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Abstract

In this paper, parallel to the ideas based on Ahmadullah et al. [4, 5, 6], and Eke et al. [18], we prove the existence and
uniqueness of the common fixed point for a pair of self-mappings employing (E. A.)-property in metric-like spaces for
implicit contractive mappings related to binary relation. Henceforth, results obtained will be verified with the help
of illustrative examples. As an application of the results, we solve two boundary value problems of the second-order
differential equation.
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1 Introduction

In 1906, Fréchet [19] introduced the study of metric fixed point theory in abstract spaces. In 1922, Banach [13]
introduced a contraction principle in metric space that became a source for applying fixed point theory in pure and
applied mathematics. Since then, several researchers are studying the existence and uniqueness of common fixed point
for a pair of contractive mappings. We refer the reader to [24, 35, 37] and the references cited therein.

In 2002, Aamri and El-moutawakil [1] introduced the (E.A.)-property for a pair of self-mappings defined on metric
spaces. It contains the class of compatible and non-compatible mappings in metric spaces and utilized the same to
prove common fixed point theorems under strict contractive condition. For more information, we refer to readers
[26, 27] and references there in.

In 2015, Alam and Imdad [8] gave a generalization of the Banach contraction principle in a complete metric
space equipped with binary relation. Their results show that the contraction condition holds only for those elements
linked with the binary relation, not for every pair of elements. For more results on binary relation, one can see
[4, 5, 6, 18, 28, 34] and the references therein.

In 1999, Popa [33] gave the concept of implicit function in metric space which includes most of the well-known
contractions of the existing literature besides several new ones. He proved some fixed point theorem for compatible

∗Santosh Kumar
Email addresses: wangwelucas@gmail.com (Lucas Wangwe), drsengar2002@gmail.com (Santosh Kumar)

Received: May 2021 Accepted: June 2021

http://dx.doi.org/10.22075/ijnaa.2021.23494.2548


2326 Lucas Wangwe, Santosh Kumar

mappings satisfying an implicit relation in metric spaces. These notion is still trending among the research community,
and for more details, we refer to the readers [9, 15, 16, 22, 24, 23] and the references cited therein.

In 1994, Matthew [29] gave a generalization of Banach contraction principle to partial metric space using non-zero
self distance notion (one can see in [31, 32, 36]). Further, Amini-Harandi [10] extended partial metric space notion
to metric-like spaces by introducing some of its properties. One may consult in [12, 14, 17, 21], and the references
therein.

In 2016, Ahmadullah et al. [4] proved a fixed point theorem for self mappings in metric-like spaces concerning
binary relation. In 2019, Eke et al. [18] proved a common fixed point theorem for a pair of weakly compatible mappings
under implicit contractive properties in metric spaces endowed with binary relation.

2 Preliminaries

We introduce some definitions, theorems and preliminary results, which will be helpful in developing the main
result.

Definition 2.1. [29] A partial metric space is a pair (X, p) consisting of a non-empty set X together with a function
p : X ×X → R+, called the partial metric, such that for all x, y, z ∈ X we have the following properties:

(P1) p(x, y) = p(x, x) = p(y, y) if and only if x = y;

(P2) p(x, x) ≤ p(x, y);

(P3) p(x, y) ≤ p(y, x); and

(P4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

Then p is called a partial metric on X, and the pair (X, p) is called a partial metric space.

In partial metric space, it is not necessary that p(x, x) = 0, for every x = y, while in metric if x = y, then p(x, x) = 0.
The following are fundamental properties of partial metric spaces.

Definition 2.2. [29] Let (X, p) be a partial metric space, then:

(i) a sequence {xn} in a partial metric space (X, p) converges to a point x ∈ X if lim
n→∞

p(xn, x) = p(x, x).

(ii) a sequence {xn} of elements of X is called p-Cauchy if the lim
n,m→∞

p(xn, xm) exists and is finite.

(iii) a partial metric space (X, p) is said to be p-complete if every p- Cauchy sequence {xn} in X is p- convergent,
with respect to τp, to a point x ∈ X such that

lim
n,m→∞

p(xn, xm) = p(x, x).

An immediate example of partial metric space is the pair (R+, p), where p(x, y) = max{x, y} for all x, y ∈ R+.

In 2012, Ami-Harandi [10] gave a generalization of partial metric spaces to metric-like spaces by introducing the
following properties:

Definition 2.3. [10] A metric-like space is a pair (X,σ) consisting of a non-empty set X together with a function
σ : X ×X → R+, called the partial metric, such that for all x, y, z ∈ X, we have the following condition holds:

(σ1) σ(x, y) = 0 =⇒ x = y;

(σ2) σ(x, y) = σ(y, x); and

(σ3) σ(x, y) ≤ σ(x, y) + σ(y, z).

Then σ is called a metric-like on X, so a pair (X,σ) is called a metric-like space.
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The metric-like on X satisfies all of the conditions of metric except that σ(x, x) may be positive for x ∈ X. Following
are some characteristic of metric-like spaces:

Definition 2.4. [10] Let (X,σ) be a metric-like space.

(i) Each metric-like σ on X generates a topology τσ on X whose base is the family of open σ-balls

Bσ(x, ϵ) = {y ∈ X : |σ(x, y)− σ(x, x)| < ϵ},∀x ∈ X and ϵ > 0.

(ii) A sequence {xn} in metric-like space X,σ converges to a point x ∈ X if and only if

lim
n,m→∞

σ(xn, x) = σ(x, x).

(iii) The sequence {xn}∞n=0 is said to be σ-Cauchy if the limit

lim
n,m→∞

σ(xn, xm)

exists and is finite.

(iv) The space (X,σ) is called complete if for every σ-Cauchy sequence in {xn}∞n=0, there exists some x ∈ X such
that

lim
n→∞

σ(xn, x) = σ(x, x) = lim
n→∞

σ(xn, xm).

(v) A sequence {xn} in (X,σ) is said to be 0− σ-Cauchy sequence if lim
n→∞

σ(xn, xm) = 0. The space (X,σ) is said to

be 0−σ- complete if every 0−σ- Cauchy sequence in X converges in (τσ) to a point x ∈ X such that σ(x, x) = 0.

(vi) A mapping T : X −→ X is continuous if the following limits exists (finite) and

lim
n→∞

σ(xn, x) = σ(Txn, Tx).

