Some coefficient problems of a class of close-to-star functions of type α defined by means of a generalized differential operator

Ayotunde Olajide Lasode ${ }^{\mathrm{a}, *}$, Aminat Olabisi Ajiboye ${ }^{\text {a }}$, Rasheed Olawale Ayinla ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
${ }^{b}$ Department of Mathematics and Statistics, Kwara State University, P.M.B. 1530, Malete, Nigeria

(Communicated by Mugur Alexandru Acu)

Abstract

In this investigation, we studied a class of Bazilevič type close-to-star functions which is defined by a generalized differential operator. The new class generalizes many known and new subclasses of close-to-star functions. Some of the investigated properties are the coefficient bounds and the Fekete-Szegö functional. Our results extend some known and new ones. Keywords: Analytic function, univalent function, starlike function, close-to-star function of type α, Carathéodory function, Opoola differential operator, coefficient bounds and Fekete-Szegö functional 2020 MSC: Primary 30C45, Secondary 30C50

1 Introduction and Definitions

In this paper, we let $\mathcal{E}:=\{z \in \mathbb{C}:|z|<1\}$ represent the unit disk and we let \mathcal{A} represent the class of complex-valued functions of the form:

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots+a_{j} z^{j}+\cdots \quad(z \in \mathcal{E}) \tag{1.1}
\end{equation*}
$$

such that $f(0)=0=f^{\prime}(0)-1$. \mathcal{A} is called the class of normalized analytic functions. Let \mathcal{S}, a subset of \mathcal{A}, represent the class of functions analytic and univalent in \mathcal{E}.

Also, let \mathcal{S}^{\star}, a subset of \mathcal{S}, represent the class of functions of the form:

$$
\begin{equation*}
s(z)=z+s_{2} z^{2}+s_{3} z^{3}+\cdots+s_{j} z^{j}+\cdots \quad(z \in \mathcal{E}) \tag{1.2}
\end{equation*}
$$

such that $\mathcal{R} e\left(z s^{\prime}(z) / s(z)\right)>0$. The class \mathcal{S}^{\star} is called the class of starlike functions.
Let \mathcal{C} represent the class of analytic functions of the form:

$$
\begin{equation*}
c(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots+c_{j} z^{j}+\cdots \quad(z \in \mathcal{E}) \tag{1.3}
\end{equation*}
$$

[^0]such that $c(0)=1$ and $\mathcal{R} \operatorname{ec}(z)>0$. The class \mathcal{C} is called the class of Carathéodory functions. For additional details on classes $\mathcal{S}, \mathcal{S}^{\star}$ and \mathcal{C}, see 9, 21.

A function f in (1.1) is called close-to-star if there is a function $s(z) \in \mathcal{S}^{\star}$ such that

$$
\begin{equation*}
\mathcal{R} e\left(\frac{f(z)}{s(z)}\right)>0 \quad(z \in \mathcal{E}) \tag{1.4}
\end{equation*}
$$

The class of close-to-star was introduced by Reade 15 and it has been studied in various forms by some researchers in [3, 12, 18, 19, 22. In particular, Babalola et al. [5 studied the class of close-to-star functions of type α defined by using the idea of Bazilevič functions of type α in [20].

Definition 1.1 ([5]). A function $f \in \mathcal{A}$ is called close-to-star of type α if

$$
\begin{equation*}
f(z) \in \mathcal{K}^{\star}(\alpha):=\left\{f(z) \in \mathcal{A}: \mathcal{R} e\left(\frac{f(z)^{\alpha}}{s(z)^{\alpha}}\right)>0, \alpha>0, z \in \mathcal{E}\right\} \tag{1.5}
\end{equation*}
$$

and all powers are regarded as principal determinations only.
Remark 1.2. The following are some remarks on $\mathcal{K}^{\star}(\alpha)$.
(i) $\mathcal{K}^{\star}(1)$ is the class introduced by Reade [15].
(ii) $f \in \mathcal{K}^{\star}(1)$ is not necessarily univalent in \mathcal{E} (see [5, 15]), so also is $f \in \mathcal{K}^{\star}(\alpha)$.
(iii) The well-known Alexander duality theorem holds. If f is close-to-convex (see [21] for definition), then $z f^{\prime}$ is close-to-star (see [5, 15).
(iv) Every starlike function is close-to-star (see [5, 15]).
(v) $\mathcal{R} e\left(f^{\prime}(z) / s^{\prime}(z)>0 \Longrightarrow \mathcal{R} e(f(z) / s(z))>0\right.$ (see [5, 15, 16]).
(vi) If $f(z) \in \mathcal{K}^{*}(1)$, then $\left|a_{j}\right| \leqslant j^{2}(j=\{2,3,4, \ldots\})$ (see [15, 16]). Equality occurs for function $f_{\delta}(z)=(z+$ $\left.\delta z^{2}\right) /(1-\delta z)^{3}(\delta= \pm i)$ (see [16]).

An interesting aspect of coefficient problems of functions f of form 1.1) is the study of the Fekete-Szegö functional defined by

$$
\begin{equation*}
\mathcal{F}(\gamma ; f)=\left|a_{3}-\gamma a_{2}^{2}\right| \tag{1.6}
\end{equation*}
$$

The functional was initiated by Fekete and Szegö [8] and it has received much attention for functions f in class \mathcal{S} and its various subclasses. Some recent investigations in this direction can be found in [1, 4, 7, 11,

