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Abstract

In this article, the concept of n-sequences in topological spaces has been introduced which is new to the existing
literature. We study the sequential limit aspect of statistical convergence for such sequences. Besides, the notions of
subsequences, limit points, statistical limits points, and statistical cluster points in topological spaces have been given
for n-sequences. This material contains a detailed explanation of inclusion relations between these points spaces and
their basic properties. We also introduce sn and s∗n-convergent spaces and discuss some of their properties.
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1 Introduction and Preliminaries

Fast [1] and Steinhaus [3] introduced the idea of statistical convergence and several other visualized different
approaches of this concept, e.g., sequential limit, summability method etc., (for reference see [1], [2], [3]). But
previously most of the work in this domain was done on real or complex number system. Kolk [4] was the first to
study it on Banach spaces which was further developed in topological spaces and established the topological notion of
this convergence [5]. In other direction, some authors also explored this idea in double and triple sequences and some
other spaces (see [6], [7], [8], [9], [14] , [15], [16], [18] and references therein).

However, the literature still lacks the concept in the setting of n-sequences. Before proceeding further we give the
definition of n-sequence.

Definition 1.1. An n-sequence is a function whose domain is either Nn or subset of Nn.

In the sequel, we take Nn as an ordered set, it can easily be proven by using the lexicographical order on Nn, i.e.,
we compare it component-wise.

For the sake of completeness, we recall the definition of statistical convergence in a topological space.
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Definition 1.2. [10] A sequence (xn), n ∈ N in a topological spaceX is said to be converge statistically (s-convergent)
to x ∈ X, if for every neighbourhood U of x, δ({n ∈ N : xn /∈ U}) = 0. We write x = s-limxn.

If X = R, then one can say that above definition is equivalent to the following statement:

A topological space X is s-convergent to x ∈ X, if there exists a subset A of N with δ(A) = 1 such that the sequence
(xn) in A converges to x, i.e., for every neighbourhood V of x, there exists n0 ∈ N such that xn ∈ V for every n ≥ n0.

This fact leads to a different type of convergence in topological space.

Definition 1.3. A sequence (xn), n ∈ N in a topological space X is said to be s∗- convergence to x ∈ X, if there is
A ⊂ N with δ(A) = 1 such that lim

m→∞,m∈A
xm = x. We write x = s∗-limxn.

The incentive of this paper is the realization of remarkable application of n-sequence in different sectors such
as physical, computer and biological sciences. It could help in the study of multiple sequence alignment and protein
topology. Multiple sequence alignments are important in many application including tree elements, secondary structure
prediction and critical residue identification.

In this paper, we redefine the concept of s and s∗-convergence for n-sequences in a topological space. We give some
inclusion relation and necessary and sufficient condition for its convergence. Also, we introduce n-statistical limit and
cluster points and discuss their inclusion relations and some of their sequential properties. We exemplify our study to
explain the theory better. The topological terminologies used in this paper have been taken from [11].

2 Statistical n-limit and n-cluster Point spaces

Fridy [12] introduced statistical convergence of real numbers. Some authors also defined it in topological spaces.
Here we introduce limit points, statistical limit points and cluster points of n-sequence in a topological space and
establish some inclusion relation among them. We also discuss some important topological properties of n-sequence
space. But first we give the notations which we will be using throughout the paper. The asymptotic (or natural)
density d(A) for sets A of natural numbers is a central tool in number theory:

d(A) = lim
n→∞

|A ∩ [1, n]|
n

, (provided the limit exists).

Notations: The topological terminologies used in this paper have been taken from [11]. Throughout the paper,
our topological space is a Hausdorff space. It is to be noted that the work is in n-sequences. So from the definition of
n-sequence, in the sequence (xi1,i2,...,in), i1, i2, ..., in ∈ N, unless otherwise stated.

Definition 2.1. Let X be a topological space. A sequence x = (xi1,i2,...,in), i1, i2, ..., in ∈ N, in X is said to have a
limit point L if each neighbourhood of L contains infinite number of member of x. The set of all limit point of x is
denoted by Ln(x).