Remark 2.5. [10] It is easy to see that a metric space is a partial metric space, and each partial metric space is a
metric-like space, but the converse is not true.

Remark 2.6. [10] Every partial metric space is a metric-like space, and this can be illustrated by the use of the
following example:

Example 2.7. [10] Let X = {0, 1} and σ : X ×X −→ R+ be defined by

σ(x, y) =

{
2, if x = y = 0,
1, otherwise.

Then (X,σ) is a metric-like space, but is not a partial metric space since σ(0, 0) ̸= σ(0, 1), then (X,σ).

Now, we introduce some definitions related to a common fixed point in metric-like space.

Definition 2.8. [24] Let S, T be self-mappings of a non empty set X. A point x ∈ X is coincidence point of S and
T if x∗ = Sx = Tx. The set of coincidence point of S and T is denoted by C(S, T ).

Motivated from Jungck [25] and Sessa [35], we can have the following definitions:

Definition 2.9. Let (S, T ) be a pair of self mappings on a metric-like space (X,σ). Then a point x∗ ∈ X is called
coincidence point of the pair (S, T ) if Tx = Sx = x∗. If x∗ = x then, x is said to be a common fixed point.

Definition 2.10. Let (S, T ) be a pair of self mappings on a metric-like space (X,σ). Then the pair (S, T ) is said to
be:
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(i) Commuting if, for all x ∈ X, S(Tx) = T (Sx),

(ii) Weakly commuting if, for all σ(S(Tx), T (Sx)) ≤ σ(Sx, Tx),

(iii) Compatible if lim
n→∞

σ(STx2n, TSx2n) = 0, whenever x2n is a sequence in X such that lim
n→∞

Tx2n = lim
n→∞

Sx2n =

x∗,

(iv) Weakly compatible if, for all S(Tx) = T (Sx), for every coincidence point x ∈ X.

Motivated from Aamri and Moutawakil [1], we can have the following definition:

Definition 2.11. A pair of self-mappings (T, S) of a metric-like space (X,σ) is said to satisfy the property (E.A) if
there exist at least one sequence {xn} in X such that

lim
n→∞

Tx2n = lim
n→∞

Sx2n = x∗,

for some x∗ ∈ X.

Remark 2.12. It is known that two pairs of self-mappings S and T of metric-like spaces (X,σ), will be non compatible
if there exist a sequence {x2n} in X such that

lim
n→∞

Tx2n = lim
n→∞

Sx2n = x∗,

but

lim
n→∞

σ(STx2n, TSx2n)

is non zero or not exists.

2.1 Implicit relation and related concept

In 1999, Popa [33] initiated the idea of an implicit relation to cover several well-known contractions conditions of
the existing literature in one go besides admitting several new ones. Imdad et. al. [23] modified results due to Popa
[33] by removing the assumption of continuity, relaxing the ’compatibility’ to ’coincidentally commuting property’ and
replacing the completeness of the space with a set of four alternative conditions.

Ahmadullah et al. [4], later proved the results for unified relation-theoretic metrical fixed point theorems of
mappings satisfying implicit contractive conditions.

They considered the family F of all continuous real functions F : R6
+ −→ R+ and the following conditions:

(F1) F is non-increasing in the fifth variable; and F (u, v, v, u, u + v, 0) ≤ 0 for u, v ≥ 0 implies that there exist
λ ∈ [0, 1) such that u ≤ λv;

(F2) F (u, 0, u, 0, 0, u) > 0, for all u > 0;

(F3) F is non-increasing in the sixth variable and F (u, u, 0, 0, u, u) ≤ 0 for all u > 0.

In that way, Ahmadullah et al. used this to unify and extend various findings in the literature.

We give some examples of functions which satisfies the above implicit relation conditions.

Example 2.1 The function of F ∈ F satisfies the properties (F1) - (F3) (see, [4] ).

(1) F (u1, u2, u3, u4, u5, u6) = u1 − ku2, where k ∈ [0, 1);

(2) F (u1, u2, u3, u4, u5, u6) = u1 − k {u3 + u4}, where k ∈ [0, 12 );

(3) F (u1, u2, u3, u4, u5, u6) = u1 − k {u5 + u6}, where k ∈ [0, 12 );

(4) F (u1, u2, u3, u4, u5, u6) = u1 − a1u2 − a2(u3 + u4)− a3(u5 + u6), where a1, a2, a3 ∈ [0, 1) and a1 + 2a2 + 2a3 < 1;
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(5) F (u1, u2, u3, u4, u5, u6) = u1 − ku2 − Lmin {u3, u4, u5, u6, u6}, where k ∈ [0, 1) and L ≥ 0;

(6) F (u1, u2, u3, u4, u5, u6) = u1−(a1u2+a2u3+a3u4+a4(u5+u6)), where a1, a2, a3, a4 ≥ 0 and a1+a2+a3+a4 < 1;

(7) F (u1, u2, u3, u4, u5, u6) = u1 − kmax

{
u2, u3, u4,

u5 + u6
2

}
− Lmin {u3, u4, u5, u6} , where k ∈ [0, 1) and L ≥ 0;

(8) F (u1, u2, u3, u4, u5, u6) = u1 − kmax {u2, u3, u4, u5, u6} where k ∈ [0, 12 );

(9) F (u1, u2, u3, u4, u5, u6) = u1 − (a1u2 + a2u3 + a3u4 + a4u5 + a5u6)), where a
′s
i ,≥ 0 (for i = 1, 2, 3, 4, 5) and∑5

i=1 ai < 1;

(10) F (u1, u2, u3, u4, u5, u6) = u1 − kmax
{
u2, u3, u4,

u5

2 ,
u6

2

}
, where k ∈ [0, 1);

(11) F (u1, u2, u3, u4, u5, u6) = u1 − kmax {u2, u3, u4} − (1− k)(au5 + bu6), where k ∈ [0, 1) and 0 ≦ a, b < 1
2 .

(12) F (u1, u2, u3, u4, u5, u6) = u21 − u1(a1u2 + a2u3 + a3u4)− a4u5u6), where a1 > 0; a2, a3, a4 ≥ 0; a1 + a2 + a3 < 1
and a1 + a4 < 1;

(13) F (u1, u2, u3, u4, u5, u6) = u21 − a1 max{u22, u23, u24}− a2 max{u3u5, u4u6}− a3u5u6, where a
′s
i ,≥ 0 (for i = 1, 2, 3);

a1 + 2a2 < 1 and a1 + a4 < 1;

(14) F (u1, u2, u3, u4, u5, u6) = u31 − k{u32 + u33 + u34 + u35 + u36}, where k ∈ [0, 1
11 ).

