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Abstract

Assume a large microscopic internal bonding chemical structure of a substance designed like a Petersen graph where
electrons are the vertices and edges representing the bonding energy levels in between them. For large structures, it is
difficult to find out the average level of bonding energy between any pair of electron-proton microscopic structures. For
a chemical scientist, it is a difficulty and a challenge both to find out what is the average amount of energy bounded
between any subsequent pair of electron-proton bi-valent bond, trivalent bond, or tetravalent bond. This paper presents
a sample-based estimation methodology for estimating the bonding energy mean value. A node-sampling procedure
is proposed whose bias, mean-squared errors and other properties are derived. Results are supported by empirical
studies. Findings are compared with particular cases and confidence intervals are used as a basic tool of comparison
for robustness purposes.

Keywords: Graph, Petersen Graph, Estimator, Bias, Mean Squared Error (MSE), Optimum Choice, Confidence
intervals, Nodes (vertices), Pattern Imputation
2020 MSC: 05C90, 05C92

1 Introduction

From a reference [3] one can understand the followings: The effect of proton transfer coupling on the electron
transfer triggered breaking of a O-O bond is illustrated by the comparison between the cyclic voltammetric responses
of two aliphatic peroxide molecules, one of which contains aproximal carboxylic acid group while, in the other, the
acid has been esterified. The stepwise pathway, electron transfer concerted with bond breaking followed by proton
transfer. The first step is irreversible, the additional driving force offered by the follow-up protonation should not
have any effect on the cyclic voltammetric response contrary to experiment [3]. Fig 1 and fig 2 support the above as
proton-electron connected graphical structure, where Co-OEC is energy bond chemical structure.
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Fig 1: Breaking Bonds with Electron Proton

Fig 2: Proton Electron Connectivity

Note 1.1 It is well-known that electron-proton in a chemical structure of a substance remain bounded like trivalent
bond, co-valent bond, tetravalent bond etc [3, 7, 9]. Their bonding energy level varies whatsoever be the micro-
distances. For a chemical scientist, it is an issue and challenge to estimate the average amount of bounded energy
between any subsequent pair of electron-proton of a substance. This difficulty issue and open challenge motivated to
search for an estimation strategy using sampling technique.

2 Generalized Petersen Graph

The generalized Petersen graphs G(n,k) is a family of cubic graph which is a 3-regular graph. The Cubic graph is
also called trivalent graph who connects the vertices of a regular polygon to corresponding vertices of a star polygon.
A cubic graph is a graphical structure of vertices (nodes) and edge where all the vertices have degree three.

The generalized Petersen graph G(n,k) was introduced by Coxeter et al. [4] and named by Watkins [21] from very
interesting family of trivalent graphs that can be described by only two integer parameters. They include Hamiltonian
and non-Hamiltonian graph, Bipartite and non-Bipartite graphs, vertex transitive and non-vertex transitive graphs,
cayley and non-cayley graphs of girth 3,4,5,6,7 or 8 according to[8].

Following notations of Watkins [21] for a given integer n and k < n
2 one can define a Petersen graph G (n, k) as a

graph of vertex set (µ0, µ1, ..., µn−1, ν0, ν1, ..., νn−1) and edge set partitioned into three equal parts (µiµi+1, µiνi, νiνi+k | 0 ≤ i ≤ n− 1)
where subscripts are to be read modulo n. The G (3, 1) and G (4, 1) are given below as a examples (Fig. 3 and 4).

Fig 3: Petersen Graph



An optimum single bounded inner energy level estimation using generalized Petersen graph 2441

Fig 4: Petersen Graph

Let µ = (µ1, µ2, µ3, ....) denotes a set of vertices and ϵ = (ϵ1, ϵ2, ϵ3, ...) is a set of edges. The G = (µ, ϵ,R) constitutes
a graph, in general, where R is a set of relations. In the microscopic internal chemical structure of metals, there are
electrons and protons bounded by the different energy levels. One can take electrons (proton-electron [3]) as vertices
and edge-length (weight) as the amount of energy bounded between them (fig 5) [see [3, 7, 9]].

