# On generalized Jordan $*$-derivations with associated Hochschild *-2-cocycles 

Javad Bakhtia, Gholamreza Abbaspour Tabadkan ${ }^{\text {a,* }}$, Amin Hosseini ${ }^{\text {b }}$<br>${ }^{\text {a School of Mathematics, University of Damghan, Damghan, Iran }}$<br>${ }^{b}$ Department of Mathematics, Kashmar Higher Education Institute, Kashmar, Iran

(Communicated by Abasalt Bodaghi)


#### Abstract

In this paper, we introduce the notions of generalized $*$-derivations, generalized Jordan $*$-derivations and Jordan triple $*$-derivations with the associated Hochschild $*-2$-cocycles and then it is proved that if $\mathcal{R}$ is a prime $*$-ring and $f: \mathcal{R} \rightarrow \mathcal{R}$ is a nonzero generalized $*$-derivation with an associated Hochschild $*-2$-cocycle $\beta$, then $\mathcal{R}$ is commutative. Some other results regarding generalized Jordan $*$-derivations are also established.


Keywords: *-derivation, generalized Jordan $*$-derivation, Hochschild $*$-2-cocycle, *-ring, prime (semiprime) ring 2020 MSC: Primary 16W25; Secondary 16W10, 46L05

## 1 Introduction and preliminaries

Throughout the present paper, $\mathcal{R}$ represents an associative ring with center $Z(\mathcal{R})$. First of all, let us recall some basic definitions and set the notations which are used in what follows. A ring $\mathcal{R}$ is said to be $n$-torsion free, where $n>1$ is an integer, if for $x \in \mathcal{R}, n x=0$ implies that $x=0$. Recall that a ring $\mathcal{R}$ is called prime if for $x, y \in \mathcal{R}$, $x \mathcal{R} y=\{0\}$ implies that $x=0$ or $y=0$, and is semiprime if for $x \in \mathcal{R}, x \mathcal{R} x=\{0\}$ implies that $x=0$. As usual, the commutator $x y-y x$ will be denoted by $[x, y]$. An involution over $\mathcal{R}$ is a map $*: \mathcal{R} \rightarrow \mathcal{R}$ satisfying the following conditions for all $x, y \in \mathcal{R}$ :
(i) $\left(x^{*}\right)^{*}=x$,
(ii) $(x y)^{*}=y^{*} x^{*}$,
(iii) $(x+y)^{*}=x^{*}+y^{*}$.

A ring equipped with an involution is called ring with involution or $*$-ring and usually is denoted, as an ordered pair, by $(\mathcal{R}, *)$. An element $x$ in an $*$-ring is called Hermitian (self-adjoint) if $x^{*}=x$ and is said to be skew-Hermitian if $x^{*}=-x$. The sets of all Hermitian and skew-Hermitian elements of an $*$-ring $\mathcal{R}$ are denoted by $H(\mathcal{R})$ and $S(\mathcal{R})$, respectively. The involution is said to be of the first kind if $Z(\mathcal{R}) \subseteq H(\mathcal{R})$, otherwise it is said to be of the second kind. In this case, $S(\mathcal{R}) \cap Z(\mathcal{R}) \neq\{0\}$. If $\mathcal{R}$ is 2 -torsion free then every $x \in \mathcal{R}$ can be uniquely represented in the form $2 x=h+k$ where $h \in H(\mathcal{R})$ and $k \in S(\mathcal{R})$. An element $x \in \mathcal{R}$ is normal if $x x^{*}=x^{*} x$ and in this case the mentioned elements $h$ and $k$ commute with each other. If all elements in $\mathcal{R}$ are normal, then $\mathcal{R}$ is called a normal ring.

[^0]An example in this regard is the ring of quaternion. The reader is referred to [10] for more details and descriptions of such rings.

Let $\mathcal{R}$ be an $*$-ring. An additive mapping $d: \mathcal{R} \rightarrow \mathcal{R}$ is called an $*$-derivation (resp. Jordan $*$-derivation) whenever $d(x y)=d(x) y^{*}+x d(y)$ (resp. $\left.d\left(x^{2}\right)=d(x) x^{*}+x d(x)\right)$ holds for all $x, y \in \mathcal{R}$. Note that the mapping $x \mapsto a x^{*}-x a$ of $\mathcal{R}$ into itself, where $a$ is a fixed element in $\mathcal{R}$, is a Jordan $*$-derivation; such Jordan $*$-derivations are said to be inner. Moreover, if $a[x, y]^{*}=0$ for all $x, y \in \mathcal{R}$, then the mapping $x \mapsto a x^{*}-x a$ is an $*$-derivation. The concepts of $*$-derivation and Jordan $*$-derivation were first introduced in [5]. In an interesting article, Zalar and Bresar [6] studied the structure of Jordan $*$-derivations and also they presented a characterization of these mappings on complex *-algebras. The innerness of Jordan $*$-derivations has also been investigated, see, e.g. [17].

The motivation for studying Jordan $*$-derivation is that these mappings appear naturally in the theory of the representability of quadratic forms by bilinear forms. For the results concerning this theory, the reader is referred to [9, 15, 16, 17, 19, where further references can be found. Similar to what was stated above, an $*$-derivation can also be defined from an $*$-ring $\mathcal{R}$ into an $\mathcal{R}$-bimodule $\mathcal{M}$. Let $\mathcal{R}$ be an $*$-ring and let $\mathcal{M}$ be an $\mathcal{R}$-bimodule. An additive mapping $f: \mathcal{R} \rightarrow \mathcal{M}$ is called a generalized $*$-derivation (resp. generalized Jordan $*$-derivation) if there exists an $*$-derivation (resp. Jordan $*$-derivation) $d: \mathcal{R} \rightarrow \mathcal{M}$ such that $f(x y)=f(x) y^{*}+x d(y)\left(\right.$ resp. $f\left(x^{2}\right)=f(x) x^{*}+x d(x)$ ) for all $x, y \in \mathcal{R}$.

In 2006, Nakajima [13] introduced a new type of generalized derivations as follows. Let $\mathcal{R}$ be a ring and let $\mathcal{M}$ be an $\mathcal{R}$-bimodule. A biadditive mapping $\beta: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{M}$ is called a Hochschild 2-cocycle if

$$
x \beta(y, z)-\beta(x y, z)+\beta(x, y z)-\beta(x, y) z=0
$$

for all $x, y, z \in \mathcal{R}$. The mapping $\beta$ is called symmetric (resp. skew symmetric) if $\beta(x, y)=\beta(y, x)$ (resp. $\beta(x, y)=$ $-\beta(y, x)$ ). An additive mapping $f: \mathcal{R} \rightarrow \mathcal{R}$ is called a generalized derivation (resp. generalized Jordan derivation) with an associated Hochschild 2-cocycle $\beta$ if $f(x y)=f(x) y+x f(y)+\beta(x, y)\left(\right.$ resp. $\left.f\left(x^{2}\right)=f(x) x+x f(x)+\beta(x, x)\right)$ for all $x, y \in \mathcal{R}$. If $\beta=0$, then we reach an ordinary derivation (resp. Jordan derivation). For more examples and details, see, e.g. [13].
There are many of works dealing with the commutativity of prime and semiprime rings admitting certain types of derivations, see, e.g. [1, 2, 3, 4, 5, 7, 11 and references therein. Motivated by the above notions, we introduce the notions of generalized $*$-derivations, generalized Jordan $*$-derivations and generalized Jordan triple $*$-derivations with the associated Hochschild $*-2$-cocycles and it is proved that if $\mathcal{R}$ is a prime $*$-ring and $f: \mathcal{R} \rightarrow \mathcal{R}$ is a nonzero generalized $*$-derivation with an associated Hochshcild $*-2$-cocycle $\beta$, then $\mathcal{R}$ is commutative. Furthermore, we present some characterizations of generalized $*$-derivations. For instance, we prove the following result:
Let $\mathcal{R}$ be a $*$-ring having the unit element 1 , containing the element $\frac{1}{2}$, and containing an invertible skew-Hermitian $\xi \in Z(\mathcal{R})$. If $f: \mathcal{R} \rightarrow \mathcal{R}$ is a generalized $*$-Jordan derivation with an associate Hochschild $*-2$-cocycle $\beta$, then there exists $\mathfrak{a}, \mathfrak{b} \in \mathcal{R}$ such that

$$
f(x)=x \mathfrak{a}-\mathfrak{b} x^{*}+\frac{\xi^{-1}(\beta(x, \xi)-\beta(\xi, x))}{2},
$$

for all $x \in \mathcal{R}$.
Moreover, we show that every generalized Jordan *-derivations and generalized Jordan triple $*$-derivations with an associated Hochshcild $*-2$-cocycle $\beta$ are equivalent. Some other results are also presented.