2.2 Relation-theoretic in metric-like spaces

In this part, we recall some definition in relation theoretic notion in metric-like space related to binary relation.
We define N0 = {{0} ∪ N}, where N is a set of natural numbers in X.

Definition 2.13. [8] Let R be a binary relation defined on a non-empty set X. Then any pair of the point x, y ∈
X is said to be R-comparative if either (x, y) ∈ R or (y, x) ∈ R, which is together written as [x, y] ∈ R.

Definition 2.14. [8] Let R be a binary relation defined on a non-empty set X. Then a sequence (xn) ∈ X is called
R-preserving if (xn, xn+1) ∈ R, ∀n∈ N0.

Definition 2.15. [7] Let T and S be two self-mappings defined on a non-empty set X. Then a binary relation R
defined on X is called (T, S)- closed if (Sx, Sy) ∈ R ⇒ (Tx, Ty) ∈ R, ∀ x, y ∈ X.

Proposition 2.16. [7] Let X be non-empty set, R a binary relation on Xand T, S two self mappings on X. If R is
(T, S)-closed, then Rs is (T, S)-closed.

Next, we present some relevant relation-theoretic notions in metric-like spaces

Definition 2.17. [4] Let (X,σ) be a metric-like space and R a binary relation on X. We say that (X,σ)-is R-
complete if every R-preserving Cauchy sequence {xn} in X, there is some x ∈ X such that

lim
n,m→∞

σ(xn, xm) = σ(x, x) = lim
n→∞

σ(xn, x).

Recall that the limit of convergent sequence in metric-like spaces is not necessary unique.

Definition 2.18. [4] Let (X,σ) be a metric-like space. The a mapping f : X → X is said to be continuous-like at

x if fxn
τσ−→ fx for any sequence {xn} with xn

τσ−→ x. As usual, f is said to be continuous-like if it is continuous-like
in the whole space X.

Definition 2.19. [4] Let (X,σ) be a metric-like space and R a binary relation on X. Then a mapping f : X → X

is said to be R-continuous-like at x if fxn
τσ−→ fx for any R-preserving sequence {xn} with xn

τσ−→ x. As usual, f is
said to be R-continuous-like if it is R- continuous-like in the whole space X.
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Definition 2.20. [8] Let (X,σ) be a metric-like space and R-binary relation on X. Then R is said to be σ-self closed

if for any R-preserving sequence {xn} with xn
τσ−→ x, there is a subsequence {xnk

} of {xn} such that [xnk
, x] ∈ R, for

all k ∈ N.

Definition 2.21. [34] Let (X,σ) be a metric-like space and R-binary relation on X. Then a subset D of X is said
to be R-directed if for every pair of point x, y ∈ D, there is z in X such that (x, z) ∈ R and (y, z) ∈ R.

Definition 2.22. [28] Let (X, d) be a metric-like space, R a binary relation defined on X and x, y a pair of points
in X. Then a finite sequence {z0, z1, z2, ..., zl} ∈ X is said to be a path of length l(where l ∈ N) joining x to y in R
if z0 = x, zl = y and [zi, zi+1] ∈ R for each i ∈ {1, 2, 3, ...l − 1}.

Observe that, a path of length l involves (l + 1) elements of X that need not be distinct in general. Given a
metric-like space (X,σ), a self-mapping T on X and a binary relation R on X, we employ the following notations:

(i) F (f): the set of all fixed points of f ;

(ii) X(f,R): the collection of all points x ∈ X such that (x, Tx) ∈ R;

(iii) γ(x, y,R): the family of all paths joining x to y in R.

Ahmadullah et al. [6] proved the results in metric-like space as well as partial metric spaces equipped with an arbitrary
relation as follows:

Theorem 2.23. [6] Let (X,σ, ) be a metric-like spaces equipped with a binary relation R defined on X and f a
self-mapping on X. Suppose that the following conditions are satisfied:

(a) there exists a subset Y ⊆ X with fX ⊆ Y such that (Y, σ) is R-complete,

(b) there exists x0 such that (x0, fx0) ∈ R,

(c) R is f -closed,

(d) either f is R-continuous-like or R|Y is σ-self-closed,

(e) there exists a constant k ∈ [0, 1) such that (∀x, y ∈ X with x, y ∈ R)

σ(fx, fy) ≤ kσ(x, y). (2.1)

Then f has a fixed point. Moreover, if

(f) Υ(fx, fy,Rs) is non-empty, for each x, y ∈ X. Then f has a unique fixed point.

This paper aims to prove the results of common fixed point theorems for a pair of self-mappings satisfying (E. A.)-
property under metric binary relation via implicit contractive condition in metric -like spaces by extending Theorem
2.23 proved in [6].

3 Main Results

In this section, we prove the following theorem which is a generalization and improvement of Theorem 2.23.

Theorem 3.1. Let (X,σ) be a metric-like spaces equipped with a binary relation R defined on X. Let T and S be
a pair of self-mapping on X. Assume that the following conditions hold:

(a) there exists TX ⊆ SX such that (X,σ) is R- complete,

(b) there exists x0 such that (Sx0, Tx0) ∈ R,

(c) X(T, S,R) is non-empty and satisfying (E. A.) property,

(d) either (T, S) is R-continuous-like or R is σ-self-closed and weakly compatible,
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(e) there exists an implicit function F ∈ F such that

F (σ(Tx, Ty), σ(Sx, Sy), σ(Sx, Tx), σ(Sy, Ty), σ(Sx, Ty), σ(Sy, Tx)) ≤ 0. (3.1)

∀x, y ∈ X such that x, y ∈ R. Then T and S has a common fixed point. Moreover, if

(f) ΥT,S (Tx, Sx,Rs) is non-empty, for each x, y ∈ X, wherein F satisfies (F3). Then T and S has a unique common
fixed point.

Proof .Assume that TX ⊆ SX and (X,σ) is R-complete, for x0 with (Sx0, Tx0) ∈ R. We can construct a T -S-
sequence {Txn} with initial point x0 satisfying

(Sx0, Tx0), (Sx1, Tx1), (Sx2, Tx2), (Sx3, Tx3) . . . (Sx2n, Txn), (Sx2n+1, Txn+1),

∀n ∈ N0, such that, {Tx2n}, {Sx2n} ∈ T (X).