On merging statistical concept and above definition, we intend to define statistical limit point. But for that, we
need to define n-dimensional subsequence and upper density.

Definition 2.2. Let A ⊆ Nn, for i1, i2, ..., in ∈ N set

A(i1, i2, ..., in) = {(k1, k2, ..., kn) ∈ Nn : k1 ≤ i1, k2 ≤ i2, ..., kn ≤ in}.

We define upper n-density of A as follows:

δ̄n(A) = lim sup
i1,i2,...,in

|A(i1, i2, ..., in)|
n∏

j=1

ij

= lim sup
i1,i2,...,in

|A ∩ {[1, i1]× [1, i2]× ...× [1, in]}|
n∏

j=1

ij

.

The lower n-density of A can be defined in a similar manner as of upper density by taking lim inf instead of lim sup.
We denote it as δn(A). If limits exist and δ̄n(A) = δn(A) then n-density of A is defined as

δn(A) = lim
i1,i2,...,in

|A(i1, i2, ..., in)|
n∏

j=1

ij

.
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Example 2.3. Consider the set A = {(i1, i2, ..., in) ∈ Nn : ij is even, j = 1, 2, ..., n}. Then upper n-density of A will
be

δ̄n(A) =
1

2n
.

Definition 2.4. Let x = (xi1,i2,...,in), i1, i2, ..., in ∈ N be an n-sequence. Choose

K = {((m1)i1 , (m2)i2 , ..., (mn)in) ∈ Nn : (i1, i2, ..., in) ∈ Nn},

such that K is an strictly increasing subset of Nn and δ̄n(K) > 0. Then the sequence (x(m1)i1 ,(m2)i2 ,...,(mn)in
) or

(xi1,i2,...,in)(i1,i2,...,in)∈K is called a subsequence of x.

Example 2.5. Let x = (xi1,i2,...,in), i1, i2, ..., in ∈ N, be an n-sequence. Take

K = {(i1, i2, ..., in) ∈ Nn : i1 is even},

so that order of elements of K is same as of Nn. Then (xi1,i2,...,in), i1, i2, ..., in ∈ K is a subsequence of x.

Definition 2.6. A sequence x = (xi1,i2,...,in), i1, i2, ..., in ∈ N, is said to have a statistical limit point L, if ∃ a
subsequence K of Nn, δn(K) ̸= 0 (i.e. its upper density is positive or density does not exist) such that

lim
(i1,i2,...,in)∈K

xi1,i2,...,in = L.

The set of statistical limit points of x is denoted by ∧n(x).

Example 2.7. Let X = R with the usual topology. Define

xi1,i2,...,in =

{
1, if ij is prime, j = 1, 2, ..., n;

2, otherwise.

Then, Ln(x) = {1, 2} and ∧n(x) = {2}. From Definition 2.1 & 2.6 it is clear that ∧n(x) ⊆ Ln(x). Now, we give
examples which shows that these two could be same or very different.

Example 2.8. Consider X = Rn with Euclidean topology. Define

xi1,i2,...,in =

{
(i1, 0, ..., 0), if ij is prime, j = 1, 2, ..., n;

(i1, i2, ..., in), otherwise.

Then, ∧n(x) = ϕ and Ln(x) = ϕ.

Now take Qn = {((r1)i1 , (r2)i2 , ..., (rn)in) : (i1, i2, ..., in) ∈ Nn} as an increasing subset of Rn and define

xi1,i2,...,in =

{
((r1)i1 , (r2)i2 , ..., (rn)in), if ij is prime, j = 1, 2, ..., n;

(i1, i2, ..., in), otherwise.

Then, ∧n(x) = ∅, but Ln(x) = Rn, because Qn is a dense subset of Rn.