## 2 Definitions and examples

Let $\mathcal{R}$ be an $*$-ring and let $\mathcal{M}$ be an $\mathcal{R}$-bimodule. Let $\beta: \mathcal{R} \times \mathcal{R} \longrightarrow \mathcal{M}$ be a biadditive map, that is, an additive map on each components. The biadditive map $\beta$ is called a Hochschild $*$-2-cocycle if

$$
\begin{equation*}
x \beta(y, z)-\beta(x y, z)+\beta(x, y z)-\beta(x, y) z^{*}=0 \tag{2.1}
\end{equation*}
$$

for all $x, y, z \in \mathcal{R}$. An $*-2$-cocycle $\beta$ is called symmetric (resp. skew symmetric) if $\beta(x, y)=\beta(y, x)$ (resp. $\beta(x, y)=$ $-\beta(y, x))$.

An additive map $f: \mathcal{R} \rightarrow \mathcal{M}$ is called a generalized $*$-derivation with an associated Hochschild $*-2$-cocycle $\beta$ if

$$
\begin{equation*}
f(x y)=f(x) y^{*}+x f(y)+\beta(x, y), \quad(x, y \in \mathcal{R}) \tag{2.2}
\end{equation*}
$$

and $f$ is called a generalized Jordan $*$-derivation with an associated Hochschild $*-2$-cocycle $\beta$ if

$$
\begin{equation*}
f\left(x^{2}\right)=f(x) x^{*}+x f(x)+\beta(x, x), \quad(x \in \mathcal{R}) \tag{2.3}
\end{equation*}
$$

If $\beta=0$, then we get the usual notions of $*$-derivations and Jordan $*$-derivations, respectively. Also, a generalized Jordan triple $*$-derivation with an associated Hochschild $*-2$-cocycle $\beta$ is an additive mapping $f: \mathcal{R} \longrightarrow \mathcal{R}$ satisfying

$$
\begin{equation*}
f(x y x)=f(x) y^{*} x^{*}+x f(y) x^{*}+x y f(x)+x \beta(y, x)+\beta(x, y x) \tag{2.4}
\end{equation*}
$$

for all $x, y \in \mathcal{R}$. In the following, we present some examples of such generalized $*$-derivations.
Example 2.1. Let $\mathcal{R}$ be an $*$-ring and let $\mathcal{M}$ be an $\mathcal{R}$-bimodule.
(1) Let $f: \mathcal{R} \rightarrow \mathcal{M}$ be a generalized $*$-derivation associated with a $*$-derivation $d$. Then the mapping $\beta: \mathcal{R} \times \mathcal{R} \rightarrow$ $\mathcal{M}$ defined by $\beta(x, y)=x(d-f)(y)$ is a Hochschild $*-2$-cocycle and also $f$ is a generalized $*$-derivation with the associated mapping $\beta$.
(2) Let $f: \mathcal{R} \longrightarrow \mathcal{M}$ is left $*$-centralizer, that is, $f$ is additive and $f(x y)=f(x) y^{*}$. We can write $f(x y)=$ $f(x) y^{*}+x f(y)-x f(y)$ for all $x, y \in \mathcal{R}$. If we define a mapping $\beta: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{M}$ by $\beta(x, y)=-x f(y)$. So, $f$ is a generalized $*$-derivation with the associated Hochschild $*$-2-cocycle $\beta$.
(3) Let $f: \mathcal{R} \rightarrow \mathcal{M}$ be an $*-(I, \tau)$ derivation, that is, $\tau: \mathcal{R} \rightarrow \mathcal{R}$ is a ring homomorphism of $\mathcal{R}$ and $f(x y)=$ $f(x) y^{*}+\tau(x) f(y)$, where $I$ is the identity mapping on $\mathcal{R}$. Then the map $\beta: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{M}$ defined by $\beta(x, y)=$ $(\tau(x)-x) f(y)$ is a Hochschild $*-2$-cocycle. Hence, we have

$$
f(x y)=f(x) y^{*}+x f(y)+\beta(x, y)
$$

for all $x, y \in \mathcal{R}$, then $f$ is a generalized $*$-derivation with the associated mapping $\beta$.
(4) Let $d: \mathcal{R} \rightarrow \mathcal{R}$ be an $*$-derivation and $T: \mathcal{R} \rightarrow \mathcal{R}$ be a left centralizer, that is, $T$ is additive and $T(x y)=T(x) y$, then $T d$ is a generalized $*$-derivation associated with the Hochschild $*$-2-cocycle $\beta: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ defined by

$$
\beta(x, y)=T(x) d(y)-x T(y), \quad(x, y \in \mathcal{R})
$$

## 3 Main Results

We begin our results with the following proposition that states the biadditivity of $\beta$ is obtained from the additivity of $f$.

Proposition 3.1. Let $\mathcal{R}$ be an $*$-ring, let $f: \mathcal{R} \rightarrow \mathcal{R}$ be an additive mapping and let $\beta: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ be a mapping. If $f$ and $\beta$ satisfy $f(x y)=f(x) y^{*}+x f(y)+\beta(x, y)$ for all $x, y \in \mathcal{R}$, then $\beta$ is a biadditive mapping.

Proof. For each $x, y, z \in \mathcal{R}$, we have

$$
\begin{aligned}
f(x(y+z)) & =f(x)(y+z)^{*}+x f(y+z)+\beta(x, y+z) \\
& =f(x) y^{*}+f(x) z^{*}+x f(y)+x f(z)+\beta(x, y+z)
\end{aligned}
$$

which means that

$$
f(x(y+z))=f(x) y^{*}+f(x) z^{*}+x f(y)+x f(z)+\beta(x, y+z) .
$$

On the other hand, since $f$ is an additive mapping, we have the following expressions:

$$
\begin{aligned}
f(x(y+z)) & =f(x y)+f(x z) \\
& =f(x) y^{*}+x f(y)+\beta(x, y)+f(x) z^{*}+x f(z)+\beta(x, z)
\end{aligned}
$$

Comparing the last two equations regarding $f(x(y+z))$, we get that

$$
\beta(x, y+z)=\beta(x, y)+\beta(x, z) .
$$

Similarly, we can prove that $\beta(x+y, z)=\beta(x, z)+\beta(y, z)$. It means that $\beta$ is a biadditive mapping on $\mathcal{R}$, as desired.

As observed, biadditivity of the mapping $\beta$ depends on additivity of the mapping $f$.

Lemma 3.2. [20, Lemma 1.3] Let $\mathcal{R}$ be a semiprime ring and let $a[x, y]=0$ for all $x, y \in \mathcal{R}$ and for some $a \in \mathcal{R}$. Then $a \in Z(\mathcal{R})$.

In the next theorem, we are going to prove that if $\mathcal{R}$ is a semiprime $*$-ring and $f$ is a generalized $*$-derivation with an associated Hochschild $*-2$-cocycle $\beta$, then $f$ maps $\mathcal{R}$ into $Z(\mathcal{R})$.

Theorem 3.3. Let $\mathcal{R}$ be a semiprime $*$-ring. If $f: \mathcal{R} \rightarrow \mathcal{R}$ is a generalized $*$-derivation associated with a Hochschild *-2-cocycle $\beta$, then $f(\mathcal{R}) \subseteq Z(\mathcal{R})$.

Proof . For all $x, y, z \in \mathcal{R}$, we have

$$
\begin{align*}
f(x y z) & =f((x y) z) \\
& =f(x y) z^{*}+x y f(z)+\beta(x y, z) \\
& =f(x) y^{*} z^{*}+x f(y) z^{*}+\beta(x, y) z^{*}+x y f(z)+\beta(x y, z) \tag{3.1}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
f(x y z) & =f(x(y z)) \\
& =f(x) z^{*} y^{*}+x f(y z)+\beta(x, y z) \\
& =f(x) z^{*} y^{*}+x f(y) z^{*}+x y f(z)+x \beta(y, z)+\beta(x, y z) \tag{3.2}
\end{align*}
$$

Comparing (3.1) and (3.2) with the fact that $\beta$ ia a Hochshcild $*-2$-cocycle, we get that $f(x)\left[y^{*}, z^{*}\right]=0$ and so $f(x)[y, z]=0$ for all $x, y, z \in \mathcal{R}$. Using the above lemma, we get that $[f(x), z]=0$ for all $x, z \in \mathcal{R}$. This means that $f$ maps $\mathcal{R}$ into $Z(\mathcal{R})$, as desired.