From assumption (c), let x0 be an arbitrary element of X(T, S,R), then (Sx0, Tx0) ∈ R. If Sx0 = Tx0, then x0 is
a common fixed point of T and S and proof is completed. Otherwise, if Tx0 ̸= Sx0, then SX ⊂ TX. Now, we choose
x1 ∈ X such that Sx1 = Tx0. Again, we can choose x2 ∈ X such that Sx2 = Tx1. Proceeding the same way, we
construct a sequence {xn} ⊂ X, such that

Sx2n+1 = Tx2n,∀n ∈ N0, (3.2)

Now, we claim that {Tx2n} is R-preserving sequence, thus

(Tx2n, Tx2n+1) ∈ R,∀n ∈ N0. (3.3)

By mathematical induction, if n = 0 in (4.2) and using (c) such that x0 ∈ X(T, S,R), we have

(Sx0, Sx1) ∈ R, (3.4)

which proves that (4.2) is true for n = 0. Now, assume that (4.2) is true for n = k > 0 therefore

(Sx2k, Sx2k+1) ∈ R.

From condition (d), R is (T, S)-closed. Thus, we have

(Tx2k, Tx2k+1) ∈ R,

which, on using (4.2) shows that

(Sx2k+1, Tx2k+2) ∈ R,

therefore (4.3) holds for n = 2k + 1. Hence, by induction, (4.3) is true for all n ∈ N. In following (4.2) and (4.3), the
sequence {Txn} is also an R-preserving, thus

(Tx2n, Tx2n+1) ∈ R,∀n ∈ N0.

Also, assumption (c) claim that T and S satisfies (E.A)-property. Therefore, to prove the claim, let x2n be a sequence
in X, which is R-preserving sequence. Using Definition (2.11), we have

lim
n→∞

Tx2n = lim
n→∞

Sx2n = x∗. (3.5)

lim
n→∞

σ(Tx2n, x) = lim
n→∞

σ(Sx2n, x). (3.6)
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By (σ3) we have

σ(Tx2n, Sx2n) ⩽ σ(Tx2n, x) + σ(Sx2n, x). (3.7)

As n→ ∞, Equation (3.7) leads to

σ(Tx2n, Sx2n) ≤ σ(Tx, x) + σ(Sx, x). (3.8)

Which implies that

lim
n→∞

Tx2n = lim
n→∞

Sx2n = x∗ = x. (3.9)

For some x ∈ X, suppose that SX is complete, then there exists a ∈ X such that x = Sa. Using Equation (3.5), we
have the following :

lim
n→∞

σ(Tx2n, Sa) = lim
n→∞

σ(Sx2n, Sa) = x∗. (3.10)

Let us show that Ta = Sa. Suppose that Ta ̸= Sa , using (3.1), we get

F (σ(Tx2n, Ta), σ(Sx2n, Sa), σ(Tx2n, Sx2n), σ(Sa, Ta),

σ(Sx2n, Ta), σ(Sa, Tx2n)) ≤ 0. (3.11)

Letting n→ ∞ in (3.11), we get

F (σ(Sa, Ta), σ(Sa, Sa), σ(Ta, Sa), σ(Sa, Ta),

σ(Sa, Ta), σ(Sa, Ta)) ≤ 0. (3.12)

From (3.12), we have

σ(Ta, Sa) ≤ 0,

⇒ σ(Ta, Sa) = 0.

Hence Ta=Sa, which is a contradiction.

Suppose that TX ⊂ SX. For every x0 ∈ X we consider the sequence {x2n} ∈ X defined by

Sx2n = Tx2n−1,

Sx2n+1 = Tx2n.

Let x0 ∈ X be an arbitrary point. As TX ⊂ SX one can choose T -S sequence {Tx2n} with initial point x0.
x = x2n and y = x2n+1 in Equation (3.1) and denote

u = σ(Tx2n, Tx2n+1),

v = σ(Tx2n−1, Tx2n),

F (σ(Tx2n, Tx2n+1), σ(Sx2n, Sx2n+1), σ(Sx2n, Tx2n), σ(Sx2n+1, Tx2n+1),

σ(Sx2n, Tx2n+1), σ(Sx2n+1, Tx2n)) ≤ 0. (3.13)

By substituting Sxn = Tx2n−1 and Sx2n+1 = Tx2n in Equation (3.13), we have

F (σ(Tx2n, Tx2n+1), σ(Tx2n−1, Tx2n), σ(Tx2n−1, Tx2n), σ(Tx2n, Tx2n+1),

σ(Tx2n−1, Tx2n+1), σ(Tx2n, Tx2n)) ≤ 0. (3.14)
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By substituting u, v in Equation (3.14), we obtain

F (u, v, v, u, σ(Tx2n−1, Tx2n+1), 0) ≤ 0. (3.15)

Using (σ3) and F1, since is non-decreasing in the fifth variable, we get

σ(Tx2n−1, Tx2n+1) ≤ σ(Tx2n−1, Tx2n) + σ(Tx2n, Tx2n+1),

σ(Tx2n−1, Tx2n+1) ≤ v + u. (3.16)

Using Equation (3.16) in (3.15), we have

F (u, v, v, u, u+ v, 0) ≤ 0.

Which satisfies F1, therefore

u ≤ λv.

Implies that

σ(Tx2n, Tx2n+1) ≤ λσ(Tx2n−1, Tx2n),

≤ λnσ(Tx0, Tx1).

≤ λn+1σ(x0, x1) (3.17)

Using (3.17) and (σ3), for all n,m ∈ N0 with m > n, we obtain

σ(Tx2n, Tx2m) ≤ σ(Tx2n, Tx2n+1) + σ(Tx2n+1, Tx2n+2) + ...σ(Tx2m−1, Tx2m),

≤ (λn + λn+1 + λn+2 + ...+ λm−1)σ(Tx0, Tx1),

≤ λnσ(Tx0, Tx1)(1 + λn + λn+1 + λn+2 + ...+ λm−1),

≤ λn

1− λ
σ(Tx0, Tx1),

→ 0 as n→ ∞.