In 2017, Opoola 14 introduced a differential operator defined as follows.
Definition 1.3. Let $f \in \mathcal{A}$ be of the form (1.1), then the Opoola differential operator $\mathcal{D}^{n, \beta, \eta, \tau}: \mathcal{A} \longrightarrow \mathcal{A}$ is defined by

$$
\begin{aligned}
& \mathcal{D}^{0, \beta, \eta, \tau} f(z)= f(z) \\
& \mathcal{D}^{1, \beta, \eta, \tau} f(z)=(1+(\beta-\eta-1) \tau) f(z)-z \tau(\beta-\eta)+z \tau f^{\prime}(z)=\Delta_{\tau} f(z) \\
& \mathcal{D}^{2, \beta, \eta, \tau} f(z)=\Delta_{\tau}\left(\mathcal{D}^{1, \beta, \eta, \tau} f(z)\right) \\
& \mathcal{D}^{3, \beta, \eta, \tau} f(z)=\Delta_{\tau}\left(\mathcal{D}^{2, \beta, \eta, \tau} f(z)\right) \\
& \vdots \vdots \quad \vdots \\
& \mathcal{D}^{n, \beta, \eta, \tau} f(z)= \Delta_{\tau}\left(\mathcal{D}^{n-1, \beta, \eta, \tau} f(z)\right)
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\mathcal{D}^{n, \beta, \eta, \tau} f(z)=z+\sum_{j=2}^{\infty}(1+(j+\beta-\eta-1) \tau)^{n} a_{j} z^{j} \tag{1.7}
\end{equation*}
$$

or for brevity,

$$
\begin{equation*}
\mathcal{D}^{n, \beta, \eta, \tau} f(z)=z+\sum_{j=2}^{\infty} \Lambda_{j} a_{j} z^{j} \quad(z \in \mathcal{E}) \tag{1.8}
\end{equation*}
$$

where $\Lambda_{j}=(1+(j+\beta-\eta-1) \tau)^{n}, \tau \geqslant 0,0 \leqslant \eta \leqslant \beta$ and $n \in \mathbb{N} \cup\{0\}$.

Remark 1.4. The following properties hold in 1.7 .
(i) $\mathcal{D}^{0, \beta, \eta, \tau} f(z)=\mathcal{D}^{n, \beta, \eta, 0} f(z)=\mathcal{D}^{0, \beta, \eta, 0} f(z)=f(z) \in \mathcal{A}$ in 1.1).
(ii) $\mathcal{D}^{n, \beta, \beta, 1} f(z)=\mathcal{D}^{n, \eta, \eta, 1} f(z)=\mathcal{D}^{n} f(z)$ is the Sǎlǎgean differential operator introduced in [17].
(iii) $\mathcal{D}^{n, \beta, \beta, \tau} f(z)=\mathcal{D}^{n, \eta, \eta, \tau} f(z)=\mathcal{D}^{n, \tau} f(z)$ is the Al-Oboudi differential operator introduced in [2].

The new class investigated in this paper is therefore defined as follows.
Definition 1.5. If $n \in \mathbb{N} \cup\{0\}, 0 \leqslant \eta \leqslant \beta$ and $\tau \geqslant 0$, then a function $f(z) \in \mathcal{A}$ is said to be a member of class $\mathcal{K}^{\star}(n, \beta, \eta, \tau ; \alpha)$ if it satisfies the geometric condition

$$
\begin{equation*}
\mathcal{R} e\left(\frac{\left(\mathcal{D}^{n, \beta, \eta, \tau} f(z)\right)^{\alpha}}{\left(\mathcal{D}^{n, \beta, \eta, \tau} s(z)\right)^{\alpha}}\right)>0 \quad(\alpha \geqslant 1, z \in \mathcal{E}) \tag{1.9}
\end{equation*}
$$

where $\mathcal{D}^{n, \beta, \eta, \tau}$ is the Opoola differential operator in 1.7) and all powers are regarded as principal determinations only.
Remark 1.6. Note that $\mathcal{K}^{\star}(n, \beta, \eta, 0 ; \alpha)=\mathcal{K}^{\star}(0, \beta, \eta, \tau ; \alpha)=\mathcal{K}^{\star}(0, \beta, \eta, 0 ; \alpha)=\mathcal{K}^{\star}(\alpha)$ is the class studied by Babalola et al. [5]. And that $\mathcal{K}^{\star}(n, \beta, \eta, 0 ; 1)=\mathcal{K}^{\star}(0, \beta, \eta, \tau ; 1)=\mathcal{K}^{\star}(0, \beta, \eta, 0 ; 1)=\mathcal{K}^{\star}(1)$ is the class studied by Reade 15].

It is interesting to know that class $\mathcal{K}^{\star}(n, \beta, \eta, \tau ; \alpha)$ is non-empty as shown in the following examples.
Example 1.7. If $s(z)=z$, then for $f(z) \in \mathcal{A}$ of the form (1.1),

$$
\begin{aligned}
& \mathcal{D}^{n, \beta, \eta, \tau} f_{1}(z)=\left\{z^{\alpha}(1+z)\right\}^{\frac{1}{\alpha}}=z+\lambda(\alpha, 1) z^{2}+\lambda(\alpha, 2) z^{3}+\lambda(\alpha, 3) z^{4}+\lambda(\alpha, 4) z^{5}+\cdots, \\
& \mathcal{D}^{n, \beta, \eta, \tau} f_{2}(z)=\left\{z^{\alpha}(1-z)\right\}^{\frac{1}{\alpha}}=z-\lambda(\alpha, 1) z^{2}+\lambda(\alpha, 2) z^{3}-\lambda(\alpha, 3) z^{4}+\lambda(\alpha, 4) z^{5}-\cdots, \\
& \mathcal{D}^{n, \beta, \eta, \tau} f_{3}(z)=\left\{z^{\alpha}(1+z)^{-1}\right\}^{\frac{1}{\alpha}}=z+\lambda(\alpha, 1) z^{2}+\lambda(\alpha, 2) z^{3}+\lambda(\alpha, 3) z^{4}+\lambda(\alpha, 4) z^{5}+\cdots, \\
& \mathcal{D}^{n, \beta, \eta, \tau} f_{4}(z)=\left\{z^{\alpha}(1-z)^{-1}\right\}^{\frac{1}{\alpha}}=z-\lambda(\alpha, 1) z^{2}+\lambda(\alpha, 2) z^{3}-\lambda(\alpha, 3) z^{4}+\lambda(\alpha, 4) z^{5}-\cdots,
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{D}^{n, \beta, \eta, \tau} f_{5}(z)=\left\{z^{\alpha} \frac{1+z}{1-z}\right\}^{\frac{1}{\alpha}}=z+2 \lambda(\alpha, 1) z^{2}+[2 \lambda(\alpha, 1) & +4 \lambda(\alpha, 2)] z^{3}+[2 \lambda(\alpha, 1)+8 \lambda(\alpha, 2)+8 \lambda(\alpha, 3)] z^{4} \\
& +[2 \lambda(\alpha, 1)+12 \lambda(\alpha, 2)+24 \lambda(\alpha, 3)+16 \lambda(\alpha, 4)] z^{5}+\cdots
\end{aligned}
$$