Fig 5: Petersen Graph G(5,1)

The matter of interest herein is to estimate the average energy level existing between any two consecutive pair of
electrons (or proton [3]). This could be obtain by using Petersen graph as a model tool. Consider Petersen graph of
fig 5 and define the outer vertices µ = (µ1, µ2, µ3, µ4, µ5) and inner vertices ν = (ν1, ν2, ν3, ν4, ν5). The edge-vertex
relations are in table 1. Note 2.1 The set of vertices µ = (µ1, µ2, µ3, µ4, µ5) denotes outer energy level where as set

Table 1: Relation of Vertices and edges in Petersen graph

S.No. Set µ Set ν

1. µ1 = (ϵ1, ϵ2, ϵ
′
1) ν1 = (ϵ

′′

1 , ϵ
′′

2 , ϵ
′
1)

2. µ2 = (ϵ1, ϵ3, ϵ
′
2) ν2 = (ϵ

′′

1 , ϵ
′′

3 , ϵ
′
2)

3. µ3 = (ϵ2, ϵ4, ϵ
′
3) ν3 = (ϵ

′′

2 , ϵ
′′

4 , ϵ
′
3)

4. µ1 = (ϵ3, ϵ5, ϵ
′
4) ν4 = (ϵ

′′

3 , ϵ
′′

5 , ϵ
′
4)

5. µ1 = (ϵ4, ϵ5, ϵ
′
5) ν5 = (ϵ

′′

4 , ϵ
′′

5 , ϵ
′
5)

ν = (ν1, ν2, ν3, ν4, ν5) denotes inner-energy level. The paired set of vertices w = {(µi, νi) : i = 1, 2, 3, 4, 5} represents
intermediate energy level.

2.1 Pattern Imputation

In light of fig 5 and table 2, for large number of outer vertices N and large number of inner vertices N, the general
relationship R
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Table 2: Node-edge matrix of Petersen graph [as per [15, 16]]

ϵ1 ϵ2 ϵ3 ϵ4 ϵ5 ϵ′1 ϵ′2 ϵ′3 ϵ′4 ϵ′5 ϵ
′′

1 ϵ
′′

2 ϵ
′′

3 ϵ
′′

4 ϵ
′′

5 row total

µ1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 3
µ2 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 3
µ3 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 3
µ4 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 3
µ5 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 3
ν1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 3
ν2 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 3
ν3 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 3
ν4 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 3
ν5 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 3

At i=1 µ1 → (ϵ1, ϵ2, ϵ
′
1); ν1 → (ϵ

′′

1 , ϵ
′′

2 , ϵ
′
1), µi → (ϵi−1, ϵi+1, ϵ

′
i); νi → (ϵ

′′

i−1, ϵ
′′

i+1, ϵ
′
i), i = 2, 3...n − 1 At i=N, µN →

(ϵN−1, ϵN+1, ϵ
′
N ); νN → (ϵ

′′

N−1, ϵ
′′

N , ϵ′N ).
Under large N, for outer set of vertices µ, inner set of vertices ν and intermediate set ω, the pattern imputation is
proposed as:

Step I At i=2 take µi → (ϵi−1, ϵi+1, ϵ
′
i); νi → (ϵ

′′

i−1, ϵ
′′

i+1, ϵ
′
i), i = 2, 3...N − 1

Step II At i=1 impute in step I, ϵ0 by ϵ1, ϵ
′′

0 by ϵ
′′

1 and take µ1 → (ϵ1, ϵ2, ϵ
′
1); ν1 → (ϵ

′′

1 , ϵ
′′

2 , ϵ
′
1)

Step III At i=N impute in step I, ϵN+1 by ϵN and ϵ
′′

N+1 by ϵ
′′

N and take µN → (ϵN−1, ϵN , ϵ′N ); νN → (ϵ
′′

N−1, ϵ
′′

N , ϵ′N ).

