L2

L1
,

≤ L2 − L3 − L1

4 (L2 − L1)

(∫ L2

L1

v2t dx+

∫ L2

L1

bv2xdx

)

+
b

4

(
(L3 − L2)v

2
x(L2, t) + L1v

2
x(L1, t)

)
+

1

4

(
(L3 − L2)v

2
t (L2, t) + L1v

2
t (L1, t)

)
.

which is exactly (4.21). □

Proof .[Proof Theorem 4.1] We define the Lyapunov functional L(t) as follows

L(t) = NE(t) + I(t) + γ2D(t) + γ3F1(t) + γ4F2(t), (4.26)

where N, γ2, γ3 and γ4 are positive constants that will be fixed later. By the Lemma 4.2, there exists a positive
constant K such that

E′(t) ≤ −K
[∫

Ω

u2tdx+

∫
Ω

y2(x, 1, t)dx

]
. (4.27)

Now, it is clear from the boundary conditions (1.2), that

a2u2x(Li, t) = b2v2x(Li, t), i = 1, 2. (4.28)

Taking the derivative of (4.26) with respect to t and making use of (4.6), (4.14), (4.16), (4.20),(4.21) and taking
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into account (4.28), we obtain

d

dt
L(t) ≤ −

{
KN −

(
1 +

1

2ε1

)
γ2 −

(
1

2
+

1

2ε2

)
γ3 + 1)

}∫
Ω

u2tdx

−
(
(KN − β2

2ε1
γ2 −

β2

2ε2
γ3 + e−τ

)∫
Ω

y2(x, 1, t)dx

−
[(
a− µ2

1(0)Cpε1
)
γ2 −

(a
2
+M2µ2

1(0)ε2

)
γ3

] ∫
Ω

u2xdx

−
[
γ2b− b

L2 − L3 − L1

4(L2 − L1)
γ4

] ∫ L2

L1

v2xdx

+

{
L2 − L3 − L1

4(L2 − L1)
γ4 + γ2

}∫ L2

L1

v2t dx− e−τ

∫
Ω

∫ t

t−τ

u2t (x, s)dsdx

−
(
γ3 −

a

b
γ4

) a(L3 − L2)

4
u2x(L2, t)−

(
γ3 −

a

b
γ4

) aL1

4
u2x(L1, t)

− (γ3 − γ4)
L1

4
u2t (L1, t))− (γ3 − γ4)

L3 − L2

4
u2t (L2, t)).

At this point, we choose our constants in (4.29), carefully, such that all the coefficients in (4.29) will be negative.
Indeed, under the assumption (4.4), we can always find γ2, γ3 and γ4 such that

L2 − L3 − L1

4(L2 − L1)
γ4 + γ2 < 0, γ3 >

a

b
γ4, γ2 >

γ3
2
. (4.29)

Once the above constants are fixed, we may choose ε1 and ε2 small enough such that

µ2
1(0)Cpε1γ2 +Mµ2

1(0)ε2γ3 < a(γ2 − γ3/2).

Finally, keeping in mind (3.6) and choosing N large enough such that the first and the second coefficients in (4.29)
are negatives.

Consequently, from above, we deduce that there exist a positive constant η1, such that (4.29) becomes

dL(t)
dt

≤ −η1
∫
Ω

(u2t (x, t) + u2x(x, t) + u2t (x, t− τ))dx

− η1

∫ L2

L1

(v2t (x, t) + v2x(x, t))dx− η1

∫
Ω

∫ t

t−τ

u2t (x, s)dsdx, ∀t ≥ 0.

Consequently, recalling (4.3), then, we deduce that there exist also η2 > 0, such that

dL(t)
dt

≤ −η2E(t), ∀t ≥ 0. (4.30)

On the other hand, it is not hard to see that from (4.26) and for N large enough, there exist two positive constants
β1 and β2 such that

β1 E(t) ≤ L(t) ≤ β2E(t), ∀t ≥ 0. (4.31)

Combining (4.30) and (4.30), we deduce that there exists Λ > 0 for which the estimate

dL(t)
dt

≤ −ΛL(t), ∀t ≥ 0, (4.32)

holds. Integrating (4.30) over (0, t) and using (4.30) once again, then (4.5) holds. Then, the proof of the Theorem 4.1
is completed. □
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