are in class $\mathcal{K}^{\star}(n, \beta, \eta, \tau ; \alpha)$ such that for $m \in \mathbb{N}$,

$$
\lambda(\alpha, m)=\left\{\begin{array}{rll}
\frac{1}{m!} \prod_{t=0}^{m-1}\left(\frac{1}{\alpha}-t\right) & \text { for power } & \frac{1}{\alpha}>0 \\
\frac{(-1)^{m}}{m!} \prod_{t=0}^{m-1}\left(\frac{1}{\alpha}+t\right) & \text { for power } & \frac{1}{\alpha}<0
\end{array}\right.
$$

Proof . From (1.9), we can say that

$$
\frac{\left(\mathcal{D}^{n, \beta, \eta, \tau} f_{k}(z)\right)^{\alpha}}{\left(\mathcal{D}^{n, \beta, \eta, \tau} s(z)\right)^{\alpha}}=\left\{\begin{array}{cll}
1+z & \text { for } & k=1 \tag{1.10}\\
1-z & \text { for } & k=2 \\
\frac{1}{1+z} & \text { for } & k=3 \\
\frac{1}{1-z} & \text { for } & k=4 \\
\frac{1+z}{1-z} & \text { for } & k=5
\end{array}\right.
$$

where all functions on the RHS of 1.10 are well-known functions in class \mathcal{C} defined above. Now $s(z)=z$, implies that $\left(\mathcal{D}^{n, \beta, \eta, \tau} s(z)\right)^{\alpha}=z^{\alpha}$ and $\left(\mathcal{D}^{n, \beta, \eta, \tau} f_{k}(z)\right)^{\alpha}(k=\{1,2,3,4,5\})$ in 1.10 give the functions in Examples 1.7 by simple calculation. This completes the proof.

2 Relevant Lemmas

Lemma 2.1 ([21]). If $c(z) \in \mathcal{C}$, then $\left|c_{j}\right| \leqslant 2 \quad(j \in \mathbb{N})$.
Lemma 2.2 ([6]). If $c(z) \in \mathcal{C}$ and $u \in \mathbb{R}$, then

$$
\left|c_{2}-u \frac{c_{1}^{2}}{2}\right| \leqslant\left\{\begin{array}{cll}
2(1-u) & \text { for } & u \leqslant 0, \\
2 & \text { for } & 0 \leqslant u \leqslant 2, \\
2(u-1) & \text { for } & u \geqslant 2 .
\end{array}\right.
$$

Lemma 2.3 ([13]). If $c(z) \in \mathcal{C}$ and $i, j \in \mathbb{N}$, then $\left|c_{i+j}-u c_{i} c_{j}\right| \leqslant 2$ for $0 \leqslant u \leqslant 1$.
Lemma 2.4 ([21]). If $s(z) \in \mathcal{S}^{\star}$, then $\left|s_{j}\right| \leqslant j \quad(j \in \mathbb{N} \backslash\{1\})$.
Lemma 2.5 (10]). If $s(z) \in \mathcal{S}^{\star}$ and $\rho \in \mathbb{R}$, then

$$
\left|s_{3}-\rho s_{2}^{2}\right| \leqslant\left\{\begin{array}{cll}
3-4 \rho & \text { for } & \rho \leqslant \frac{1}{2} \\
1 & \text { for } & \frac{1}{2} \leqslant \rho \leqslant 1 \\
4 \rho-3 & \text { for } & \rho \geqslant 1 .
\end{array}\right.
$$

3 Main Results

In what follows, let $n \in \mathbb{N} \cup\{0\}, 0 \leqslant \eta \leqslant \beta, \tau \geqslant 0$ and $\alpha \geqslant 1$ throughout this work unless otherwise mentioned. The following theorems are the results obtained.

Theorem 3.1. If $f(z) \in \mathcal{K}^{\star}(n, \beta, \eta, \tau ; \alpha)$, then

$$
\begin{align*}
& \left|a_{2}\right| \leqslant \frac{2}{\alpha \Lambda_{2}}\left\{1+\alpha \Lambda_{2}\right\}, \tag{3.1}\\
& \left|a_{3}\right| \leqslant \frac{2}{\alpha \Lambda_{3}}\left\{1+2 \Lambda_{2}+\frac{3 \alpha \Lambda_{3}}{2}\right\}, \tag{3.2}\\
& \left|a_{4}\right| \leqslant \frac{2}{\alpha \Lambda_{4}}\left\{1+2 \Lambda_{2}+3 \Lambda_{3}+2 \alpha \Lambda_{4}+\frac{2(\alpha-1)(2 \alpha-1)}{3 \alpha^{2}}\right\}, \tag{3.3}\\
& \left|a_{5}\right| \leqslant \frac{2}{\alpha \Lambda_{5}}\left\{1+2 \Lambda_{2}+3 \Lambda_{3}+2(\alpha-1)(2 \alpha-1)+2\left[2 \Lambda_{4}+3(\alpha-1)|4-3 \alpha| \Lambda_{2} \Lambda_{3}\right]\right. \\
& \left.\quad \quad \quad+\frac{4(\alpha-1)|\alpha-2||3 \alpha-4| \Lambda_{2}}{3}+\frac{(\alpha-1)}{\alpha}+\frac{\alpha|\alpha-2|}{4}\left[16 \Lambda_{2} \Lambda_{4}+9 \Lambda_{3}^{2}\right]+\frac{5 \alpha \Lambda_{5}}{2}\right\} . \tag{3.4}
\end{align*}
$$