Definition 2.9. Let x = (xi1,i2,...,in) ∈ X, i1, i2, ..., in ∈ N. Then L is said to be a statistical cluster point of x if for
each neighbourhood U of L,

δn({(i1, i2, ..., in) ∈ Nn : xi1,i2,...,in ∈ U}) ̸= 0.

The set of all statistical cluster point of x is denoted by Γn(x).

Consider Example 2.7, Γn(x) = {2}. It is clear that Γn(x) ⊆ Ln(x). It may seem that statistical limit points and
statistical cluster points are equivalent, but its not the case.
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Example 2.10. Consider the sets Aj = {(2j−1i1, i2, ..., in) ∈ Nn : i1 is odd}, j ∈ N. Then δn(Aj) =
1

2j
. Let

xi1,i2,...,in =

{
1
j , (i1, i2, ..., in) ∈ Aj ;

1, otherwise.

Then,

Ln(x) = {0} ∪
{
1

j

}
,∧n(x) =

{
1

j

}
and Γn(x) = {0} ∪

{
1

j

}
; j ∈ N.

Let X be a topological space. Then,

1. an Fσ set in X, is a set which can be written as countable union of closed subsets of X.

2. X is a Lindelöf space if every open cover in X has a countable subcover.

We now establish a theorem to support the inclusion relation between ∧n(x) and Ln(x).

Theorem 2.11. Let X be a topological space and x = (xi1,i2,...,in), i1, i2, ..., in ∈ N, be a sequence in X. Then,
∧n(x) ⊆ Γn(x).

Proof . Suppose L ∈ ∧n(x). Then there exists an increasing subset K of Nn such that

K = {((m1)i1 , (m2)i2 , ..., (mn)in) : (i1, i2, ..., in) ∈ Nn}

with δn(K) ̸= 0 such that
lim

(i1,i2,...,in)∈K
xi1,i2,...,in = L.

Then for each neighbourhood U of L,

δn({(i1, i2, ..., in) ∈ K : xi1,i2,...,in /∈ U}) = 0

⇒ δn({(i1, i2, ..., in) ∈ K : xi1,i2,...,in ∈ U}) ̸= 0

⇒ δn({(i1, i2, ..., in) ∈ Nn : xi1,i2,...,in ∈ U}) ̸= 0

⇒ L ∈ Γn(x).

This proved the theorem. □

Theorem 2.12. Let X be a topological space and x = (xi1,i2,...,in), i1, i2, ..., in ∈ N, be a sequence in X. Then the
set Γn(x) is a closed set.

Proof . Let L be a limit point of Γn(x). Then from Definition 2.1, for a given neighbourhood U of L, U contains a
point of Γn(x), other than l, say L. Choose a neighbourhood V of L, so that V ⊆ U. Also, L ∈ Γn(x). Therefore

δn({(i1, i2, ..., in) ∈ Nn : xi1,i2,...,in ∈ V }) ̸= 0.

As V ⊆ U,
δn({(i1, i2, ..., in) ∈ Nn : xi1,i2,...,in ∈ U}) ̸= 0.

Hence,
l ∈ Γn(x).

□

Theorem 2.13. Let X be a topological space and x = (xi1,i2,...,in) and y = (yi1,i2,...,in) are sequences in X such that
xi1,i2,...,in = yi1,i2,...,in , for almost all (i1, i2, ..., in) ∈ Nn. Then ∧n(x) = ∧n(y) and Γn(x) = Γn(y).

Proof . Let L ∈ ∧n(x). Then by Definition 2.6, ∃ a subsequence K; δn(K) ̸= 0 such that

lim
(i1,i2,...,in)∈K

xi1,i2,...,in = L.
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Also, it is given that,
xi1,i2,...,in = yi1,i2,...,in for almost all (i1, i2, ..., in) ∈ Nn.

Therefore,
δn({(i1, i2, ..., in) ∈ Nn : xi1,i2,...,in ̸= yi1,i2,...,in}) = 0.

Clearly,
δn({(i1, i2, ..., in) ∈ K : xi1,i2,...,in ̸= yi1,i2,...,in}) = 0,

or we can say that
δn({(i1, i2, ..., in) ∈ K : xi1,i2,...,in = yi1,i2,...,in}) ̸= 0.