To note that imputation of [ϵ0 by ϵ1 ϵN+1 by ϵN ] and [ϵ
′′

0 by ϵ
′′

1 , ϵ
′′

N+1 by ϵ
′′

N ] is like a specific imputation just to
maintain a pattern so it is called pattern imputation. In general, it may random imputation also like ϵ0 to replace
by any ϵi, ϵN+1 by any ϵi, ϵ

′′

0 by any ϵ
′′

i ϵ
′′

N+1 by any ϵ
′′

i randomly chosen. The Pattern Imputation is closed to the
nearest neighbour imputation, but earlier maintains a pattern later do not do so.

2.2 Energy Bond Structure

Looking at fig 5 and assuming large N, the generalised Petersen graph G(N,k) can be expressed having edge weights
as different energy levels bounded between vertices.

(a)Single Pair Energy Bonding: The bonding is between any pair (µi, µi+1) at outer level any pair (νi, νi+1) at
inner level and any pair (µi, νi) at intermediate level. The symbols δi, δ

′
i, δ

′′

i represent value of corresponding bonding
as shown in Fig 6.

Fig 6: Single Pair Energy Bonding

(b)Double Pair Energy Bonding: This bonding is between one outer pair of vertices and one intermediate pair or
one inner pair with one intermediate pair. The αi and α′

i are edge-weights revealing in Fig 7.
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Fig 7: Double Pair Energy Bonding

(c)Triple Pair Energy Bonding: This consitutes bonding among two vertex pairs at outer and inner level and
one at intermediate level. The βi, β

′
i, β

′′

i are edge weights as energy levels as shown in fig 8.

Fig 8: Triple Pair Energy Bonding

3 Estimation

Note 3.1 The aggregate vertices (population) count is N and size of random sample is n (N¿n).
Consider the case of single pair energy bond estimation only in the content of this paper assuming large N. Define
Ui = ϵi as outer edges and Zi = ϵ

′′

i as inner edges. Some symbols are as under:

Ū =
∑N

i=1 Ui

N =
∑N

i=1 ϵi
N ; Z̄ =

∑N
i=1 Zi

N =
∑N

i=1 ϵ
′′
i

N (Population means)

S2
U =

∑N
i=1(Ui−Ū)2

N−1 ; S2
Z =

∑N
i=1(Zi−Z̄)2

N−1 (Population mean square)

CU = (SU

Ū
); CZ = (SZ

Z̄
)(Population coefficient of variation)

SUZ =
∑N

i=1(Ui−Ū)(Zi−Z̄)

N−1 ; ρUZ = ρZU = SUZ

SU .SZ
(Population correlation coefficient )

Let a simple random sample of large size n (n < N) vertices like (µj , νj), j=1,2,3...n is drawn from N vertices
using without replacement procedure.

Sample statistic estimates based on n observations are:

ū =
∑n

j=1 uj

n ( sample mean of outer vertices )

z̄ =
∑n

j=1 zj

n (sample mean of inner vertices)

s2u =
∑n

j=1(uj−ū)2

n−1 ; s2z =
∑n

j=1(zj−z̄)2

n−1 (sample mean square)
cu = ( suū ); cz = ( szz̄ ) (sample coefficient of variation)

suz =
∑n

j=1(uj−ū)(zj−z̄)

n−1 ; ρuz = suz

su.sz
(sample correlation)

Objective of this paper is to estimate, using sampling, the average amount of energy bond existing between any
two consecutive pair of electrons (or electron-proton [3, 7, 9]) in a substance whose microscopic chemical structure is
like a Petersen graph with N vertices. The out mean Ū is known but inner mean Z̄ is unknown and the aim is focused
to estimate unknown Z̄, using (ū,z̄, Ū) with the help of an appropriate efficient estimation strategy.
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3.1 Proposed Estimation Strategy

To estimate unknown Z̄ in the inner structure of single energy bond between any pair of consecutive electrons
(vertices), the proposed estimation strategy [using z̄, Ū , ū] is:

E = (z̄)[ϕ1(ū, Ū)][ϕ2(ū, Ū)]−1

where,
ϕ1(ū, Ū) = [(A+ C +D)Ū + gBū]

ϕ2(ū, Ū) = [(A+ gB +D)Ū + Cū]

A = (q−1)(q−2);B = (q−1)(q−4);C = (q−2)(q−3)(q−4);D = (q−1)(q−2)(q−3)(q−4)(q−5), g = n
N , 0 < q < ∞

The proposed is in accordance with shukla et al.[17] but as a part of new structure, a term is added which is in
of power five in q . At q=4, as a special case, the proposed strategy converts to the inner single mean based energy
bond value estimation through a sample.