An immediate consequence of the above theorem is as follows:

Corollary 3.4. Let $\mathcal{A}$ be a $C^{*}$-algebra. If $f: \mathcal{A} \rightarrow \mathcal{A}$ is a generalized $*$-derivation associated with a Hochshcild *-2-cocycle $\beta$, then $f(\mathcal{A}) \subseteq Z(\mathcal{A})$.

Proof . It is evident that every $C^{*}$-algebra is semisimple and hence it is semprime. see, e.g. 8].
Here, we present another result of this paper.
Theorem 3.5. Let $\mathcal{R}$ be a prime $*$-ring. If $f: \mathcal{R} \rightarrow \mathcal{R}$ is a nonzero generalized $*$-derivation associated with a Hochshcild $*-2$-cocycle $\beta$, then $\mathcal{R}$ is commutative.

Proof . Since $f$ is nonzero, there exists $x_{0} \in \mathcal{R}$ such that $f\left(x_{0}\right) \neq 0$. According to the proof of Theorem 3.3 , we have $f\left(x_{0}\right)[y, z]=0$ for all $y, z \in \mathcal{R}$. Replacing $y$ by $y t$ in the previous equation and the using it, we arrive at

$$
f\left(x_{0}\right) y[t, z]=0
$$

for all $y, t, z \in \mathcal{R}$. The primeness of $\mathcal{R}$ forces that $[t, z]=0$ for all $t, z \in \mathcal{R}$ which means that $\mathcal{R}$ is commutative, as required.

Corollary 3.6. Let $\mathcal{R}$ be a prime $*$-ring. If $\mathcal{R}$ admits a nonzero $*$-derivation or a nonzero $*$-left centralizer or a nonzero $*-(\mathrm{I}, \tau)$-derivation (as in Example 2.1), then $\mathcal{R}$ is commutative.

Remark 3.7. We can define a generalized reverse $*$-derivation $f: \mathcal{R} \rightarrow \mathcal{R}$ associated with a revers Hochschild $*-2$-cocycle $\beta: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ as an additive mapping satisfying

$$
f(x y)=f(y) x^{*}+y f(x)+\beta(x, y)
$$

for all $x, y \in \mathcal{R}$, where $\beta$ is a biadditive mapping satisfying the following revers Hochschild $*-2$-cocycles property:

$$
\beta(x y, z)-\beta(y, z) x^{*}+\beta(x, y z)-y \beta(x, z)=0
$$

for all $x, y, z \in \mathcal{R}$. We can establish Theorems 3.3 and 3.5 for the above-mentioned generalized reverse $*$-derivations and we leave it to the interested reader.

In the following, we present some consequences about the commutativity of algebras. Let $\mathcal{R}$ be an $*$-ring. For every $a, b \in \mathcal{R}, a b^{*}-b a$ is denoted by $[a, b]_{*}$. Indeed, we have $[a, b]_{*}=a b^{*}-b a$

Theorem 3.8. Let $\mathcal{A}$ be a semiprime Banach $*$-algebra such that $\operatorname{dim}(\operatorname{rad}(\mathcal{A})) \leq 1$. If there exists an element $\mathfrak{z} \in \mathcal{A}$ such that $[\mathfrak{z}, a]_{*} \in Z(\mathcal{A})$ for all $a \in \mathcal{A}$, then there is an ideal $\mathfrak{I}$ of $\mathcal{A}$ such that $\mathfrak{z} \in \mathfrak{I} \subseteq Z(\mathcal{A})$.

Proof . Using $[\mathfrak{z}, a]_{*} \in Z(\mathcal{A})$ for all $a \in \mathcal{A}$, we get that $\mathfrak{z} a-a \mathfrak{z} \in Z(\mathcal{A})$ for all self-adjoint (Hermitian) elements $a \in \mathcal{A}$. Let $a$ be an arbitrary element of $\mathcal{A}$. We know that there are two self-adjoint elements $a_{1}, a_{2} \in \mathcal{A}$ such that $a=a_{1}+i a_{2}$. Hence, we have

$$
\mathfrak{z} a-a \mathfrak{z}=\mathfrak{z}\left(a_{1}+i a_{2}\right)-\left(a_{1}+i a_{2}\right) \mathfrak{z}=\left(\mathfrak{z} a_{1}-a_{1} \mathfrak{z}\right)+i\left(a_{2} \mathfrak{z}-\mathfrak{z} a_{2}\right) \in Z(\mathcal{A}),
$$

which means that $[\mathfrak{z}, a] \in Z(\mathcal{A})$ for all $a \in \mathcal{A}$. It is evident that the linear mapping $d_{\mathfrak{z}}: \mathcal{A} \rightarrow \mathcal{A}$ defined by $d_{\mathfrak{z}}(a)=[\mathfrak{z}, a]=\mathfrak{z} a-a \mathfrak{z}$ is a derivation which maps into $Z(\mathcal{A})$. It follows from [12, Theorem 7$]$ that $d_{\mathfrak{z}}(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$. By hypothesis, $\operatorname{dim}(\operatorname{rad}(A)) \leq 1$ and it follows from [14, Proposition 2.1] that $d_{\mathfrak{z}}=0$. Therefore, we get that $\mathfrak{z} \in Z(\mathcal{A})$. Using this fact and the assumption that $[\mathfrak{z}, a]_{*}=\mathfrak{z} a^{*}-a_{\mathfrak{z}} \in Z(\mathcal{A})$ for all $a \in \mathcal{A}$, we get that $\mathfrak{z}\left(a^{*}-a\right) \in Z(\mathcal{A})$ for all $a \in \mathcal{A}$. Let $a$ be an arbitrary element of $\mathcal{A}$. So, there are two self-adjoint elements $a_{1}, a_{2} \in \mathcal{A}$ such that $a=a_{1}+i a_{2}$. Since $\mathfrak{z}\left(a^{*}-a\right) \in Z(\mathcal{A})$ for all $a \in \mathcal{A}$, we obtain that $\mathfrak{z} a_{2} \in Z(\mathcal{A})$ for all $a_{2} \in \mathcal{S}_{\mathcal{A}}$. This yields that $\mathfrak{z} \mathcal{A} \subseteq Z(\mathcal{A})$. Since $\mathfrak{z} \in Z(\mathcal{A})$ and also $\mathfrak{z} \mathcal{A} \subseteq Z(\mathcal{A})$, we can thus deduce that there exists an ideal $\mathfrak{I}$ of $\mathcal{A}$ such that $\mathfrak{z} \in \mathfrak{I} \subseteq Z(\mathcal{A})$, as desired.

An immediate corollary reads as follows:
Corollary 3.9. Let $\mathcal{A}$ be a $C^{*}$-algebra. If there exists an element $\mathfrak{z} \in \mathcal{A}$ such that $[\mathfrak{z}, a]_{*} \in Z(\mathcal{A})$ for all $a \in \mathcal{A}$, then there is an ideal $\mathfrak{I}$ of $\mathcal{A}$ such that $\mathfrak{z} \in \mathfrak{I} \subseteq Z(\mathcal{A})$.

Proof. It is a well-known fact that every $C^{*}$-algebra is semisimple.

Theorem 3.10. Let $\mathcal{A}$ be a unital semiprime $*$-algebra such that $\operatorname{dim}(Z(\mathcal{A})) \leq 1$. If there exists an element $\mathfrak{z} \in \mathcal{A}$ such that $[\mathfrak{z}, a]_{*} \in Z(\mathcal{A})$ for all $a \in \mathcal{A}$, then $\mathfrak{z}=0$ or $\mathcal{A}$ is commutative and $\operatorname{dim}(\mathcal{A})=1$.

Proof . According to the proof of Theorem 3.8, the linear mapping $d_{\mathfrak{z}}: \mathcal{A} \rightarrow \mathcal{A}$ defined by $d_{\mathfrak{z}}(a)=[\mathfrak{z}, a]=\mathfrak{z} a-a \mathfrak{z}$ is a derivation mapping into $Z(\mathcal{A})$. We are assuming that $\operatorname{dim}(Z(\mathcal{A}) \leq 1$ and it follows from [14, Proposition 2.1] that $d_{\mathfrak{z}}=0$ and therefore, $\mathfrak{z} \in Z(\mathcal{A})$. Reusing Theorem 3.8, we know that there exists an ideal $\mathfrak{I}$ of $\mathcal{A}$ such that $\mathfrak{z} \in \mathfrak{I} \subseteq Z(\mathcal{A})$. If $\operatorname{dim}(Z(\mathcal{A}))=0$, then $\mathfrak{z}=0$. Now, suppose that $\operatorname{dim}(Z(\mathcal{A}))=1$. Since $\mathfrak{I}$ is an ideal of $\mathcal{A}$ and is a subset of $Z(\mathcal{A}), \operatorname{dim}(\mathfrak{I})=0$ or $\operatorname{dim}(\mathfrak{I})=1$. If $\operatorname{dim}(\mathfrak{I})=0$, then $\mathfrak{z}=0$. If $\operatorname{dim}(\mathfrak{I})=1$, then $\mathfrak{I}=Z(\mathcal{A})$. Since $\mathcal{A}$ is unital, $\mathcal{A}=\mathfrak{I}$ and consequently, $\mathcal{A}$ is commutative and $\operatorname{dim}(\mathcal{A})=1$, as desired.