The results obey a Cauchy sequence properties of completeness. Hence {x2n} is R-preserving Cauchy sequence. If the
pair (T, S) is closed and weakly compatible. Using Definition 2.10, we have

TSz = STz,

Tz = Sz,

STz = SSz,

TSz = TTz.

To show that Tz is a common fixed point of T and S, we use inequality (3.1) which gives

F (σ(Tz, TTz), σ(Sz, STz), σ(Sz, Tz), σ(TTz, STz),

σ(TTz, Sz), σ(Tz, STz)) ≤ 0.

Which implies that

F (σ(Tz, TTz), σ(Tz, TTz), σ(Tz, Tz), σ(TTz, TTz),

σ(TTz, Tz), σ(Tz, TTz)) ≤ 0,

σ(Tz, TTz) ≤ 0. (3.18)

Thus STz = TTz = Tz. So Tz is a common fixed point of T and S.



2334 Lucas Wangwe, Santosh Kumar

For the uniqueness, take z = Tz as a common fixed point of T and S. Assume that w = Sw and z ̸= w, using
x = z, y = w in Equation (3.1), we get

F (σ(Tz, Tw), σ(Sz, Sw), σ(Tz, Sz), σ(Tw, Sw), σ(Tw, Sz), σ(Tz, Sw)) ≤ 0.

Hence, we get

σ(z, w) ≤ 0,

⇒ σ(z, w) = 0,

which is a contradiction. Therefore, z is a unique common fixed point of T and S.

Using the assumption taken in Theorem 3.1, we prove assertion (f) as follows: we observe that C(T, S) is non-
empty, so let us take a pair of elements say (a, b) in C(T, S) such that

Ta = Sa = ā,

T b = Sb = b̄. (3.19)

Next, we are required to show that ā = b̄. By observing the above assertion, there exists a S-path (say,z0, z1, z2, ..., zl)
of length l in Rs from Ta to Tb, with

Sz0 = Ta,

Szl = Tb, (3.20)

such that

[Sz2i, Sz2i+1] ∈ Rs ⊆ R, (3.21)

for all i ∈ 0, 1, 2, 3, ...l − 1.

And

[Sz2i, T z2i] ∈ Rs ⊆ R (3.22)

for every i ∈ 0, 1, 2, 3, ...l − 1.

Define two constant sequences such that

z02n = a and zl2n = b.

By using (3.20), for all n ∈ N, we have

Tz02n = Ta = ā,

T zl2n = Tb = b̄.

By usual substitution for zi0 = zi for each i ∈ 0, 1, 2, ...l, that is

z10 = z1,

z20 = z2,

z30 = z3,

z40 = z4,

zl−1
0 = zl−1.

Recall that TX ⊆ SX. Thus we construct a sequence

{z12n}, {z22n}, {z32n}, ...{zi2n} ∈ X.
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In general, {z1n} ∈ X

Sz12n+1 = Tz12n,

Sz22n+1 = Tz22n,

Sz32n+1 = Tz32n,

Sz42n+1 = Tz42n,

Szl−1
2n+1 = Tzl−1

2n ,∀n ∈ N.

We obtain

Szi2n+1 = Tzi2n,

for all i ∈ [0, l − 1]. Corresponding to each zi, we have [Szi0, Sz
i
1] ∈ R from (3.20), (3.21) and (T, S)-compactness of

R, we get

lim
n→∞

σ(Szi2n, Sz
i
2n+1) = 0,

for each i ∈ 1, 2, 3, ...l − 1.

Thus, R is (T, S)-closed and we conclude that [Tzi2n, T z
i+1
2n ] ∈ R, for each i ∈ 0, 1, 2, 3, ...l − 1 and for all n ∈ N.

Otherwise, [Szi2n, Sz
i+1
2n ] ∈ R, for each i ∈ 0, 1, 2, 3, ...l − 1 and for all n ∈ N.

Define σi
n = σ(Szi2n, Sz

i+1
2n ), for each i ∈ 0, 1, 2, 3, ...l − 1 and for all n ∈ N. We assert that, limn→∞ σi

2n > 0.
Assume that limn→∞ σi

2n = σ > 0.

Since [Szi2n, Sz
i+1
2n ] ∈ R, either [Szi2n, Sz

i+1
n ] ∈ R or [Szi+1

2n , Szi2n] ∈ R.

If [Szi2n, Sz
i+1
2n ] ∈ R, then applying the condition (e), we have

F (σ(Tzi2n, T z
i+1
2n ), σ(Szi2n, Sz

i+1
2n ), σ(Szi2n, T z

i
2n), σ(Sz

i+1
2n , T zi+1

2n ),

σ(Szi2n, T z
i+1
2n ), σ(Szi+1

2n , Szi2n)) ≤ 0.

or

F (σ(Szi2n+1, T z
i+1
2n+1), σ(Sz

i
2n, Sz

i+1
2n ), σ(Szi2n, T z

i
2n+1), σ(Sz

i+1
2n , Szi+1

2n+1),

σ(Szi2n, Sz
i+1
2n+1), σ(Sz

i+1
2n , Szi2n)) ≤ 0. (3.23)

Taking lim as n→ ∞ and using limn→∞ σi
2n = σ, we get

F (σ, σ, 0, 0, σ, σ) ≤ 0.

Which is contradiction and hence

lim
n→∞

σi
2n = σ = 0.

The same, if (Szi+1
2n , Szi2n+1) ∈ R, we have

lim
n→∞

σi
2n = lim

n→∞
σ(Szi+1

2n , Szi2n+1) = 0,

for i ∈ 0, 1, 2, ...l − 1.

Using (3.21), limn→∞ σi
2n = 0 and (σ3), we have

σ(ā, b̄) = σ(Sz02n, Sz
i
2n) ≤

l−1∑
i=0

σ(Szi2n, Sz
i+1
2n )

≤
l−1∑
i=0

σi
2n,

→ 0 as n→ ∞.
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So that

σ(ā, b̄) = 0 =⇒
ā = b̄.

Therefore

Sx = Sy.

Next we show the existence of common fixed point of T and S. Let a ∈ C(T, S), i.e., by Definition 2.3, Ta = Sa.
Proceeding using Definition 2.10, we have

(i) commuting if, for all a ∈ X,

S(Ta) = T (Sa),

Sa = Ta.

(ii) Weakly commuting if, for all d(S(Tx), T (Sx)) ≤ d(Sx, Tx),

σ(S(Ta), T (Sa)) ≤ σ(Sa, Ta).