Since x is convergent to L in K, we get a subset K ′ of K such that δn(K
′) ̸= 0 and y is convergent to L in K ′. Thus,

L ∈ ∧n(y). Hence, ∧n(x) ⊆ ∧n(y). By symmetry, ∧n(y) ⊆ ∧n(x). Therefore, ∧n(x) = ∧n(y). In a similar way, one can
show that Γn(x) = Γn(y). □

Theorem 2.14. Let X be a hereditarily Lindelöf space and x = (xi1,i2,...,in), i1, i2, ..., in ∈ N, be a sequences in X,
then there exists a sequence y = (yi1,i2,...,in) in X such that Ln(y) = Γn(x) and xi1,i2,...,in = yi1,i2,...,in , for almost all
(i1, i2, ..., in) ∈ Nn, also range of y is a subset of range of x.

Proof . We know that Γn(x) ⊆ Ln(x), if equality holds then by previous theorem it is trivial that Ln(y) = Γn(x).

Suppose Γn(x) is a proper subset of Ln(x). Then for each α ∈ Ln(x)\Γn(x), we can choose a neighbourhood Uα of
α such that

δn({(i1, i2, ..., in) ∈ Nn : xi1,i2,...,in ∈ Uα}) = 0.

We collect all such Uα’s and make an open cover {Uα : α ∈ Ln(x)\Γn(x)} of the set Ln(x)\Γn(x). Since X is a
hereditarily Lindelöf space, we get a countable subcover {Uαj

: j ∈ N} of the open cover. As αj ∈ Ln(x)\Γn(x), j ∈ N,
so for each neighbourhood Uαj

, we have a subsequence (xi1,i2,...,in)(i1,i2,...,in)∈Kj of (xi1,i2,...,in) with δn(K
j) = 0.

Corollary 9 of [13] ensures that with the help of countable sets Kj , we can make a single set K in Nn such that
δn(K) = 0 and for each j ∈ N, {(i1, i2, ..., in) ∈ Nn : xi1,i2,...,in ∈ Uαj}\K is a finite set.

Let Nn\K = {((m1)i1 , (m2)i2 , ..., (mn)in) : (i1, i2, ..., in) ∈ Nn}. We define

yi1,i2,...,in =

{
x((m1)i1 ,(m2)i2 ,...,(mn)in ):(i1,i2,...,in)∈Nn , if (i1, i2, ..., in) ∈ K;

xi1,i2,...,in , if (i1, i2, ..., in) ∈ Nn\K.
(2.1)

It is clear that
δn({(i1, i2, ..., in) ∈ Nn : yi1,i2,...,in ̸= xi1,i2,...,in}) = 0. (2.2)

So by Theorem 2.13,
Γn(x) = Γn(y). (2.3)

Since δn(K) = 0, therefore the subsequence (x((m1)i1 ,(m2)i2 ,...,(mn)in )) of (yi1,i2,...,in) has no accumulation point in
Ln(x)\Γn(x) and thus no statistical limit point of (yi1,i2,...,in). Therefore, Ln(y) = Γn(y) and thus, Ln(y) = Γn(x).

Equation (2.2) and (2.1) gives proof for the later part of the theorem.

□

Theorem 2.15. Let X be a first countable space and x = (xi1,i2,...,in), i1, i2, ..., in ∈ N, be a sequences in X. Then
the set ∧n(x) is an Fσ set.

Proof . For any m ∈ N,

Fm =

{
l ∈ X : ∃K ⊆ Nn lim

i1,i2,...,in∈K
xi1,i2,...,in = l & δn(K) ≥ 1

m

}
,

where
K = {((m1)i1 , (m2)i2 , ..., (mn)in) : (i1, i2, ..., in) ∈ Nn}.

It is clear that ∧n(x) = ∪∞
m=1Fm, so if we show that Fm is a closed set of X, then our work is done.