Corollary 3.11. Let $\mathcal{A}$ be a semiprime $*$-algebra. If there exists an element $\mathfrak{z} \in \mathcal{A}$ such that $[\mathfrak{z}, a]_{*}=0$ for all $a \in \mathcal{A}$, then $\mathfrak{z}=0$.

Theorem 3.12. Let $\mathcal{A}$ be a Banach algebra such that $\operatorname{dim}(\operatorname{rad}(\mathcal{A})) \leq 1$. If $[[[[b, a], a], a] a] \in \operatorname{rad}(\mathcal{A})$ for all $a, b \in \mathcal{A}$, then $\mathcal{A}$ is commutative.

Proof . Suppose that $\mathcal{A}$ is a noncommutative Banach algebra. For any $b \in \mathcal{A}$, the linear mapping $d_{b}: \mathcal{A} \rightarrow \mathcal{A}$ defined by $d_{b}(a)=[b, a]$ is a continuous derivation. It follows from [18, Theorem 2] that $d_{b}(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$ and since we are assuming that $\operatorname{dim}(\operatorname{rad}(\mathcal{A})) \leq 1$, [14, Proposition 2.1] implies that $d_{b}(a)=0$ for all $a \in \mathcal{A}$. Since $b$ is an arbitrary element of $\mathcal{A}$, the algebra $\mathcal{A}$ is commutative, a contradiction. Hence, $\mathcal{A}$ must be commutative.

There is a consequence of the previous theorem as follows:
Theorem 3.13. Let $\mathcal{A}$ be a noncommutative Banach algebra. If $[[[[b, a], a], a] a] \in \operatorname{rad}(\mathcal{A})$ for all $a, b \in \mathcal{A}$, then $\operatorname{dim}(\operatorname{rad}(\mathcal{A}))>1$. In this case, $\mathcal{A}$ is not a semisimple Banach algebra.

In [5, Lemma 2], Brešar and Vukman proved that any Jordan $*$-derivation on a 2 -torsion free $*$-ring is a Jordan triple $*$-derivation. The following lemma presents some properties of the new notion of generalized Jordan *-derivations and it is especially an extension for [5, Lemma 2].

Lemma 3.14. Let $f: \mathcal{R} \longrightarrow \mathcal{M}$ be a generalized Jordan $*$-derivation with an associated Hochschild $*$ - 2 -cocycle $\beta$ and let $\mathcal{M}$ be a 2 -torsion free $\mathcal{R}$-bimodule. Then the following relations hold for all $x, y, z \in \mathcal{R}$ :

$$
\begin{aligned}
& (i) f(x y+y x)=f(x) y^{*}+x f(y)+\beta(x, y)+f(y) x^{*}+y f(x)+\beta(y, x) ; \\
& \text { (ii) } f(x y x)=f(x) y^{*} x^{*}+x f(y) x^{*}+x y f(x)+x \beta(y, x)+\beta(x, y x) ; \\
& (i i i) f(x y z+z y x)=f(x) y^{*} z^{*}+x f(y) z^{*}+x y f(z)+x \beta(y, z)+\beta(x, y z) \\
& +f(z) y^{*} x^{*}+z f(y) x^{*}+z y f(x)+z \beta(y, x)+\beta(z, y x) .
\end{aligned}
$$

## Proof .

(i) We know that $f\left(x^{2}\right)=f(x) x^{*}+x f(x)+\beta(x, x)$ holds for all $x \in \mathcal{R}$. So, we have

$$
\begin{aligned}
f(x y+y x)= & f\left((x+y)^{2}\right)-f\left(x^{2}\right)-f\left(y^{2}\right) \\
= & f(x+y)(x+y)^{*}+(x+y) f(x+y)+\beta(x+y, x+y) \\
& -f(x) x^{*}-x f(x)-\beta(x, x)-f(y) y^{*}-y f(y)-\beta(y, y) \\
= & f(x) x^{*}+f(x) y^{*}+f(y) x^{*}+f(y) y^{*}+x f(x)+y f(x) \\
& +x f(y)+y f(y)+\beta(x, y)+\beta(x, x)+\beta(y, x)+\beta(y, y) \\
& -f(x) x^{*}-x f(x)-\beta(x, x)-f(y) y^{*}-y f(y)-\beta(y, y) \\
= & f(x) y^{*}+x f(y)+\beta(x, y)+f(y) x^{*}+y f(x)+\beta(y, x) .
\end{aligned}
$$

(ii) Replacing $y$ by $x y+y x$ in (i) and using the assumption that $\beta$ is a Hochschild $*$-2-cocycle (see (2.1)), we have

$$
\begin{aligned}
2 f(x y x)= & f(x(x y+y x)+(x y+y x) x)-f\left(x^{2} y+y x^{2}\right) \\
= & f(x)(x y+y x)^{*}+x f(x y+y x)+\beta(x, x y+y x)+f(x y+y x) x^{*} \\
& +(x y+y x) f(x)+\beta(x y+y x, x)-f\left(x^{2}\right) y^{*}-x^{2} f(y)-\beta\left(x^{2}, y\right) \\
& -f(y) x^{* 2}-y f\left(x^{2}\right)-\beta\left(y, x^{2}\right) \\
= & f(x) y^{*} x^{*}+f(x) x^{*} y^{*}+x\left[f(x) y^{*}+x f(y)+\beta(x, y)+f(y) x^{*}\right. \\
& +y f(x)+\beta(y, x)]+\beta(x, x y)+\beta(x, y x)+\left[f(x) y^{*}+x f(y)\right. \\
& \left.+\beta(x, y)+f(y) x^{*}+y f(x)+\beta(y, x)\right] x^{*}+x y f(x)+y x f(x) \\
& +\beta(x y, x)+\beta(y x, x)-\left[f(x) x^{*}+x f(x)+\beta(x, x)\right] y^{*}-x^{2} f(y) \\
& -\beta\left(x^{2}, y\right)-f(y) x^{* 2}-y\left[f(x) x^{*}+x f(x)+\beta(x, x)\right]-\beta\left(y, x^{2}\right) \\
= & 2 f(x) y^{*} x^{*}+2 x f(y) x^{*}+2 x y f(x) \\
& +\left[x \beta(x, y)-\beta\left(x^{2}, y\right)+\beta(x, x y)-\beta(x, x) y^{*}\right] \\
& -\left[y \beta(x, x)-\beta(y x, x)+\beta\left(y, x^{2}\right)-\beta(y, x) x^{*}\right] \\
& +\left[x \beta(y, x)+\beta(x, y x)+\beta(x y, x)+\beta(x, y) x^{*}\right] .
\end{aligned}
$$

Since $x \beta(y, x)+\beta(x, y x)=\beta(x y, x)+\beta(x, y) x^{*}$ and $\mathcal{M}$ is 2-torsion free, we obtain equation (2).
(iii) Replacing $x$ by $x+z$ in (ii), we have

$$
\begin{aligned}
f((x+z) y(x+z))= & f(x+z) y^{*}(x+z)^{*}+(x+z) f(y)(x+z)^{*}+(x+z) y f(x+z) \\
& +(x+z) \beta(y, x+z)+\beta(x+z, y(x+z))
\end{aligned}
$$

and so,

$$
\begin{aligned}
f(x y x)+f(x y z+z y x)+f(z y z)= & f(x) y^{*} x^{*}+f(z) y^{*} x^{*}+f(x) y^{*} z^{*}+f(z) y^{*} z^{*} \\
& +x f(y) x^{*}+z f(y) x^{*}+x f(y) z^{*}+z f(y) z^{*} \\
& +x y f(x)+z y f(x)+x y f(z)+z y f(z) \\
& +x \beta(y, x)+z \beta(y, x)+x \beta(y, z)+z \beta(y, z) \\
& +\beta(x, y x)+\beta(x, y z)+\beta(z, y x)+\beta(z, y z)
\end{aligned}
$$

Using equation (ii), we get the required result.
In the following theorem, we present a characterization of a generalized $*$-Jordan derivation with an associated Hochschild $*$-2-cocycle.