4 Setting Approximations

For two real numbers h1 and h2, |h1| < 1 and |h2| < 1, assuming N, n large, one can express approximations as
per [19], [10], [11].

z̄ = Z̄(1 + h1) (4.1)

ū = Ū(1 + h2) (4.2)

Let E∗(.) denotes expected value of random variables z̄ and ū, then one can get following using [5], [13],[15], [16], [18],
[10], [6], [11].

E∗(h1) = E∗(h2) = 0 (4.3)

E∗(h1
2) =

(N − n)

Nn
C2

Z (4.4)

E∗(h2
2) =

(N − n)

Nn
C2

U (4.5)

E∗(h1h2) =

(
(N − n)

Nn

)
(ρZU .CZ .CU ) (4.6)

Theorem 4.1. Under large sample approximations, the proposed E could be expressed as:

E = Z̄

[
(1 + h1) + ∆∗

{
(h1 + h1h2)−

Ch2
2

∆

}]
where ∆ = (A+ gB + C +D), ∆∗ = [ (gB−C)

∆ ].
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Proof . We have
E = (z̄)[ϕ1(ū, Ū)][ϕ2(ū, Ū)]−1

where,
ϕ1(ū, Ū) = [(A+ C +D)Ū + gBū]

ϕ2(ū, Ū) = [(A+ gB +D)Ū + Cū].

Using (4.1) and (4.2) |h1| < 1, |h2| < 1

ϕ1(ū, Ū) =
[
(A+ C +D)Ū + gB

{
Ū(1 + h2)

}]
(4.7)

ϕ2(ū, Ū) =
[
(A+ gB +D)Ū + C

{
Ū(1 + h2)

}]
. (4.8)

Then ϕ1(ū, Ū) could be expressed as:

ϕ1(ū, Ū) = [Ū(A+ gB + C +D)]

[
1 +

(gBh2)

(A+ gB + C +D)

]
. (4.9)

Since |h2| < 1, | gBh2

(A+fB+C+D) | < 1, for all g > 0, q > 0. Moreover, for ϕ2(ū, Ū) using expansion of (1 + x)−1, one
gets [

ϕ2(ū, Ū)
]−1

=
[
(A+ gB + C +D)Ū + ŪCh2

]−1

= (Ū)−1[A+ gB + C +D]−1

[
1 +

Ch2

(A+ gB + C +D)

]−1

= (Ū)−1[A+ gB + C +D]−1

[
1− Ch2

(A+ gB + C +D)
+

C2h2
2

(A+ gB + C +D)
· · ·

]
.

Define ∆ = (A+ gB + C +D), then one can express E as E = (z̄)[ϕ1(ū, Ū)][ϕ2(ū, Ū)]−1. This implies that

E = Z̄(1 + h1)

[
1 +

gBh2

∆

] [
1− Ch2

∆
+

C2h2
2

∆2
· · ·

]
= Z̄(1 + h1)

[
1− Ch2

∆
+

C2h2
2

∆2
+

{
gBh2

∆
− gBCh2

2

∆2
+

gBC2h3
2

∆3
· · ·

}]
= Z̄

[
(1 + h1) +

(gB − C)

∆

{
(h2 + h1h2)−

Ch2
2

∆

}]
,

which is expressed after ignoring terms (hs
1. h

t
2), (s+ t) > 2, s, t = 0, 1, 2, 3, 4, . . ., because of having high power on h1

and h2. The denominator ∆ is high for g > 0, therefore, one can narrate that contribution of these terms in estimation

will be low (negligible). Define ∆∗ = (gB−C)
∆ .Then

E = Z̄

[
(1 + h1) + ∆∗

{
(h1 + h1h2)−

Ch2
2

∆

}]
.