Let L be a limit point of Fm. Then for a given neighbourhood U of L, U contains a point of Fm, other than L.
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Since X is a first countable space, so for each L in X, there exists sequence N1, N2, ... of neighbourhood of L so
that for any neighbourhood U of L, ∃ j such that Nj ⊂ U. So we get a sequence lj in Fm converging to L.

As lj ∈ Fm, so for every lj we can choose a subsequence A(j) ⊂ Nn so that

lim
i1,i2,...,in∈A(j)

xi1,i2,...,in = lj&δ̄n(A
(j)) ≥ 1

m
.

Now, choose a sequence ϵj of the real number converging to zero, then there is a sequence (i1, i2, . . . , in)1 <
(i1, i2, . . . , in)2 < · · · in Nn such that∣∣A(j) ∩

{(
(i1)j−1, (i1)j

]
×
(
(i2)j−1, (i2)j

]
× ...×

(
(in)j−1, (in)j

]} ∣∣
n∏

k=1

(ik)j

≥ 1

m
− ϵj , j ∈ N.

If we take A = ∪∞
j=1{A(j) ∩ {

(
(i1)j−1, (i1)j

]
×
(
(i2)j−1, (i2)j

]
× ...×

(
(in)j−1, (in)j

]
}}, then δ̄n(A) ≥ 1

m
.

We arrange A as increasing ordered set, let

A = {(a1, a2, ..., an)1 < (a1, a2, ..., an)2 < ... < (a1, a2, ..., an)r < ...}.

As
lim

i1,i2,...,in
(xi1,i2,...,in)i1,i2,...,in∈A(j) = Lj ,

so there are only finite number of Lj , say L1, L2, ..., Lt which are not in U,

Also,
A ⊂ ∪{Aj : j ≥ t} ⊂ {i1, i2, ..., in ∈ Nn : xi1,i2,...,in ∈ U}\{finite set}.

So,
lim
r→∞

x(a1,a2,...,an)r = L.

Therefore, L ∈ Fm, that is Fm is closed. Hence, ∧n(x) is an Fσ set in X. □

Note 1. hcld(X) = ω denotes the fact that all closed subset of the space X are separable.[5]

Lemma 2.16. Let X be a topological space such that hcld(X) = ω. Then for each closed set F ⊂ X, there exists a
sequence x = (xi1,i2,...,in), i1, i2, ..., in ∈ N, in X such that F = Ln(X).

Proof . As F is a closed subset of X, it is separable, so it has a countable dense subset of F , say, M = {mj : j ∈ N}.
We decompose Nn into pairwise disjoint infinite sets Nn = ∪j∈NA

j . Define x = (xi1,i2,...,in) as:

xi1,i2,...,in = mj for each (i1, i2, ..., in) ∈ Aj .

Let L ∈ Ln(x) and U be a neighbourhood of L. So there are infinite (i1, i2, ..., in) ∈ Nn such that xi1,i2,...,in ∈ U, thus
infinite number of mj in U . Therefore, L is a limit point of M. But M ⊂ F , so L is a limit point of F . Since F is
closed, L ∈ F. We get Ln(x) ⊂ F.

Now suppose L ∈ F and V be a neighbourhood of L. Take an mk in V . From the definition of the sequence x, it is
clear that there are infinite number of (i1, i2, ..., in) in Nn, so that xi1,i2,...,in ∈ V. Thus, L ∈ Ln(x), hence F ⊂ Ln(x).
□

Theorem 2.17. Let X be a topological space such that hcld(X) = ω and M ⊂ X is an arbitrary Fσ set. Then there
exists a sequence (xi1,i2,...,in), i1, i2, ..., in ∈ N, in X such that M = ∧n(x).