Proof . The geometric expression in 1.9) can be expressed as

$$
\begin{equation*}
\frac{\left(\mathcal{D}^{n, \beta, \eta, \tau} f(z)\right)^{\alpha}}{z^{\alpha}}=\frac{\left(\mathcal{D}^{n, \beta, \eta, \tau} s(z)\right)^{\alpha}}{z^{\alpha}} c(z) . \tag{3.5}
\end{equation*}
$$

Using (1.1), (1.8) and binomially expanding LHS of (3.5) we obtain

$$
\begin{align*}
\frac{\left(\mathcal{D}^{n, \beta, \eta, \tau} f(z)\right)^{\alpha}}{z^{\alpha}}=1 & +\alpha \Lambda_{2} a_{2} z+\left\{\alpha \Lambda_{3} a_{3}+\frac{\alpha(\alpha-1)}{2!} \Lambda_{2}^{2} a_{2}^{2}\right\} z^{2} \\
& +\left\{\alpha \Lambda_{4} a_{4}+\frac{\alpha(\alpha-1)}{2!} 2 \Lambda_{2} \Lambda_{3} a_{2} a_{3}+\frac{\alpha(\alpha-1)(\alpha-2)}{3!} \Lambda_{2}^{3} a_{2}^{3}\right\} z^{3} \\
& +\left\{\alpha \Lambda_{5} a_{5}+\frac{\alpha(\alpha-1)}{2!}\left(2 \Lambda_{2} \Lambda_{4} a_{2} a_{4}+\Lambda_{3}^{2} a_{3}^{2}\right)+\frac{\alpha(\alpha-1)(\alpha-2)}{3!} 3 \Lambda_{2}^{2} \Lambda_{3} a_{2}^{2} a_{3}\right. \\
& \left.+\frac{\alpha(\alpha-1)(\alpha-2)(\alpha-3)}{4!} \Lambda_{2}^{4} a_{2}^{4}\right\} z^{4} \\
& +\cdots . \tag{3.6}
\end{align*}
$$

And using (1.2), (1.3), 1.8) and binomially expanding RHS of (3.5) we obtain

$$
\begin{align*}
\frac{\left(\mathcal{D}^{n, \beta, \eta, \tau} s(z)\right)^{\alpha}}{z^{\alpha}} c(z)=1+ & \left\{c_{1}+\right. \\
+ & \left.\alpha \Lambda_{2} s_{2}\right\} z+\left\{c_{2}+\alpha \Lambda_{2} s_{2} c_{1}+\alpha \Lambda_{3} s_{3}+\frac{\alpha(\alpha-1)}{2!} \Lambda_{2}^{2} s_{2}^{2}\right\} z^{2} \\
+ & \left\{c_{3}+\right. \\
+ & \alpha \Lambda_{2} s_{2} c_{2}+\left(\alpha \Lambda_{3} s_{3}+\frac{\alpha(\alpha-1)}{2!} \Lambda_{2}^{2} s_{2}^{2}\right) c_{1} \\
& \left.+\frac{\alpha(\alpha-1)}{2!} 2 \Lambda_{2} \Lambda_{3} s_{2} s_{3}+\frac{\alpha(\alpha-1)(\alpha-2)}{3!} \Lambda_{2}^{3} s_{2}^{3}+\alpha \Lambda_{4} s_{4}\right\} z^{3} \\
+\left\{c_{4}\right. & +\alpha \Lambda_{2} s_{2} c_{3}+\left(\alpha \Lambda_{3} s_{3}+\frac{\alpha(\alpha-1)}{2!} \Lambda_{2}^{2} s_{2}^{2}\right) c_{2} \\
& +\left(\alpha \Lambda_{4} s_{4}+\frac{\alpha(\alpha-1)}{2!} 2 \Lambda_{2} \Lambda_{3} s_{2} s_{3}+\frac{\alpha(\alpha-1)(\alpha-2)}{3!} \Lambda_{2}^{3} s_{2}^{3}\right) c_{1} \\
& +\frac{\alpha(\alpha-1)}{2!}\left(2 \Lambda_{2} \Lambda_{4} s_{2} s_{4}+\Lambda_{3}^{2} s_{3}^{2}\right)+\frac{\alpha(\alpha-1)(\alpha-2)}{3!}\left(3 \Lambda_{2}^{2} \Lambda_{3} s_{2}^{2} s_{3}\right)
\end{aligned} \quad \begin{aligned}
& \left.+\frac{\alpha(\alpha-1)(\alpha-2)(\alpha-3)}{4!} \Lambda_{2}^{4} s_{2}^{4}+\alpha \Lambda_{5} s_{5}\right\} z^{4} \tag{3.7}
\end{align*}
$$