(iii) Compatible if

lim
n→∞

d(STx2n, TSx2n) = 0,

σ(S(Ta), T (Sa)) = 0,

σ(Sa, Ta) = 0,

Sa = Ta.

Also

lim
n→∞

Tx2n = lim
n→∞

Sx2n = x∗,

x2n = a, Ta = Sa = x∗ = a.

(iv) Weakly compatible if, for all S(Tx) = T (Sx), for every coincidence point x ∈ X.

S(Ta) = T (Sa).

If we take another point say b, let Ta = b = Sa, we obtain

S(Ta) = T (Sa).

Sb = Tb.

So that, b is a common fixed point of T and S.

For uniqueness of common fixed point of T and S,

b = Sb = Sz = z.

Thus z is a common fixed point of T and S, we have z = b. Thus the prove. □

From Theorem 3.1, we can deduce several corollary which appeared in the following:

Corollary 3.2. The results of Theorem 3.1 remain true for all x, y ∈ X with (Tx, Sy) ∈ R), the implicit relation (d)
is replaced by one of the following:

(i)

σ(Tx, Ty) ≤ kσ(Sx, Sy), (3.24)

where k ∈ [0, 1).
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(ii)

σ(Tx, Ty) ≤ k[σ(Sx, Tx) + σ(Sy, Ty)], (3.25)

where k ∈ [0, 12 ).

(iii)

σ(Tx, Ty) ≤ k[σ(Sx, Ty) + σ(Sy, Tx)], (3.26)

where k ∈ [0, 12 ).

(iv)

σ(Tx, Ty) ≤ a1σ(Sx, Sy) + a2[σ(Sx, Tx) + σ(Sy, Ty)] +

a3[σ(Sx, Ty) + σ(Sy, Tx)], (3.27)

where a1, a2, a3 ∈ [0, 1) and a1 + 2a2 + 2a3 < 1.

(v)

σ(Tx, Ty) ≤ kd(Sx, Sy) + Lmin
{
σ(Sx, Tx), σ(Sy, Ty),

σ(Sx, Ty), σ(Sy, Tx)
}
, (3.28)

where k ∈ [0, 1) and L ≥ 0.

(vi)

σ(Tx, Ty) ≤ (a1σ(Sx, Sy) + a2σ(Sx, Tx) + a3σ(Sy, Ty) +

a4(σ(Sx, Ty) + σ(Sy, Tx))) (3.29)

where a1, a2, a3, a4 ≥ 0 and a1 + a2 + a3 + 2a4 < 1.

(vii)

σ(Tx, Ty) ≤ kmax

{
σ(Sx, Sy), σ(Sx, Tx), σ(Sy, Ty),

σ(Sx, Tx) + σ(Sy, Ty)

2

}
+ Lmin

{
σ(Sx, Tx), σ(Sy, Ty),

σ(Sx, Ty), σ(Sy, Tx)

}
, (3.30)

where k ∈ [0, 1) and L ≥ 0.

(viii)

σ(Tx, Ty) ≤ kmax
{
σ(Sx, Sy), σ(Sx, Tx), σ(Sy, Ty),

σ(Sx, Ty), σ(Sy, Tx)
}
, (3.31)

where k ∈ [0, 12 ).

(ix)

σ(Tx, Ty) ≤ kmax
{
a1σ(Sx, Sy) + a2σ(Sx, Tx) + a3σ(Sy, Ty) +

a4σ(Sx, Ty) + a5σ(Sy, Tx)
}
, (3.32)

where a′si ,≥ 0 (for i = 1, 2, 3, 4, 5) and
∑5

i=1 ai < 1.
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(x)

σ(Tx, Ty) ≤ kmax
{
σ(Sx, Sy) + σ(Sx, Tx) + σ(Sy, Ty) +

σ(Sx, Ty)

2
+
σ(Sy, Tx)

2

}
, (3.33)

where k ∈ [0, 1).

(xi)

σ(Tx, Ty) ≤ kmax
{
σ(Sx, Sy), σ(Sx, Tx), σ(Sy, Ty)

}
+

(1− k)
{
aσ(Sx, Ty) + bσ(Sy, Tx)

}
, (3.34)

where k ∈ [0, 1) and a, b < 1
2 .

(xii)

σ(Tx, Ty)2 ≤ σ(Tx, Ty)
{
a1σ(Sx, Sy), a2σ(Sx, Tx), a3σ(Sy, Ty)

}
+

a4σ(Sx, Ty)σ(Sy, Tx), (3.35)

where a1 > 0; a2, a3, a4 ≥ 0; a1 + a2 + a3 < 1 and a1 + a4 < 1.

(xiii)

σ(Tx, Ty)2 ≤ a1 max
{
σ(Sx, Sy)2, σ(Sx, Tx)2, σ(Sy, Ty)2

}
+

a2 max
{
σ(Sx, Tx)σ(Sx, Ty), σ(Sy, Ty)σ(Sy, Tx)

}
−a3σ(Sx, Ty)σ(Sy, Tx), (3.36)

where a′si ,≥ 0 (for i = 1, 2, 3); a1 + 2a2 < 1 and a1 + a4 < 1.

(xiv)

σ(Tx, Ty)3 ≤ k
{
σ(Sx, Sy)3 + σ(Sx, Tx)3 + σ(Sy, Ty)3 +

σ(Sx, Ty)3 + σ(Sy, Tx)3
}
, (3.37)

where k ∈ [0, 1
11 ).

Example 3.3. Consider X = [0, 2] endowed with complete metric-like, defined by metric σ(x, y) = (x − y)2 in R2

with binary relation

R = {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)} on X.

Then X is either complete or R-complete.

Define a pair of mappings T, S : X −→ X by

Tx =
x

2
,∀x ∈ X,

and

Sx = x2,∀x ∈ X.

Then TX = {0} ⊂ [0,
1

2
] ⊆ [0, 2) = SX.
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Clearly, R is (T, S)-closed, and x0 = 0, (S0, T0) ∈ R.

Define continuous function F : R6
+ → R by

F (u1, u2, u3, u4, u5, u6) = u1 −
1

2
u5 −

1

2
u6.

i.e.,

σ(Tx, Ty) ≤ 1

2
σ(Sx, Ty) +

1

2
σ(Sy, Tx).