Proof . Since M is an Fσ set, we can write M = ∪j∈NMj , where each Mj is a closed subset of X. From Lemma
2.16, each Mj contains a sequence say (x(i1,i2,...,in)j ) so that Ln(x(i1,i2,...,in)j ) = Mj . Decompose Nn = ∪j∈NA

j so that

δn(A
j) = 1

2j and δn(Nn\ ∪j
k=1 A

k) → 0, as k → ∞ [see Example 2.10]. Further, we decompose each Aj into pairwise

disjoint sets as Aj = ∪k∈NB
j
k, where δ̄n(B

j
k) =

1
2j ; j ∈ N. Now we define x = (xi1,i2,...,in) as:
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xi1,i2,...,in = x(i1,i2,...,in)
j
k
for each i1, i2, ..., in ∈ Bj

k. We show M = ∧n(x).

Suppose there is a subsequence (x(i1,i2,...,in)i) so that lim
i∈N

x(i1,i2,...,in)i = L, L /∈ M.

Then L’s neighbourhood contains only finitely many members of subsequence in M. Therefore for every j, ∪j
k=1Mk

also contains finitely many (i1, i2, ..., in)1, (i1, i2, ..., in)2, ..., (i1, i2, ..., in)m. Thus, L /∈ ∧n(x).

Further suppose l ∈ M, then there exists j ∈ N such that l ∈ Mj . If subsequence
(
x(i1,i2,...,in)

j
ik

)
of

(
x(i1,i2,...,in)

j
k

)
converges to l, then for any 0 < ϵ < 1

2j , there exists a sequence (s1, s2, ..., sn)1 < (s1, s2, ..., sn)2 < ... in Nn such that∣∣Bj
i,k ∩

{(
(s1)i−1, (s1)i

]
×
(
(s2)i−1, (s2)i

]
× ...×

(
(sn)i−1, (sn)i

]} ∣∣
n∏

m=1
(sm)i

≥ 1

2j
− ϵ.

Put B = ∪∞
i=1

{
Bj

i,k ∩
{(

(s1)i−1, (s1)i
]
×
(
(s2)i−1, (s2)i

]
× ...×

(
(sn)i−1, (sn)i

]}}
.

Then, δn(B) ≥ 1
2j − ϵ. Therefore, lim

i1,i2,...,in
(xi1,i2,...,in)(i1,i2,...,in)∈B = l. Hence, l ∈ ∧n(x). □

Theorem 2.18. Let X be a topological space such that hcld(X) = ω. Then for each closed set F ⊂ X, there exists
a sequence x = (xi1,i2,...,in), i1, i2, ..., in ∈ N, in X such that F = Γn(X).

Proof: The proof can be done in a similar way of Lemma 2.16 and Theorem 2.17.

3 s∗n convergence and its basic Properties

In this section, we define some new type of n-convergence in topological space and discuss their basic properties.

Definition 3.1. Let X be a topological space. An n-sequence x = (xi1,i2,...,in), i1, i2, ..., in ∈ N, in X converges to
L ∈ X in Pringsheim sense, if for every open set U ⊆ X containing L, there exists an n0 ∈ N such that

xi1,i2,...,in ∈ U, ∀i1, i2, ..., in ≥ n0.

Then we write lim
i1,i2,...,in

xi1,i2,...,in = L.

By limit of n-sequence we mean limit in Pringsheim sense. For the sake of simplicity we will just call it lim instead
of P -lim .

Definition 3.2. Let x = (xi1,i2,...,in), i1, i2, ..., in ∈ N, be an n-sequence in X. Then x is said to converge statistically
or sn-converge to L ∈ X, if for every neighbourhood U of L,

δn({(i1, i2, ..., in) ∈ Nn : xi1,i2,...,in /∈ U}) = 0.

We denote it as sn-limx = L.

Remark 3.3. If we take X = R and extend the result of [10] mentioned above in the Definition 1.2, then we can say
that above definition is equivalent to the following statement:

(xi1,i2,...,in) is sn-convergent to L ∈ X, if there exists a subset A of Nn with δn(A) = 1 such that the sequence
(xi1,i2,...,in) in A is convergent to L, i.e., for every neighbourhood V of L there is a number n0 ∈ N, such that
xi1,i2,...,in ∈ V for every i1, i2, ..., in ≥ n0.