Now, if we equate the coefficients in (3.6) and (3.7), then we obtain

$$
\begin{gather*}
\alpha \Lambda_{2} a_{2}=c_{1}+\alpha \Lambda_{2} s_{2} \tag{3.8}\\
\alpha \Lambda_{3} a_{3}+\frac{\alpha(\alpha-1)}{2!} \Lambda_{2}^{2} a_{2}^{2}=c_{2}+\alpha \Lambda_{2} s_{2} c_{1}+\alpha \Lambda_{3} s_{3}+\frac{\alpha(\alpha-1)}{2!} \Lambda_{2}^{2} s_{2}^{2} \tag{3.9}
\end{gather*}
$$

$$
\begin{align*}
& \alpha \Lambda_{4} a_{4}+\frac{\alpha(\alpha-1)}{2!} 2 \Lambda_{2} \Lambda_{3} a_{2} a_{3}+\frac{\alpha(\alpha-1)(\alpha-2)}{3!} \Lambda_{2}^{3} a_{2}^{3}=c_{3}+\alpha \Lambda_{2} s_{2} c_{2} \\
&+\left(\alpha \Lambda_{3} s_{3}+\frac{\alpha(\alpha-1)}{2!} \Lambda_{2}^{2} s_{2}^{2}\right) c_{1}+\frac{\alpha(\alpha-1)}{2!} 2 \Lambda_{2} \Lambda_{3} s_{2} s_{3}+\frac{\alpha(\alpha-1)(\alpha-2)}{3!} \Lambda_{2}^{3} s_{2}^{3}+\alpha \Lambda_{4} s_{4} \tag{3.10}
\end{align*}
$$

and

$$
\begin{gather*}
\alpha \Lambda_{5} a_{5}+\frac{\alpha(\alpha-1)}{2!}\left(2 \Lambda_{2} \Lambda_{4} a_{2} a_{4}+\Lambda_{3}^{2} a_{3}^{2}\right)+\frac{\alpha(\alpha-1)(\alpha-2)}{3!} 3 \Lambda_{2}^{2} \Lambda_{3} a_{2}^{2} a_{3}+\frac{\alpha(\alpha-1)(\alpha-2)(\alpha-3)}{4!} \Lambda_{2}^{4} a_{2}^{4} \\
\quad=c_{4}+\alpha \Lambda_{2} s_{2} c_{3}+\left(\alpha \Lambda_{3} s_{3}+\frac{\alpha(\alpha-1)}{2!} \Lambda_{2}^{2} s_{2}^{2}\right) c_{2} \\
+\left(\alpha \Lambda_{4} s_{4}+\frac{\alpha(\alpha-1)}{2!} 2 \Lambda_{2} \Lambda_{3} s_{2} s_{3}+\frac{\alpha(\alpha-1)(\alpha-2)}{3!} \Lambda_{2}^{3} s_{2}^{3}\right) c_{1} \\
+\frac{\alpha(\alpha-1)}{2!}\left(2 \Lambda_{2} \Lambda_{4} s_{2} s_{4}+\Lambda_{3}^{2} s_{3}^{2}\right)+\frac{\alpha(\alpha-1)(\alpha-2)}{3!} 3 \Lambda_{2}^{2} \Lambda_{3} s_{2}^{2} s_{3}+\frac{\alpha(\alpha-1)(\alpha-2)(\alpha-3)}{4!} \Lambda_{2}^{4} s_{2}^{4}+\alpha \Lambda_{5} s_{5} \tag{3.11}
\end{gather*}
$$

Simple calculation shows that 3.8 leads to

$$
\begin{equation*}
a_{2}=\frac{1}{\alpha \Lambda_{2}} c_{1}+s_{2} \tag{3.12}
\end{equation*}
$$

so that by applying triangle inequality and Lemmas 2.1 and 2.4 in (3.12) lead to inequality (3.1).
Using (3.12) in (3.9) leads to

$$
\begin{equation*}
a_{3}=\frac{1}{\alpha \Lambda_{3}} c_{2}+\frac{\Lambda_{2} s_{2}}{\alpha \Lambda_{3}} c_{1}-\frac{\alpha-1}{2 \alpha^{2} \Lambda_{3}} c_{1}^{2}+s_{3} \tag{3.13}
\end{equation*}
$$

so that by applying triangle inequality we obtain

$$
\left|a_{3}\right|=\left|\frac{1}{\alpha \Lambda_{3}} c_{2}+\frac{\Lambda_{2} s_{2}}{\alpha \Lambda_{3}} c_{1}-\frac{\alpha-1}{2 \alpha^{2} \Lambda_{3}} c_{1}^{2}+s_{3}\right| \leqslant \frac{1}{\alpha \Lambda_{3}}\left\{\left|c_{2}-\frac{\alpha-1}{\alpha} \frac{c_{1}^{2}}{2}\right|+\Lambda_{2}\left|s_{2}\right|\left|c_{1}\right|+\alpha \Lambda_{3}\left|s_{3}\right|\right\}
$$

and using Lemmas 2.1, 2.2 and 2.4 we obtain (3.2.

Using (3.12) and 3.13 in 3.10 leads to

$$
\begin{equation*}
a_{4}=\frac{1}{\alpha \Lambda_{4}} c_{3}+\frac{\Lambda_{2} s_{2}}{\alpha \Lambda_{4}} c_{2}+\frac{\Lambda_{3} s_{3}}{\alpha \Lambda_{4}} c_{1}-\frac{\alpha-1}{\alpha^{2} \Lambda_{4}} c_{1} c_{2}-\frac{(\alpha-1) \Lambda_{2} s_{2}}{2 \alpha^{2} \Lambda_{4}} c_{1}^{2}+\frac{(\alpha-1)(2 \alpha-1)}{6 \alpha^{3} \Lambda_{4}} c_{1}^{3}+s_{4} \tag{3.14}
\end{equation*}
$$