Theorem 3.15. Let $\mathcal{R}$ be a unital $*$-ring containing the element $\frac{1}{2}$, and let $\xi$ be an invertible skew-Hermitian element of $Z(\mathcal{R})$. If $f: \mathcal{R} \rightarrow \mathcal{R}$ is a generalized $*$-Jordan derivation with an associated Hochschild $*-2$-cocycle $\beta$, then there exist the elements $\mathfrak{a}, \mathfrak{b} \in \mathcal{R}$ such that

$$
f(x)=x \mathfrak{a}-\mathfrak{b} x^{*}+\frac{\xi^{-1}(\beta(x, \xi)-\beta(\xi, x))}{2}
$$

for all $x \in \mathcal{R}$.

Proof . Using Lemma 3.14(ii), we have

$$
\begin{aligned}
f(\xi) & =f\left(\xi \xi^{-1} \xi\right) \\
& =f(\xi)-\xi^{2} f\left(\xi^{-1}\right)+f(\xi)+\xi \beta\left(\xi^{-1}, \xi\right)+\beta(\xi, \mathbf{1})
\end{aligned}
$$

Thus

$$
\begin{equation*}
f\left(\xi^{-1}\right)=\xi^{-2} f(\xi)+\xi^{-1} \beta\left(\xi^{-1}, \xi\right)+\xi^{-2} \beta(\xi, \mathbf{1}) \tag{3.3}
\end{equation*}
$$

According to Lemma 3.14 (iii) and equation (3.3), we have

$$
\begin{align*}
2 f(x)= & f\left(\xi x \xi^{-1}+\xi^{-1} x \xi\right) \\
= & -\xi^{-1} f(\xi) x^{*}-f(x)+x \xi^{-1} f(\xi)+x \beta\left(\xi^{-1}, \xi\right)+x \xi^{-1} \beta(\xi, \mathbf{1}) \\
& +\xi \beta\left(x, \xi^{-1}\right)+\beta\left(\xi, x \xi^{-1}\right)-\xi^{-1} f(\xi) x^{*}-\beta\left(\xi^{-1}, \xi\right) x^{*}-\xi^{-1} \beta(\xi, \mathbf{1}) x^{*} \\
& -f(x)+x \xi^{-1} f(\xi)+\xi^{-1} \beta(x, \xi)+\beta\left(\xi^{-1}, x \xi\right) \tag{3.4}
\end{align*}
$$

Since $\beta$ is a Hochschild $*-2$-cocycle mapping, we have

$$
\begin{equation*}
\xi \beta\left(x, \xi^{-1}\right)+\beta\left(\xi, x \xi^{-1}\right)=\beta\left(\xi x, \xi^{-1}\right)-\xi^{-1} \beta(\xi, x) \tag{3.5}
\end{equation*}
$$

$$
\begin{align*}
\beta\left(\xi x, \xi^{-1}\right) & =\beta\left(x \xi, \xi^{-1}\right) \\
& =x \beta\left(\xi, \xi^{-1}\right)+\beta(x, \mathbf{1})+\xi^{-1} \beta(x, \xi)  \tag{3.6}\\
\beta\left(\xi^{-1}, x \xi\right) & =\beta\left(\xi^{-1}, \xi x\right) \\
& =\beta\left(\xi^{-1}, \xi\right) x^{*}+\beta(\mathbf{1}, x)-\xi^{-1} \beta(\xi, x) \tag{3.7}
\end{align*}
$$

Using (3.5) ,(3.6) and (3.7) in the above relation (3.4), we have

$$
\begin{aligned}
2 f(x)= & -\xi^{-1} f(\xi) x^{*}-f(x)+x \xi^{-1} f(\xi)+x \beta\left(\xi^{-1}, \xi\right)+x \xi^{-1} \beta(\xi, \mathbf{1}) \\
& +x \beta\left(\xi, \xi^{-1}\right)+\beta(x, \mathbf{1})+\xi^{-1} \beta(x, \xi)-\xi^{-1} \beta(\xi, x)-\xi^{-1} f(\xi) x^{*} \\
& -\beta\left(\xi^{-1}, \xi\right) x^{*}-\xi^{-1} \beta(\xi, \mathbf{1}) x^{*}-f(x)+x \xi^{-1} f(\xi)+\xi^{-1} \beta(x, \xi) \\
& +\beta\left(\xi^{-1}, \xi\right) x^{*}+\beta(\mathbf{1}, x)-\xi^{-1} \beta(\xi, x)
\end{aligned}
$$

By relations $\xi^{-1} \beta(\xi, \mathbf{1})=\beta(\mathbf{1}, \mathbf{1})$ and $\beta(x, \mathbf{1})=x \beta(\mathbf{1}, \mathbf{1})$ and so $\beta(\mathbf{1}, x)=\beta(\mathbf{1}, \mathbf{1}) x^{*}$, we have

$$
\begin{aligned}
4 f(x)= & x\left(2 \xi^{-1} f(\xi)+\beta\left(\xi^{-1}, \xi\right)+\beta\left(\xi, \xi^{-1}\right)+2 \beta(\mathbf{1}, \mathbf{1})\right) \\
& -\left(2 \xi^{-1} f(\xi)\right) x^{*}+2 \xi^{-1}(\beta(x, \xi)-\beta(\xi, x)),
\end{aligned}
$$

Considering $\mathfrak{a}=\frac{2 \xi^{-1} f(\xi)+\beta\left(\xi^{-1}, \xi\right)+\beta\left(\xi, \xi^{-1}\right)+2 \beta(\mathbf{1}, \mathbf{1})}{4}$ and $\mathfrak{b}=\frac{\xi^{-1} f(\xi)}{2}$, we see that

$$
f(x)=x \mathfrak{a}-\mathfrak{b} x^{*}+\frac{\xi^{-1}(\beta(x, \xi)-\beta(\xi, x))}{2},
$$

as desired.
An immediate consequence of the previous theorem is as follows:
Corollary 3.16. Suppose that all the conditions of Theorem 3.15 are fulfilled and additionally $\beta$ is a symmetric mapping. Then $f(x)=x \mathfrak{a}-\mathfrak{b} x^{*}$ for all $x \in \mathcal{R}$ and for some $a, b \in \mathcal{R}$.

Lemma 3.17. [5, Lemma 3] Let $\mathcal{R}$ be a noncommutative prime $*$-ring. If $a \in \mathcal{R}$ is such that $a x^{*}=x a$ for all $x \in \mathcal{R}$, then $a=0$.

Theorem 3.18. Let $\mathcal{R}$ be a noncommutative prime $*$-ring. If $f: \mathcal{R} \rightarrow \mathcal{R}$ is a generalized $*$-Jordan derivation with an associated Hochschild $*$-2-cocycle $\beta$, then $[f(c), x]_{*}=\beta(x, c)-\beta(c, x)$ for all $c \in Z(\mathcal{R}) \cap H(\mathcal{R})$ and all $x \in \mathcal{R}$.
Proof . Let $c \in Z(\mathcal{R}) \cap H(\mathcal{R})$. According to Lemma (3.7)(iii), we have

$$
\begin{align*}
f(x c y+y c x)= & f(x) c y^{*}+x f(c) y^{*}+x c f(y)+x \beta(c, y)+\beta(x, c y) \\
& +f(y) c x^{*}+y f(c) x^{*}+y c f(x)+y \beta(c, x)+\beta(y, c x) \tag{3.8}
\end{align*}
$$

Also, since $c \in Z(\mathcal{R})$, we have

$$
\begin{align*}
f(c x y+y x c)= & f(c) x^{*} y^{*}+c f(x) y^{*}+c x f(y)+c \beta(x, y)+\beta(c, x y) \\
& +f(y) x^{*} c+y f(x) c+y x f(c)+y \beta(x, c)+\beta(y, x c) \tag{3.9}
\end{align*}
$$

By Hochschild *-2-cocycle property, we have

$$
\begin{align*}
& x \beta(c, y)+\beta(x, c y)=\beta(x c, y)+\beta(x, c) y^{*}  \tag{3.10}\\
& c \beta(x, y)+\beta(c, x y)=\beta(c x, y)+\beta(c, x) y^{*} \tag{3.11}
\end{align*}
$$

Comparing the expressions (3.8) and (3.9) and using relations (3.10) and (3.11), we get that

$$
\left(f(c) x^{*}-x f(c)+\beta(c, x)-\beta(c, x)\right) y^{*}=y\left(f(c) x^{*}-x f(c)+\beta(c, x)-\beta(x, c)\right),
$$

for all $x, y \in \mathcal{R}$. Now, using Lemma 3.17, we arrive at

$$
f(c) x^{*}-x f(c)+\beta(c, x)-\beta(x, c)=0
$$

Therefore, $[f(c), x]_{*}=\beta(x, c)-\beta(c, x)$.
In [16, Theorem 2.1], Semrl proved that the notions of Jordan $*$-derivations and Jordan triple $*$-derivations on a real Banach $*$-algebra are equivalent. In the following theorem, we obtain a generalization for this theorem.