For

(x, y) ∈ {(0, 0)(0, 1), (0, 2), (1, 1), (1, 2), (2, 2)},∀x, y ∈ R.

σ(Tx, Ty) = 0,

hence obvious.

For (x, y) ∈ (0, 1)

σ(Tx, Ty) = σ(T0, T1) =
1

4
.

σ(Sx, Ty) = σ(S0, T1) =
1

4
.

σ(Sy, Tx) = σ(S1, T0) = 1.

σ(T0, T1) ≤ 1

2
σ(S0, T1) +

1

2
σ(S1, T0).

1

4
≤ 1

2
× 1

4
+

1

2
× 1.

1

4
≤ 1

8
+

1

2
.

1

4
≤ 5

8
.

For (x, y) ∈ (0, 2)

σ(Tx, Ty) = σ(T0, T2) = 1.

σ(Sx, Ty) = σ(S0, T2) = 1.

σ(Sy, Tx) = σ(S2, T0) = 16.

σ(T0, T2) ≤ 1

2
σ(S0, T2) +

1

2
σ(S2, T0)

1 ≤ 1

2
× 1 +

1

2
× 16

1 ≤ 1

2
+ 8

1 ≤ 17

2
.

For (x, y) ∈ (1, 1)

σ(Tx, Ty) = σ(T1, T1) = 0.

σ(Sx, Ty) = σ(S1, T1) =
1

4
.

σ(Sy, Tx) = σ(S1, T1) =
1

4
.
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σ(T1, T1) ≤ 1

2
σ(S1, T1) +

1

2
σ(S1, T1)

0 ≤ 1

2
× 1

4
+

1

2
× 1

4

1 ≤ 1

8
+

1

8

0 ≤ 1

4
.

For (x, y) ∈ (1, 2)

σ(Tx, Ty) = σ(T1, T2) =
1

4
.

σ(Sx, Ty) = σ(S1, T2) = 0.

σ(Sy, Tx) = σ(S2, T1) =
49

4
.

σ(T1, T2) ≤ 1

2
σ(S1, T2) +

1

2
σ(S2, T1)

1

4
≤ 1

2
× 0 +

1

2
× 49

4
1

4
≤ 0 +

49

8
1

4
≤ 49

8
.

For (x, y) ∈ (2, 2)

σ(Tx, Ty) = σ(T2, T2) = 0.

σ(Sx, Ty) = σ(S2, T2) = 9.

σ(Sy, Tx) = σ(S2, T2) = 9.

σ(T2, T2) ≤ 1

2
σ(S2, T2) +

1

2
σ(S2, T2)

0 ≤ 1

2
× 9 +

1

2
× 9

0 ≤ 9

2
+

9

2
0 ≤ 9.

Which shows that all assertion of Theorem 3.1 is satisfied. Hence x = 0 is a fixed point of T .

Furthermore, using Equation 3.1, we deduce an implicit function as shown below

F (σ(Tx, Ty), σ(Sx, Sy), σ(Sx, Tx),

σ(Sy, Ty), σ(Sx, Ty), σ(Sy, Tx)) = σ(Tx, Ty)− 1

2
[σ(Sx, Ty) + σ(Sy, Tx)]

= σ(Tx, Ty)− 1

2
[σ(Sx, Ty) + σ(Sy, Tx)]

= (
x

2
,
y

2
)− 1

2
[σ(x2,

y

2
) + σ(y2,

x

2
)],

= (
x

2
− y

2
)2 − 1

2
[(x2 − y

2
)2 + (y2 − x

2
)2],

=
1

4
x2 − xy

2
+
y2

4
− 1

2
x4 +

x2y

2
− y2

8
− y4

2
+
xy2

2
− x2

8
,

=
1

8
x2 +

1

8
y2 +

x2y

2
+
xy2

2
− xy

2
− x4

2
− y4

2
,

=
1

8
[x2 + y2 + 4x2y + 4xy2 − 4xy − 4x4 − 4y4].
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which is the implicit function satisfies Theorem 3.1.

4 Some applications

We will use our results proved in previous section to solve the second order differential nonlinear two boundary
value problem and the existence of solution for Volterra-Fredholm type integral equation.

4.1 The existence of solution for the second-order differential non-linear two boundary value problem.

In this subsection, we consider a second-order differential non-linear two boundary value problem. The following
problem motivated by [2, 20, 30].  u

′′
(t) = f(t, u(t), u′(t)), t ∈ (0, 1),

u(a) = u1,
u(b) = u2, a, b ∈ [0, 1],

(4.1)

where f : [0, 1]×X ×X −→ X is a continuous function.

This problem is equivalent to the integral equation

u(t) = h(t) +

∫ b

a

G(t, s)f(s, u(s), u′(s))ds,∀ t, s ∈ [a, b], (4.2)

where the Green’s function associated with the above integral equation is given by

G(t, s) =


(b− t)(s− a)

b− a
, a ≤ s ≤ t ≤ b,

(b− s)(t− a)

b− a
, a ≤ t ≤ s ≤ b,

and h(t) satisfies h′′ = 0, h(a) = u1, h(b) = u2.

By Theorem 3.1 (a), TX ⊆ SX. The fixed point of S is also a solution of (4.1).

Now we prove our results by establishing the existence of a common fixed point for a pair of self mappings:

Theorem 4.1. Let T, S : C([a, b]) −→ C([a, b]) be self maps of a metric-like space (X,σ) such that the following
condition holds:

(1) f : [0,1]×X ×X −→ X is a nonincreasing function in the fifth and sixth variable,

(2) There exist a functions f : [0, 1]×X ×X −→ X with constants α and β such that

|f(t, u(t), v′(t))| − |f(t, u(t), v′(t))| ≤ L|α|u− v|+ β|u′ − v′||,

for all t ∈ [0, 1] and u, v ∈ C1([a, b], X),

(3) there exists a path a, b ∈ [0, 1] and α, β > 0 such that

k =
α+ 4β

8
, k ∈ L and L ≤ 1.

Then, the non linear integral equation has a common solution in C1([a, b], X) and (4.2) has a solution. Also it
is the solution of differential equation (4.1).

Proof: Consider C1([a, b], X) with the metric

σ(x, y) = max
a≤t≤b

{
α|u− v|+ β|u′ − v′|

}
.

The (X,σ) is a complete metric-like space.