so that by applying triangle inequality,

$$
\begin{aligned}
\left|a_{4}\right|=\left\lvert\, \frac{1}{\alpha \Lambda_{4}} c_{3}\right. & \left.+\frac{\Lambda_{2} s_{2}}{\alpha \Lambda_{4}} c_{2}+\frac{\Lambda_{3} s_{3}}{\alpha \Lambda_{4}} c_{1}-\frac{\alpha-1}{\alpha^{2} \Lambda_{4}} c_{1} c_{2}-\frac{(\alpha-1) \Lambda_{2} s_{2}}{2 \alpha^{2} \Lambda_{4}} c_{1}^{2}+\frac{(\alpha-1)(2 \alpha-1)}{6 \alpha^{3} \Lambda_{4}} c_{1}^{3}+s_{4} \right\rvert\, \\
& \leqslant \frac{1}{\alpha \Lambda_{4}}\left\{\left|c_{3}-\frac{\alpha-1}{\alpha} c_{1} c_{2}\right|+\Lambda_{2}\left|s_{2}\right|\left|c_{2}-\frac{\alpha-1}{\alpha} \frac{c_{1}^{2}}{2}\right|+\Lambda_{3}\left|s_{3}\right|\left|c_{1}\right|+\frac{(\alpha-1)(2 \alpha-1)}{6 \alpha^{2}}\left|c_{1}\right|^{3}+\alpha \Lambda_{4}\left|s_{4}\right|\right\}
\end{aligned}
$$

and using Lemmas 2.1, 2.2, 2.3 and 2.4 we obtain (3.3).
Using (3.12), (3.13) and (3.14) in (3.11) leads to

$$
\begin{aligned}
a_{5}=\frac{1}{\alpha \Lambda_{5}}\left\{c_{4}\right. & +\Lambda_{2} s_{2} c_{3}+\Lambda_{3} s_{3} c_{2}+\left[\Lambda_{4} s_{4}+(\alpha-1)(4-3 \alpha) \Lambda_{2} \Lambda_{3} s_{2} s_{3}\right] c_{1} \\
& -\frac{(\alpha-1) \Lambda_{3} s_{3}}{2 \alpha} c_{1}^{2}+\frac{(\alpha-1)(\alpha-2)(3 \alpha-4) \Lambda_{2} s_{2}}{6 \alpha^{2}} c_{1}^{3}-\frac{(\alpha-1)(2 \alpha-1)}{24 \alpha^{3}} c_{1}^{4} \\
& -\frac{(\alpha-1) \Lambda_{2} s_{2}}{\alpha} c_{1} c_{2}-\frac{(\alpha-1)}{\alpha} c_{1} c_{3}+\frac{(\alpha-1)(2 \alpha-1)}{2 \alpha^{2}} c_{1}^{2} c_{2}-\frac{(\alpha-1)}{2 \alpha} c_{2}^{2} \\
& \left.+\frac{\alpha(\alpha-2)}{2}\left[2 \Lambda_{2} \Lambda_{4} s_{2} s_{4}+\Lambda_{3}^{2} s_{3}^{2}\right]+\alpha \Lambda_{5} s_{5}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\left.\left|a_{5}\right|=\frac{1}{\alpha \Lambda_{5}} \right\rvert\,\left(c_{4}\right. & \left.-\frac{(\alpha-1)}{\alpha} c_{1} c_{3}\right)+\left(\Lambda_{2} s_{2} c_{3}-\frac{(\alpha-1) \Lambda_{2} s_{2}}{\alpha} c_{1} c_{2}\right)+\left(\Lambda_{3} s_{3} c_{2}-\frac{(\alpha-1) \Lambda_{3} s_{3}}{2 \alpha} c_{1}^{2}\right) \\
& +\left(\frac{(\alpha-1)(2 \alpha-1)}{2 \alpha^{2}} c_{1}^{2} c_{2}-\frac{(\alpha-1)(2 \alpha-1)^{2}}{24 \alpha^{3}} c_{1}^{4}\right)+\frac{(\alpha-1)(\alpha-2)(3 \alpha-4) \Lambda_{2} s_{2}}{6 \alpha^{2}} c_{1}^{3} \\
& +\left[\Lambda_{4} s_{4}+(\alpha-1)(4-3 \alpha) \Lambda_{2} \Lambda_{3} s_{2} s_{3}\right] c_{1}-\frac{(\alpha-1)}{2 \alpha} c_{2}^{2} \\
& +\frac{\alpha(\alpha-2)}{2}\left[2 \Lambda_{2} \Lambda_{4} s_{2} s_{4}+\Lambda_{3}^{2} s_{3}^{2}\right]+\alpha \Lambda_{5} s_{5}
\end{aligned}
$$

so that by applying triangle inequality we obtain

$$
\begin{aligned}
\left|a_{5}\right| \leqslant \frac{1}{\alpha \Lambda_{5}}\left\{\mid c_{4}\right. & \left.-\frac{(\alpha-1)}{\alpha} c_{1} c_{3}\left|+\Lambda_{2}\right| s_{2}| | c_{3}-\frac{(\alpha-1)}{\alpha} c_{1} c_{2}\left|+\Lambda_{3}\right| s_{3}| | c_{2}-\frac{(\alpha-1)}{2 \alpha} c_{1}^{2} \right\rvert\, \\
& +\frac{(\alpha-1)(2 \alpha-1)}{2 \alpha^{2}}\left|c_{1}\right|^{2}\left|c_{2}-\frac{(2 \alpha-1)}{6 \alpha} \frac{c_{1}^{2}}{2}\right|+\frac{(\alpha-1)|\alpha-2||3 \alpha-4| \Lambda_{2}\left|s_{2}\right|}{6 \alpha^{2}}\left|c_{1}\right|^{3} \\
& +\left[\Lambda_{4}\left|s_{4}\right|+(\alpha-1)|4-3 \alpha| \Lambda_{2} \Lambda_{3}\left|s_{2}\right|\left|s_{3}\right|\right]\left|c_{1}\right|+\frac{(\alpha-1)}{2 \alpha}\left|c_{2}\right|^{2} \\
& \left.+\frac{\alpha(\alpha-2)}{2}\left[2 \Lambda_{2} \Lambda_{4}\left|s_{2}\right|\left|s_{4}\right|+\Lambda_{3}^{2}\left|s_{3}\right|^{2}\right]+\alpha \Lambda_{5}\left|s_{5}\right|\right\}
\end{aligned}
$$

and using Lemmas 2.1, 2.2, 2.3 and 2.4 we obtain (3.4).
Remark 3.2. Setting $n=0($ or $\tau=0)$ makes inequalities (3.1), (3.2) and (3.3) to become the results of Babalola et al 5].