Theorem 3.19. Let $\mathcal{A}$ be a real Banach $*$-algebra, let $f: \mathcal{A} \longrightarrow \mathcal{A}$ be an additive mapping and let $\beta: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$ be a Hochschild $*-2-$ cocycle. The following statements are equivalent:
(i) $f$ is a generalized Jordan $*$-derivation with an associated mapping $\beta$,
(ii) For any invertible element $a \in \mathcal{A}$,

$$
\begin{equation*}
f(a)=-a f\left(a^{-1}\right) a^{*}-a \beta\left(a^{-1}, a\right)-\beta(a, \mathbf{1}), \tag{3.12}
\end{equation*}
$$

(iii) For all $a, b \in \mathcal{A}$,

$$
\begin{equation*}
f(a b a)=f(a) b^{*} a^{*}+a f(b) a^{*}+a b f(a)+a \beta(b, a)+\beta(a, b a) . \tag{3.13}
\end{equation*}
$$

Proof . $(i i) \Rightarrow(i)$.
If $a$ is invertible and $\|a\|<\mathbf{1}$, then we know that $\mathbf{1}+a, \mathbf{1}-a$ and $\mathbf{1}-a^{2}$ are invertible. We show that for such an $a$ we have

$$
f\left(a^{2}\right)=f(a) a^{*}+a f(a)+\beta(a, a)
$$

Indeed,

$$
\begin{aligned}
f(a)+a^{-1} f(a) a^{*-1}= & f(a)-f\left(a^{-1}\right)-a^{-1} \beta\left(a, a^{-1}\right)-\beta\left(a^{-1}, \mathbf{1}\right) \\
= & f\left(a^{-1}\left(a^{2}-\mathbf{1}\right)\right)-a^{-1} \beta\left(a, a^{-1}\right)-\beta\left(a^{-1}, \mathbf{1}\right) \\
= & -a^{-1}\left(a^{2}-\mathbf{1}\right) f\left(\left(a^{2}-\mathbf{1}\right)^{-1} a\right)\left(a^{* 2}-\mathbf{1}\right) a^{*-1} \\
& -a^{-1}\left(a^{2}-\mathbf{1}\right) \beta\left(\left(a^{2}-\mathbf{1}\right)^{-1} a, a^{-1}\left(a^{2}-\mathbf{1}\right)\right) \\
& -\beta\left(a^{-1}\left(a^{2}-\mathbf{1}\right), \mathbf{1}\right)-a^{-1} \beta\left(a, a^{-1}\right)-\beta\left(a^{-1}, \mathbf{1}\right)
\end{aligned}
$$

We use equation (3.12) and also the following equation

$$
\begin{equation*}
\left(a^{2}-\mathbf{1}\right)^{-1} a=(a-\mathbf{1})^{-1}-\left(a^{2}-\mathbf{1}\right)^{-1} \tag{3.14}
\end{equation*}
$$

to calculate $f\left((a-\mathbf{1})^{-1}\right)$ and $f\left(\left(a^{2}-\mathbf{1}\right)^{-1}\right)$. So, we have

$$
\begin{aligned}
f(a)+a^{-1} f(a) a^{*-1}= & -a^{-1}\left(a^{2}-\mathbf{1}\right) f\left((a-\mathbf{1})^{-1}-\left(a^{2}-\mathbf{1}\right)^{-1}\right)\left(a^{* 2}-\mathbf{1}\right) a^{*-1} \\
& -a^{-1}\left(a^{2}-\mathbf{1}\right) \beta\left(\left(a^{2}-\mathbf{1}\right)^{-1} a, a^{-1}\left(a^{2}-\mathbf{1}\right)\right) \\
& -\beta\left(a^{-1}\left(a^{2}-\mathbf{1}\right), \mathbf{1}\right)-a^{-1} \beta\left(a, a^{-1}\right)-\beta\left(a^{-1}, \mathbf{1}\right) \\
= & a^{-1}(a+\mathbf{1}) f(a-\mathbf{1})\left(a^{*}+\mathbf{1}\right) a^{*-1} \\
& +a^{-1}(a+\mathbf{1}) \beta\left((a-\mathbf{1}),(a-\mathbf{1})^{-1}\right)\left(a^{* 2}-\mathbf{1}\right) a^{*-1} \\
& +a^{-1}\left(a^{2}-\mathbf{1}\right) \beta\left((a-\mathbf{1})^{-1}, \mathbf{1}\right)\left(a^{* 2}-\mathbf{1}\right) a^{*-1} \\
& -a^{-1} f\left(a^{2}-\mathbf{1}\right) a^{*-1} \\
& -a^{-1} \beta\left(\left(a^{2}-\mathbf{1}\right),\left(a^{2}-\mathbf{1}\right)^{-1}\right)\left(a^{* 2}-\mathbf{1}\right) a^{*-1} \\
& -a^{-1}\left(a^{2}-\mathbf{1}\right) \beta\left(\left(a^{2}-\mathbf{1}\right)^{-1}, \mathbf{1}\right)\left(a^{* 2}-\mathbf{1}\right) a^{*-1} \\
& -a^{-1}\left(a^{2}-\mathbf{1}\right) \beta\left(\left(a^{2}-\mathbf{1}\right)^{-1} a, a^{-1}\left(a^{2}-\mathbf{1}\right)\right) \\
& -\beta\left(a^{-1}\left(a^{2}-\mathbf{1}\right), \mathbf{1}\right)-a^{-1} \beta\left(a, a^{-1}\right)-\beta\left(a^{-1}, \mathbf{1}\right)
\end{aligned}
$$

It follows from (3.12) that $f(\mathbf{1})=-\beta(\mathbf{1}, \mathbf{1})$ and so we have

$$
\begin{align*}
f(a)+a^{-1} f(a) a^{*-1}= & a^{-1}(a+\mathbf{1})(f(a)+\beta(\mathbf{1}, \mathbf{1}))\left(a^{*}+\mathbf{1}\right) a^{*-1} \\
& +a^{-1}(a+\mathbf{1}) \beta\left((a-\mathbf{1}),(a-\mathbf{1})^{-1}\right)\left(a^{* 2}-\mathbf{1}\right) a^{*-1} \\
& +a^{-1}\left(a^{2}-\mathbf{1}\right) \beta\left((a-\mathbf{1})^{-1}, \mathbf{1}\right)\left(a^{* 2}-\mathbf{1}\right) a^{*-1} \\
& -a^{-1}\left(f\left(a^{2}\right)+\beta(\mathbf{1}, \mathbf{1})\right) a^{*-1} \\
& -a^{-1} \beta\left(\left(a^{2}-\mathbf{1}\right),\left(a^{2}-\mathbf{1}\right)^{-1}\right)\left(a^{* 2}-\mathbf{1}\right) a^{*-1} \\
& -a^{-1}\left(a^{2}-\mathbf{1}\right) \beta\left(\left(a^{2}-\mathbf{1}\right)^{-1}, \mathbf{1}\right)\left(a^{* 2}-\mathbf{1}\right) a^{*-1} \\
& -a^{-1}\left(a^{2}-\mathbf{1}\right) \beta\left(\left(a^{2}-\mathbf{1}\right)^{-1} a, a^{-1}\left(a^{2}-\mathbf{1}\right)\right) \\
& -\beta\left(a^{-1}\left(a^{2}-\mathbf{1}\right), \mathbf{1}\right)-a^{-1} \beta\left(a, a^{-1}\right)-\beta\left(a^{-1}, \mathbf{1}\right) \tag{3.15}
\end{align*}
$$