Let T, S : X −→ X be two operator defined as

Tu(t) = h(t) +

∫ b

a

G(t, s)f(s, u(s), u′(s))ds,∀ t, s ∈ [a, b],
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and

Su(t) = h(t) +

∫ b

a

G(t, s)f(s, u(s), v′(s))ds,∀ t, s ∈ [a, b],

where f and h are continuous functions. Now, u is a solution of (4.2) if and only if u is a common fixed point of T
and S. Since T and S are increasing in the fifth and sixth variables and other assertion of Theorem 3.1 are satisfied.

By using condition (3) of Theorem 4.1 we obtain

|Tu(t)− Sv(t)| =

∫ b

a

|G(t, s)||f(s, u(s), u′(s))− f(s, v(s), v′(s))|ds,

=

∫ b

a

|G(t, s)|ds(α|u− v|+ β|u′ − v′|),

= Lσ(u, v)

∫ b

a

|G(t, s)|ds.

For each a, b ∈ [0, 1], we have∫ b

a

G(t, s)ds = max
a≤t≤b

(b− a)(b− a)

8
=

(b− a)2

8
,

α|u(t)− v(t)| = α
(b− a)2

8
σ(u, v) =

α

8
σ(u, v), (4.3)

Similarly,

|Tu′(t)− Sv′(t)| =

∫ b

a

|G(t, s)||f(s, u(s), u′(s))− f(s, v(s), v′(s))|ds,

= L

∫ b

a

|G(t, s)|ds(α|u(t)− v(t)|+ β|u′(t)− v′(t)|),

= Lσ(u, v)

∫ b

a

|G(t, s)|ds,

∫ b

a

G(t, s)ds = max
a≤t≤b

(b− a)2(b− a)2

2(b− a)
=
b− a

2
,

β|u′ − v′| = β
(b− a)

2
σ(u′, v′) =

β

2
σ(u′, v′), (4.4)

From adding (4.3) and (4.4) we obtain

σ(Tu, Sv) =
(b− a)2

8
σ(u, v) +

(b− a)

2
σ(u, v),

=

[
α

8
+
β

2

]
σ(u, v).

Since

k =
α+ 4β

8
and k ∈ L < 1,

we have

σ(Tu, Sv) = Lσ(u, v).

Therefore u ∈ X, hence u is a common fixed of T and S, also a solution to integral equation (4.2). Thus, a differential
equation (4.1) has a solution.
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4.2 Existence of the solution of Volterra-Fredholm type integral equation

Now, in this subsection, we investigate the existence of the solution to the Volterra-Fredholm type integral equation,
which is used to illustrate the use of Theorem 3.1 for the existence of a common fixed point of a pair of maps in metric
space. The following integral equation inspired by [30, 3]. The equation arise from the theory of parabolic boundary
valued problems, which is the mathematical modelings of the spatiotemporal development of epidemic and various
physical and biological models.

u(t, x) = h(t, x) +

∫ t

0

∫
R2

K(t, x, s, y, u(s, y))dyds,∀ t, x ∈ D, (4.5)

where h : D → RN, K : D ×D → RN, D = [0, T ]×Ω, T > 0 and Ω = RN is the non empty and closed set of Euclidean
space RN eqquiped with norm ∥.∥, ∀ N ≥ 1.

Let (X, ∥.∥) be a Banach space. Define the mapping d : X ×X → [0,∞) by

d(x, y) = ∥x− y∥.

Then (X, d) is a complete metric space.

By Theorem 3.1 (a), TX ⊆ SX. The fixed point of S is also a solution of (4.5).

Now we prove our results by establishing the existence of a common fixed point for a pair of self mappings:

Theorem 4.2. Let T, S : CN([a, b]) −→ CN([a, b]) be self maps of a metric-like space (X,σ). Suppose the following
assumptions hold:

(i) the function h :→ R+ and K : D ×D × R+ −→ X are continuous,

(ii) there exist a continuous function L : D ×D → [0,∞) such that

∥K(t, x, s, y, u(s, y))−K(t, x, s, y, v(s, y))∥ ≤ L(t, x, s, y)∥u− v∥,

for all t, x, s, y, u(s, y) ∈ D ×D × RN,

(iii) there exists a path a, b ∈ [0, 1] with a constant γ ∈ [0, 1) such that∫ t

0

∫
R2

L(t, x, s, y)∥u− v∥dyds ≤ 1 + t

6 + 7t2
[ln(1 +

1

3
|x|)− ln(1 +

1

3
|x|)],

where

L(t, x, s, y) = γ =
1 + t

6 + 7t2
< 1.

Then, the Volterra-Fredholm integral equation (4.5) has a unique common solution in CN([a, b], X).

Proof . Consider CN([a, b], X) with the metric

σ(x, y) = ∥x− y∥.

The (X,σ) is a complete metric-like space.

Let T, S : X → S be two operators such that S∈ X and u ∈ S. Defined as

Tu(t, x) = h(t, x) +

∫ t

0

∫
R2

K(t, x, s, y, u(s, y))dyds,∀ t, x ∈ D. (4.6)
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Since TX ⊂ SX,we prove that T maps S into itself. So, suppose that Tu : [0, T ] × R → R2 is continuous mapping.
Now, on contrary to that, we claim that T : S → S is not a contraction. So, let (u, v) be a pair of elements in S. For
all (t, x) ∈ D and using condition (ii) of Theorem 4.1 we get

∥Tu− Sv∥ =

∫ t

0

∫
R2

∥K(t, x, s, y, u(s, y))−K(t, x, s, y, v(s, y))∥dyds,

≤
∫ t

0

∫
R2

L(t, x, s, y)∥u− v∥dyds,

≤ 1 + t

6 + 7t2

[
ln(1 +

1

3
∥u∥)− ln(1 +

1

3
∥v∥)

]
,

≤ 1 + t

6 + 7t2
ln

[
1 + 1

3∥u∥
1 + 1

3∥u∥

]
,

≤ 1 + t

6 + 7t2
ln

[
1 +

1
3∥u∥ −

1
3∥v∥

1 + 1
3∥v∥

]
,

≤ γ∥u− v∥,
∥Tu− Sv∥ ≤ γ∥u− v∥,
σ(Tu, Sv) ≤ γσ(u, v),

which is a contradiction. Hence u is a common fixed of T and S, also a solution to integral equation (4.5). □
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