We use this phenomenon to extend Definition 1.3 to n-sequences.

Definition 3.4. Let x = (xi1,i2,...,in) ∈ X; i1, i2, ..., in ∈ N. Then we say that x is s∗n-convergent to L ∈ X, if there
exists A ⊂ Nn, δn(A) = 1 such that

lim
i1,i2,...,in

x = L, for (i1, i2, ..., in) ∈ A.

We denote it as s∗n-limx = L.
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Theorem 3.5. Let x = (xi1,i2,...,in), i1, i2, ..., in ∈ N, be a statistically convergent n-sequence in X. Then it has a
unique sn-limit.

Proof . Suppose x = (xi1,i2,...,in) has two sn-limit, say L and l. Then there exists two neighbourhood U and V of L
and l, respectively, such that U ∩ V = ϕ and

δn({(i1, i2, ..., in) ∈ Nn : xi1,i2,...,in ∈ U c}) = 0;

δn({(i1, i2, ..., in) ∈ Nn : xi1,i2,...,in ∈ V c}) = 0.

Now,

δn({(i1, i2, ..., in) ∈ Nn : xi1,i2,...,in ∈ (U ∩ V )c})
=δn({(i1, i2, ..., in) ∈ Nn : xi1,i2,...,in ∈ (U c ∪ V c)})
≤δn({(i1, i2, ..., in) ∈ Nn : xi1,i2,...,in ∈ U c})
+ δn({(i1, i2, ..., in) ∈ Nn : xi1,i2,...,in ∈ V c})

=0.

Therefore,
δn({(i1, i2, ..., in) ∈ Nn : xi1,i2,...,in ∈ (U ∩ V )}) = 1,

which is a contradiction as U ∩ V = ϕ. □

Theorem 3.6. Let x = (xi1,i2,...,in), i1, i2, ..., in ∈ N, be an n-sequence in X. If s∗n- lim
i1,i2,...,in

x = L, then sn-

lim
i1,i2,...,in

x = L.

Proof . Let U be a neighbourhood of L and s∗n-limx = L, then there exists A ⊂ Nn, δn(A) = 1 and n0 = n0(U)
such that (xi1,i2,...,in) ∈ U , for i1, i2, ..., in ≥ n0 and (i1, i2, ..., in) in A.

Then,
{(i1, i2, ..., in) ∈ Nn : xi1,i2,...,in /∈ U} ⊂ {1, 2, ..., n0} ∪ {Nn\A}.

Since δn({1, 2, ..., n0} ∪ {Nn\A}) = 0, sn- lim
i1,i2,...,in

x = L. □

Corollary 3.7. If s∗n-limx = L, then L is unique.

The converse of Theorem 3.6 holds for first countable space.

Theorem 3.8. Let X be a first countable space. If a sequence x = (xi1,i2,...,in), i1, i2, ..., in ∈ N, in X is statistically
convergent to L, then it is also s∗n-convergent to L.

Proof . Fix a countable decreasing local base U1 ⊃ U2 ⊃ ... at L and define the set

Aj = {(i1, i2, ..., in) ∈ Nn : xi1,i2,...,in ∈ Uj}; j ∈ N.

It is clear that A1 ⊃ A2 ⊃ ... as U1 ⊃ U2 ⊃ ... .

Now we assert that δn(Aj) = 1.

Since (xi1,i2,...,in) is statistically convergent to L, for each j ∈ N,

δn({(i1, i2, ..., in) ∈ Nn : xi1,i2,...,in /∈ Uj}) = 0.

Hence, δn(Aj) = 1.

Take an element (i1, i2, ..., in) ∈ A1, corresponding to which we have a k1 = max(i1, i2, ..., in) in N. Now δn(A2) = 1,
therefore we can choose an (i1, i2, ..., in) in A2, corresponding to which we have a k2 = max(i1, i2, ..., in) so that k2 > k1
and for every m ≥ k2,

|A2(m)|
m

=
|{(i1, i2, ..., in) ∈ A2 : max(i1, i2, ..., in) ≤ m}|

m
>

1

2
.