Multiplying (3.15) from the left by $a$ and the right by $a^{*}$, we get that

$$
\begin{align*}
a f(a) a^{*}+f(a)= & (a+\mathbf{1})(f(a)+\beta(\mathbf{1}, \mathbf{1}))\left(a^{*}+\mathbf{1}\right) \\
& +(a+\mathbf{1}) \beta\left((a-\mathbf{1}),(a-\mathbf{1})^{-1}\right)\left(a^{* 2}-\mathbf{1}\right) \\
& +\left(a^{2}-\mathbf{1}\right) \beta\left((a-\mathbf{1})^{-1}, \mathbf{1}\right)\left(a^{* 2}-\mathbf{1}\right)-\left(f\left(a^{2}\right)+\beta(\mathbf{1}, \mathbf{1})\right) \\
& -\beta\left(\left(a^{2}-\mathbf{1}\right),\left(a^{2}-\mathbf{1}\right)^{-1}\right)\left(a^{* 2}-\mathbf{1}\right) \\
& -\left(a^{2}-\mathbf{1}\right) \beta\left(\left(a^{2}-\mathbf{1}\right)^{-1}, \mathbf{1}\right)\left(a^{* 2}-\mathbf{1}\right) \\
& -\left(a^{2}-\mathbf{1}\right) \beta\left(\left(a^{2}-\mathbf{1}\right)^{-1} a, a^{-1}\left(a^{2}-\mathbf{1}\right)\right) a^{*} \\
& -a \beta\left(a^{-1}\left(a^{2}-\mathbf{1}\right), \mathbf{1}\right) a^{*}-\beta\left(a, a^{-1}\right) a^{*}-a \beta\left(a^{-1}, \mathbf{1}\right) a^{*} \tag{3.16}
\end{align*}
$$

Putting $z=\mathbf{1}$ in the Hochschild $*$-2-cocycle property (see (2.1)), we have

$$
\begin{equation*}
x \beta(y, \mathbf{1})=\beta(x y, \mathbf{1}) \tag{3.17}
\end{equation*}
$$

and so,

$$
\begin{gather*}
\left(a^{2}-\mathbf{1}\right) \beta\left(\left(a^{2}-\mathbf{1}\right)^{-1} a, a^{-1}\left(a^{2}-\mathbf{1}\right)\right)+\beta\left(a^{2}-\mathbf{1}, \mathbf{1}\right) \\
=\beta\left(a^{2}-\mathbf{1},\left(a^{2}-\mathbf{1}\right)^{-1} a\right)\left(a^{* 2}-\mathbf{1}\right) a^{*-1}+\beta\left(a, a^{-1}\left(a^{2}-\mathbf{1}\right)\right) . \tag{3.18}
\end{gather*}
$$

Substituting (3.17) and (3.18) in (3.16), we get that

$$
\begin{aligned}
a f(a) a^{*}+f(a)= & a f(a) a^{*}+a f(a)+f(a) a^{*}+f(a)+(a+\mathbf{1}) \beta(\mathbf{1}, \mathbf{1})\left(a^{*}+\mathbf{1}\right) \\
& +(a+\mathbf{1}) \beta\left((a-\mathbf{1}),(a-\mathbf{1})^{-1}\right)\left(a^{* 2}-\mathbf{1}\right)+\beta((a+\mathbf{1}), \mathbf{1})\left(a^{* 2}-\mathbf{1}\right) \\
& -f\left(a^{2}\right)-\beta(\mathbf{1}, \mathbf{1})-\beta\left(\left(a^{2}-\mathbf{1}\right),\left(a^{2}-\mathbf{1}\right)^{-1}\right)\left(a^{* 2}-\mathbf{1}\right) \\
& -\beta(\mathbf{1}, \mathbf{1})\left(a^{* 2}-\mathbf{1}\right)-\left(\beta\left(a, a^{-1}\left(a^{2}-\mathbf{1}\right)\right)\right. \\
& \left.+\beta\left(a^{2}-\mathbf{1},\left(a^{2}-\mathbf{1}\right)^{-1} a\right)\left(a^{* 2}-\mathbf{1}\right) a^{*-1}\right) a^{*} \\
& -\beta\left(a, a^{-1}\right) a^{*}-a \beta\left(a^{-1}, \mathbf{1}\right) a^{*}
\end{aligned}
$$

Using (3.14) and relation above, we deduce that

$$
\begin{align*}
0= & a f(a)+f(a) a^{*}+(a+\mathbf{1}) \beta(\mathbf{1}, \mathbf{1})\left(a^{*}+\mathbf{1}\right)+(a+\mathbf{1}) \beta\left(a-\mathbf{1},(a-\mathbf{1})^{-1}\right)\left(a^{* 2}-\mathbf{1}\right) \\
& +\beta(a, \mathbf{1})\left(a^{* 2}-\mathbf{1}\right)+\beta(\mathbf{1}, \mathbf{1})\left(a^{* 2}-\mathbf{1}\right)-f\left(a^{2}\right)-\beta(\mathbf{1}, \mathbf{1}) \\
& -\beta\left(\left(a^{2}-\mathbf{1}\right),\left(a^{2}-\mathbf{1}\right)^{-1}\right)\left(a^{* 2}-\mathbf{1}\right)-\beta(\mathbf{1}, \mathbf{1})\left(a^{* 2}-\mathbf{1}\right)-\beta\left(a, a^{-1}\left(a^{2}-\mathbf{1}\right)\right) a^{*} \\
& -\beta\left(a^{2}-\mathbf{1},(a-\mathbf{1})^{-1}-\left(a^{2}-\mathbf{1}\right)^{-1}\right)\left(a^{* 2}-\mathbf{1}\right)-\beta\left(a, a^{-1}\right) a^{*}-a \beta\left(a^{-1}, \mathbf{1}\right) a^{*} \\
= & a f(a)+f(a) a^{*}-f\left(a^{2}\right)+(a+\mathbf{1}) \beta(\mathbf{1}, \mathbf{1})\left(a^{*}+\mathbf{1}\right)+\beta(a, \mathbf{1})\left(a^{* 2}-\mathbf{1}\right) \\
& +\beta(\mathbf{1}, \mathbf{1})\left(a^{* 2}-\mathbf{1}\right)+\left((a+\mathbf{1}) \beta\left(a-\mathbf{1},(a-\mathbf{1})^{-1}\right)-\beta\left(a^{2}-\mathbf{1},(a-\mathbf{1})^{-1}\right)\right)\left(a^{* 2}-\mathbf{1}\right) \\
& -\beta(\mathbf{1}, \mathbf{1})-\beta\left(a, a-a^{-1}\right) a^{*}-\beta\left(a, a^{-1}\right) a^{*}-a \beta\left(a^{-1}, \mathbf{1}\right) a^{*} \tag{3.19}
\end{align*}
$$

Since $\beta$ is a Hochschild $*-2$-cocycle, we have

$$
\begin{equation*}
(a+\mathbf{1}) \beta\left(a-\mathbf{1},(a-\mathbf{1})^{-1}\right)-\beta\left(a^{2}-\mathbf{1},(a-\mathbf{1})^{-1}\right)=\beta(a+\mathbf{1}, a-\mathbf{1})\left(a^{*}-\mathbf{1}\right)^{-1}-\beta(a+\mathbf{1}, \mathbf{1}) \tag{3.20}
\end{equation*}
$$

and also

$$
\begin{equation*}
\beta(\mathbf{1}, a)=\beta(\mathbf{1}, \mathbf{1}) a^{*} \tag{3.21}
\end{equation*}
$$

Substituting (3.20) and (3.21) in (3.19), we have

$$
\begin{aligned}
0= & a f(a)+f(a) a^{*}-f\left(a^{2}\right)+a \beta(\mathbf{1}, \mathbf{1})\left(a^{*}+\mathbf{1}\right)+\beta(\mathbf{1}, \mathbf{1})\left(a^{*}+\mathbf{1}\right) \\
& +\beta(a, \mathbf{1})\left(a^{* 2}-\mathbf{1}\right)+\beta(\mathbf{1}, \mathbf{1})\left(a^{* 2}-\mathbf{1}\right)+\beta(a, a)\left(a^{*}+\mathbf{1}\right)+\beta(\mathbf{1}, a)\left(a^{*}+\mathbf{1}\right) \\
& -\beta(a, \mathbf{1})\left(a^{*}+\mathbf{1}\right)-\beta(\mathbf{1}, \mathbf{1})\left(a^{*}+\mathbf{1}\right)-\beta(a, \mathbf{1})\left(a^{* 2}-\mathbf{1}\right)-\beta(\mathbf{1}, \mathbf{1})\left(a^{* 2}-\mathbf{1}\right) \\
& -\beta(\mathbf{1}, \mathbf{1})-\beta(a, a) a^{*}+\beta\left(a, a^{-1}\right) a^{*}-\beta\left(a, a^{-1}\right) a^{*}-a \beta\left(a^{-1}, \mathbf{1}\right) a^{*} \\
= & a f(a)+f(a) a^{*}-f\left(a^{2}\right)+\beta(a, a) a^{*}+\beta(a, a)+\beta(\mathbf{1}, a) a^{*}+\beta(\mathbf{1}, a) \\
& -\beta(\mathbf{1}, \mathbf{1}) a^{* 2}+\beta(\mathbf{1}, \mathbf{1})-\beta(\mathbf{1}, \mathbf{1})-\beta(a, a) a^{*}-\beta(\mathbf{1}, \mathbf{1}) a^{*}
\end{aligned}
$$