Theorem 3.3. If $f(z) \in \mathcal{K}^{\star}(n, \beta, \eta, \tau ; \alpha)$, then for $x \in \mathbb{R}$,

$$
\left|a_{3}-x a_{2}^{2}\right| \leqslant \begin{cases}\frac{4}{\alpha \Lambda_{3}}\left(1-\frac{(\alpha-1) \Lambda_{2}^{2}+2 \Lambda_{3} x}{\alpha \Lambda_{2}^{2}}\right) & \text { for } x \leqslant \frac{(1-\alpha) \Lambda_{2}^{2}}{2 \Lambda_{3}}, \tag{3.15}\\ \frac{4}{\alpha \Lambda_{3}} & \text { for } \frac{\left(1-\alpha \Lambda_{2}^{2}\right.}{2 \Lambda_{3}} \leqslant x \leqslant \frac{2 \alpha \Lambda_{2}^{2}+(1-\alpha) \Lambda_{2}^{2}}{2 \Lambda_{3}} \\ \frac{4}{\alpha \Lambda_{3}}\left(\frac{(\alpha-1) \Lambda_{2}^{2}+2 \Lambda_{3} x}{\alpha \Lambda_{2}^{2}}-1\right) & \text { for } x \geqslant \frac{2 \alpha \Lambda_{2}^{2}+(1-\alpha) \Lambda_{2}^{2}}{2 \Lambda_{3}}, \\ \frac{2}{\alpha \Lambda_{3}}\left(\frac{4\left|\Lambda_{2}^{2}-2 \Lambda_{3} x\right|}{\Lambda_{2}}+\alpha \Lambda_{3}(3-4 x)\right) & \text { for } x \leqslant \frac{1}{2} \\ \frac{2}{\alpha \Lambda_{3}}\left(\frac{4\left|\Lambda_{2}^{2}-2 \Lambda_{3} x\right|}{\Lambda_{2}}+\alpha \Lambda_{3}\right) & \text { for } \frac{1}{2} \leqslant x \leqslant 1 \\ \frac{2}{\alpha \Lambda_{3}}\left(\frac{4\left|\Lambda_{2}^{2}-2 \Lambda_{3} x\right|}{\Lambda_{2}}+\alpha \Lambda_{3}(4 x-3)\right) & \text { for } x \geqslant 1\end{cases}
$$

Proof . Consider (3.12) and (3.13) in 1.6 and for $x \in \mathbb{R}$ implies that

$$
\begin{aligned}
\left|a_{3}-x a_{2}^{2}\right| & =\left|\frac{1}{\alpha \Lambda_{3}} c_{2}+\frac{\Lambda_{2} s_{2}}{\alpha \Lambda_{3}} c_{1}-\frac{\alpha-1}{2 \alpha^{2} \Lambda_{3}} c_{1}^{2}+s_{3}-x\left(\frac{1}{\alpha \Lambda_{2}} c_{1}+s_{2}\right)^{2}\right| \\
& =\frac{1}{\alpha \Lambda_{3}}\left|c_{2}-\left(\frac{(\alpha-1) \Lambda_{2}^{2}+2 \Lambda_{3} x}{\alpha \Lambda_{2}^{2}}\right) \frac{c_{1}^{2}}{2}+\frac{\left(\Lambda_{2}^{2}-2 \Lambda_{3} x\right) s_{2}}{\Lambda_{2}} c_{1}+\alpha \Lambda_{3}\left(s_{3}-x s_{2}^{2}\right)\right| \\
& \leqslant \frac{1}{\alpha \Lambda_{3}}\left|c_{2}-\frac{(\alpha-1) \Lambda_{2}^{2}+2 \Lambda_{3} x}{\alpha \Lambda_{2}^{2}} \frac{c_{1}^{2}}{2}\right|+\frac{1}{\alpha \Lambda_{3}}\left|\frac{\Lambda_{2}^{2}-2 \Lambda_{3} x s_{2}}{\Lambda_{2}} c_{1}+\alpha \Lambda_{3}\left(s_{3}-x s_{2}^{2}\right)\right| .
\end{aligned}
$$

It is easy to see that

$$
\begin{align*}
&\left|a_{3}-x a_{2}^{2}\right| \leqslant \frac{2}{\alpha \Lambda_{3}}\left|c_{2}-\frac{(\alpha-1) \Lambda_{2}^{2}+2 \Lambda_{3} x}{\alpha \Lambda_{2}^{2}} \frac{c_{1}^{2}}{2}\right| \\
& \text { if }\left|c_{2}-\frac{(\alpha-1) \Lambda_{2}^{2}+2 \Lambda_{3} x}{\alpha \Lambda_{2}^{2}} \frac{c_{1}^{2}}{2}\right| \geqslant\left|\frac{\Lambda_{2}^{2}-2 \Lambda_{3} x s_{2}}{\Lambda_{2}} c_{1}+\alpha \Lambda_{3}\left(s_{3}-x s_{2}^{2}\right)\right| \tag{3.16}
\end{align*}
$$

and

$$
\begin{align*}
& \left|a_{3}-x a_{2}^{2}\right| \leqslant \frac{2}{\alpha \Lambda_{3}}\left|\frac{\Lambda_{2}^{2}-2 \Lambda_{3} x s_{2}}{\Lambda_{2}} c_{1}+\alpha \Lambda_{3}\left(s_{3}-x s_{2}^{2}\right)\right| \\
& \quad \text { if }\left|c_{2}-\frac{(\alpha-1) \Lambda_{2}^{2}+2 \Lambda_{3} x}{\alpha \Lambda_{2}^{2}} \frac{c_{1}^{2}}{2}\right| \leqslant\left|\frac{\Lambda_{2}^{2}-2 \Lambda_{3} x s_{2}}{\Lambda_{2}} c_{1}+\alpha \Lambda_{3}\left(s_{3}-x s_{2}^{2}\right)\right| . \tag{3.17}
\end{align*}
$$