Introducing n-sequences and study of their topological properties 2397

Similarly, we get k′js for every A′
js such that k1 < k2 < ... and for each m ≥ kj ,

|Aj(m)|
m

=
|{(i1, i2, ..., in) ∈ Aj : max(i1, i2, ..., in) ≤ m}|

m
> 1− 1

j
.

Now we define a set A ⊂ Nn as follows:

If max (i1, i2, ..., in) ≤ k1, then (i1, i2, ..., in) ∈ A; if j ≥ 1 and kj < max (i1, i2, ..., in) ≤ kj+1, then (i1, i2, ..., in) ∈ A
if and only if (i1, i2, ..., in) ∈ Aj . Now if m ∈ N such that kj ≤ m ≤ kj+1, then

|A(m)|
m

≥ |Aj(m)|
m

> 1− 1

j
.

Therefore, δn(A) = 1.

To show (xi1,i2,...,in)i1,i2,...,in∈A is convergent to L. Let V be a neighbourhood of L, since X is a first countable
space; Uj ⊂ V.

Suppose (i1, i2, ..., in) ∈ A, set max(i1, i2, ..., in) = m. If m ≥ kj , then ∃ p ≥ j with kp ≤ m ≤ kp+1; from the
definition of A, (i1, i2, ..., in) ∈ Ap.

Hence xi1,i2,...,in ∈ Up ⊂ Uj ⊂ V , i.e. for (i1, i2, ..., in) ∈ A, ,x = (xi1,i2,...,in) is convergent to L.

Therefore, (xi1,i2,...,in) is s
∗
n-convergent to L. □

We now state some important and basic facts without proof, since these can be established using standard tech-
niques. We are not giving proof as it is simple or direct from the single sequences.

1. A subsequence of a statistically convergent sequence need not be statistically convergent.

2. Let A ⊆ Nn, then A is statistical dense if δn(A) = 1.

3. Union and intersection of two statistically dense subsets in Nn are also statistically dense.

4. Let (xi1,i2,...,in), i1, i2, ..., in ∈ N, be an n-sequence and K is statistically dense in Nn. Then subsequence
(xi1,i2,...,in)(i1,i2,...,in)∈K is statistically dense in (xi1,i2,...,in).

Theorem 3.9. An n-sequence x = (xi1,i2,...,in), i1, i2, ..., in ∈ N, is statistically convergent if and only if it has a
statistically dense subsequence which is statistically convergent.

Proof . Suppose s∗n- limx = L and there exists K ⊆ Nn, such that (xi1,i2,...,in)(i1,i2,...,in)∈K is statistically dense
subsequence of x. If possible, suppose the subsequence is statistically divergent. Then for all y ∈ X, there exists a
neighbourhood V of y such that δn({(i1, i2, ..., in) ∈ Nn : xi1,i2,...,in /∈ V }) ̸= 0.

Now,
δn({(i1, i2, ..., in) ∈ Nn : xi1,i2,...,in /∈ V }) ≥ δn({(i1, i2, ..., in) ∈ K : xi1,i2,...,in /∈ V }).

Then, (xi1,i2,...,in)(i1,i2,...,in∈Nn) is statistically divergent, which is a contradiction. □

Theorem 3.10. Let s∗n- limx = L. Then there exists a subsequence of x convergent to L.

Proof . The proof is simple and direct from the definition of s∗n-convergent (Definition 3.4), so we skip it. □

4 Conclusion

As mentioned earlier the motivation of the paper was the importance and lack of research in n-dimensional spaces.
This paper includes some basic yet important result of topological spaces in Nn. The authors believe that there is
immense scope for more sophisticated research in this area, and need further research. The statistical approach of the
paper can also be applied in hyperspaces, open covers and selection principle, the interested reader can see [5].
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