Then

$$
\begin{equation*}
f\left(a^{2}\right)=f(a) a^{*}+a f(a)+\beta(a, a) . \tag{3.22}
\end{equation*}
$$

Now, let $a$ be an invertible element with $\|a\|>1$ and let $n$ be a positive number such that $\left\|\frac{a}{n}\right\|<\mathbf{1}$. It follows from (3.22) that

$$
f\left(\frac{a^{2}}{n^{2}}\right)=f\left(\frac{a}{n}\right)\left(\frac{a^{*}}{n}\right)+\frac{a}{n} f\left(\frac{a}{n}\right)+\beta\left(\frac{a}{n}, \frac{a}{n}\right)
$$

and hence,

$$
f\left(a^{2}\right)=f(a) a^{*}+a f(a)+\beta(a, a) .
$$

Finally, let $a$ be an arbitrary element of $\mathcal{A}$. Then, there exists a positive number $n$ such that $\left\|\frac{a}{n}\right\|<\mathbf{1}$. It follows that $n^{-1}(n \mathbf{1}-a)=\mathbf{1}-\frac{a}{n}$ is invertible and so is $n \mathbf{1}-a$. We have the following expressions:

$$
\begin{aligned}
f\left(a^{2}\right)-2 n f(a)-n^{2} \beta(\mathbf{1}, \mathbf{1})= & f(a-n)^{2} \\
= & f(a-n)(a-n)^{*}+(a-n) f(a-n)+\beta(a-n, a-n) \\
= & (f(a)+n \beta(\mathbf{1}, \mathbf{1}))(a-n)^{*}+(a-n)(f(a)+n \beta(\mathbf{1}, \mathbf{1})) \\
& +\beta(a, a)-\beta(n, a)-\beta(a, n)+\beta(n, n) \\
= & f(a) a^{*}-f(a) n+n \beta(\mathbf{1}, \mathbf{1}) a^{*}-n^{2} \beta(\mathbf{1}, \mathbf{1})+a f(a) \\
& -n f(a)+n a \beta(\mathbf{1}, \mathbf{1})-n^{2} \beta(\mathbf{1}, \mathbf{1})+\beta(a, a)-\beta(n, a) \\
& -\beta(a, n)+\beta(n, n) \\
= & f(a) a^{*}-2 n f(a)+n \beta(\mathbf{1}, a)+a f(a)+n \beta(a, \mathbf{1}) \\
& +\beta(a, a)-\beta(n, a)-n \beta(a, \mathbf{1})-n^{2} \beta(\mathbf{1}, \mathbf{1})
\end{aligned}
$$

Therefore, we have

$$
f\left(a^{2}\right)=f(a) a^{*}+a f(a)+\beta(a, a), \quad(a \in \mathcal{A})
$$

which means that $f$ is a generalized Jordan $*$-derivation with an associated mapping $\beta$, as desired.

$$
(i) \Rightarrow(i i i) .
$$

Replacing $a$ by $a+b$ in $f\left(a^{2}\right)=f(a) a^{*}+a f(a)+\beta(a, a)$, we get that

$$
\begin{equation*}
f(a b)+f(b a)=f(a) b^{*}+a f(b)+\beta(a, b)+f(b) a^{*}+b f(a),+\beta(b, a) \tag{3.23}
\end{equation*}
$$

for all $a, b \in \mathcal{A}$. Considering $\mu=f(a(a b+b a)+(a b+b a) a)$ and using (3.23), we arrive at

$$
\begin{aligned}
\mu= & f(a)\left(b^{*} a^{*}+a^{*} b^{*}\right)+a f(a b+b a) \\
& +f(a b+b a) a^{*}+(a b+b a) f(a) \\
& +\beta(a, a b+b a)+\beta(a b+b a, a) \\
= & 2 a b f(a)+a^{2} f(b)+a f(a) b^{*}+2 a f(b) a^{*} \\
& +b a f(a)+b f(a) a^{*}+2 f(a) b^{*} a^{*}+f(b) a^{* 2} \\
& +f(a) a^{*} b^{*}+a \beta(a, b)+a \beta(b, a)+\beta(a, b) a^{*} \\
& +\beta(b, a) a^{*}+\beta(a b, a)+\beta(b a, a)+\beta(a, a b)+\beta(a, b a) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\mu= & 2 f(a b a)+f\left(a^{2} b+b a^{2}\right) \\
= & 2 f(a b a)+f\left(a^{2}\right) b^{*}+a^{2} f(b)+\beta\left(a^{2}, b\right) \\
& +f(b) a^{* 2}+b f\left(a^{2}\right)+\beta\left(b, a^{2}\right) \\
= & 2 f(a b a)+f(a) a^{*} b^{*}+a f(a) b^{*}+\beta(a, a) b^{*} \\
& +a^{2} f(b)+\beta\left(a^{2}, b\right)+f(b) a^{* 2} \\
& +b f(a) a^{*}+b a f(a)+b \beta(a, a)+\beta\left(b, a^{2}\right)
\end{aligned}
$$

Comparing the two expressions obtained for $\mu$ and using the assumption that $\beta$ is a Hochschild $*-2$-cocycle, we arrive at (3.13).
(iii) $\Rightarrow(i i)$. Taking $b=a^{-1}$ in (3.13), we achieve the required result.

## Acknowledgments

The authors would like to thank the referees for their valuable comments and suggestions, which improved the final manuscript.

## References

[1] H.A. Ahmed, Right $\Gamma$-n-derivations in prime $\Gamma$-near-rings, Int. J. Nonlinnear Anal. Appl. 12 (2021), no. 2, 1653-1658.
[2] S. Ali, On generalized *-derivations in *-rings, Pales. J. Math. 1 (2012), 32-37.
[3] M. Ashraf and N. Rehman, On commutativity of rings with derivations, Results Math. 42 (2002), 3-8.
[4] M. Ashraf and M.A. Siddeeque, On *-n-derivations in rings with involution, Georgian Math. J. 22 (2015), no. , 9-18.
[5] M. Bres̆ar and J. Vukman, On some additive mappings in rings with involution, Aequations Math. 38 (1989), 178-185.
[6] M. Bres̆ar and B. Zalar, On the structure of Jordan *-derivations, Colloq. Math. 63 (1997), 163-171.
[7] M. Daif, Commutativity results for semiprime rings with derivations, Internat. J. Math. Math. Sci. 21 (1998), 471-474.
[8] H.G. Dales, Banach Algebras and Automatic Continuity, LMS Monographs 24, Clarenden Press, Oxford, 2000.
[9] B.L.M. Ferreira and B.T. Costa, *-Lie-Jordan-Type Maps on $C^{*}$-Algebras, Bull. Iranian. Math. Soc. (2021), https://doi.org/10.1007/s41980-021-00609-4.
[10] I.N. Herstein, Rings with involution, University of Chicago Press, Chicago, 1976.
[11] A. Hosseini, $\Phi$-derivations and Commutativity of Rings and Algebras, J. Math. Ext, 16 (2022), no. 9, To appear.
[12] M. Mathieu, Where to find the image of a derivation, Functional Analysis and Operator Theory, Banach Center Publication, 30 (1994), 237-249.
[13] A. Nakajima, Note on generalized Jordan derivations associated with Hochschild 2-cocyles of rings, Turk. J. Math. 30 (2006), 403-411.
[14] S. Pedersen, Anticommuting derivations, Proc. Amer. Math. Soc. 127 (1999), 1103-1108.
[15] P. Semrl, On Jordan *-derivations and an application, Colloq. Math. 59 (1990), no. 2, 241-251.
[16] P. Semrl On quadratic functionals, Bull. Austral. Math. Soc. 37 (1988), no. 1, 27-28.
[17] P. Semrl, Quadratic functionals and Jordan *-derivation, Studia Math. 97 (1991), no. 3, 157-165.
[18] J. Vukman, On derivations in prime rings and Banach algebras, Proc. Amer. Math. Soc. 116 (1992), no. 4, 877-884.
[19] B. Zalar, Jordan *-derivations and quadratic functionals on octonion algebras, Commun. Algebra 22 (1994), no. 8, 2845-2859.
[20] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolinae. 32 (1991), no. 4, 609-614.


[^0]:    * Corresponding author

    Email addresses: mathbakhti1352@gmail.com (Javad Bakhti), abbaspour@du.ac.ir (Gholamreza Abbaspour Tabadkan), hosseini.amin82@gmail.com (Amin Hosseini)