Applying Lemma 2.2 in (3.16) shows that

$$
\left|a_{3}-x a_{2}^{2}\right| \leqslant \frac{2}{\alpha \Lambda_{3}}\left|c_{2}-u \frac{c_{1}^{2}}{2}\right| \quad \text { where } u=\frac{(\alpha-1) \Lambda_{2}^{2}+2 \Lambda_{3} x}{\alpha \Lambda_{2}^{2}}
$$

so that for u in the intervals $u \leqslant 0,0 \leqslant u \leqslant 2$ and $u \geqslant 2$ we obtain the first three results in (3.15).
On the other hand, (3.17) simplifies to

$$
\left|a_{3}-x a_{2}^{2}\right| \leqslant \frac{2}{\alpha \Lambda_{3}}\left\{\frac{\left|\Lambda_{2}^{2}-2 \Lambda_{3} x\right|\left|s_{2}\right|}{\Lambda_{2}}\left|c_{1}\right|+\alpha \Lambda_{3}\left|s_{3}-x s_{2}^{2}\right|\right\}
$$

so that by applying Lemmas $2.1,2.4$ and 2.5 we obtain the last three results in 3.15 and the proof is complete.

Acknowledgments

The authors sincerely appreciate the referees' time taken to review and give constructive comments which improved this research.

References

[1] A.O. Ajiboye and K.O. Babalola, Linear sum of analytic functions defined by a convolution operator, J. Nigerian Math. Soc. 39 (2020), 173-182.
[2] F.M. Al-Oboudi, On univalent functions defined by a generalised Sălăgean operator, Intern. J. Math. Math. Sci. 2004 (2004), 1429-1436.
[3] M. Arif, J. Dziok, M. Raza and J. Sokól, On products of multivalent close-to-star functions, J. Inequal. Appl. 5 (2015), 1-14.
[4] R.O. Ayinla and T.O. Opoola, The Fekete Szegö functional and second Hankel determinant for a certain subclass of analytic functions, Appl. Math. 10 (2019), 1071-1078.
[5] K.O. Babalola, A.O. Olasupo and C.N. Ejieji, Early coefficients of close-to-star functions of type α, J. Nigerian Math. Soc. 31 (2012), 185-189.
[6] K.O. Babalola and T.O. Opoola, On the coefficients of a certain class of analytic functions, Adv. Inequal. Ser. 1 (2008), 1-13.
[7] R.A. Bello and T.O. Opoola, Upper bounds for Fekete-Szegö functions and the second Hankel determinants for a class of starlike functions, Intern. J. Math. 13 (2017), 34-39.
[8] M. Fekete and G. Szegö, Eine bemerkung über ungerade schlichte funktionen, J. Lond. Math. Soc. 8 (1933), 85-89.
[9] A.A. James, A.O. Lasode and B.O. Moses, Geometric conditions for starlikeness and convexity of univalent functions, IOSR J. Math. 3 (2012), 15-23.
[10] F.R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12.
[11] A.O. Lasode and T.O. Opoola, Fekete-Szegö estimates and second Hankel determinant for a generalized subfamily of analytic functions defined by q-differential operator, Gulf J. Math. 11 (2021), 36-43.
[12] A. Lecko and Y.J. Sim, Coefficient problems in the subclasses of close-to-star functions, Results Math. 74 (2019), 1-14.
[13] A.E. Livingston, The coefficients of multivalent close-to-convex functions, Proc. Amer. Math. Soc. 21 (1969), 545-552.
[14] T.O. Opoola, On a subclass of univalent functions defined by a generalised differential operator, Intern. J. Math. Anal. 11 (2017), 869-876.
[15] M. Reade, On close-to-convex univalent functions, Mich. Math. J. 3 (1955), 59--62.
[16] M.S. Robertson, Analytic functions star-like in one direction, Amer. J. Math. 58 (1936), 465-472.
[17] G.S. Sălăgean, Subclasses of univalent functions, Lect. Notes Math. 1013 (1983), 362-372.
[18] C. Selvaraj and S. Logu, A subclass of close-to-star functions, Malay. J. Math. 5 (2019), 290-295.
[19] A. Sen, M. Aydoğan and Y. Polatoğlu, Distortion estimate and the radius of starlikeness of Janowski close-to-star functions, Theory Appl. Math. Comput. Sci. 1 (2011), 89-92.
[20] R. Singh, On Bazilevič functions, Proc. Amer. Math. Soc. 38 (1973), 261-271.
[21] D. K. Thomas, N. Tuneski and A. Vasudevarao, Univalent Functions: A Primer, Walter de Gruyter Inc., Berlin, 2018.
[22] P. Zaprawa, On close-to-star functions, Bull. Belg. Math. Soc. 16 (2009), 469-480.

[^0]: * Corresponding author

 Email addresses: lasode_ayo@yahoo.com (Ayotunde Olajide Lasode), amajiboye99@gmail.com (Aminat Olabisi Ajiboye), rasheed.ayinla@kwasu.edu.ng (Rasheed Olawale Ayinla)