□

Theorem 4.2. The bias of estimator E under (4.1), (4.2) using Theorem 4.1 is

B[E] = Bias[E] = Z̄

[
∆∗

{
N − n

Nn

}{
ρZU .CZ .CU )−

C

∆
C2

U

}]
,

where ρUZ = rhoZU is correlation coefficient between inner and outer energy bond levels in Petersen graph.

Proof . Let E∗(.) denotes expected value of the proposed estimator E and B[E] =
[
E∗(E)− Z̄

]
. Now, we have

E∗(E) = E∗
[
Z̄(1 + h1) + Z̄∆∗

{
h1 + h1h2 −

Ch2
2

∆

}]
=

[
Z̄ + Z̄E∗(h1) + Z̄∆∗

{
E∗(h1) + E∗(h1h2)−

CE∗(h2
2)

∆

}]
=

[
Z̄ + Z̄∆∗

{
E∗(h1h2)−

C

∆
E∗(h2

2)

}]
.
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Using (4.1) and (4.2) and Theorem 4.1

B[E] =
[
E∗(E)− Z̄

]
= Z̄

[
∆∗

{
E∗(h1h2)−

C

∆
E∗(h2

2)

}]
= Z̄

[
∆∗

(
N − n

Nn

){
(ρZUCZCU )− (

C

∆
)C2

U

}]
.

□

Corollary 4.3. The estimator E is unbiased under condition (ρZUCZCU ) = (C∆ )C2
U implies that

M(A+ gB + C +D) + C(M − 1) +MD = 0. (4.10)

Note 4.1: The above equation 4.10 is having highest power five in terms of q. Therefore, it may has maximum of
five roots satisfying the equation. Best root will be that having lowest mean square error (MSE).
Note 4.2 If the tn is biased estimator of unknown parameter θ then mean squared error is defined as

MSE(tn) = E[tn − θ]2

In finite sampling theory, the MSE(tn) is used as a tool of measuring precision. Since this paper considers a finite
setup of vertices only, therefore, it is recommended to use MSE(tn) instead of any other kind of loss function [see [2]].

Theorem 4.4. The mean squared error (MSE) of the proposed strategy E is

MSE[E] = Z̄2

[
(
N − n

Nn
)
{
C2

Z + (∆∗)2C2
U + 2∆∗ρUZCUCZ

}]
.

Proof . We have

MSE[E] = E∗[E − Z̄]2

= E∗
[
Z̄(1 + h1) + ∆∗

{
h1 + h1h2 −

Ch2
2

∆
+ ...

}
− Z̄

]2
= E∗ [Z̄(h1 +∆∗h2)

]2
.

Ignoring terms (hsht), (s+ t) > 2, s, t = 1, 2, 3, 4, 5, implies that

MSE[E] = Z̄2
[
E∗(h2

1) + (∆∗)2E∗(h2
2) + 2∆∗E∗(h1h2)

]
.

Thus,

MSE[E] = Z̄2

[
(
N − n

Nn
)
{
C2

Z + (∆∗)2C2
U + 2∆∗ρUZCUCZ

}]
. (4.11)

□

Theorem 4.5. The minimum (optimum) mean squared error is attained when
∆∗ = −M where M = ρZU (

CZ

CU
).

Proof . Differentiating MSE[E] with respect to the term ∆∗ and equating to zero, one gets

MSE[E]

∆∗ = 0 =⇒ ∆∗ = −ρZU (
CZ

CU
) = −M. (4.12)

□
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Corollary 4.6. The optimuum MSE expression (4.12) could be expressed as (gB−C)
(A+gB+C+D) = −M . Then

AM + gB(M + 1) + C(M − 1) +DM = 0. (4.13)

Note 4.3 The equation (4.13) of optimum MSE is having highest power five on terms q, therefore, there will be
maximum of five roots of equation (4.13). The best q will be that containing lowest bias value. The proposed strategy
attains the optimum level of MSE and also reduces the bias. This is a novel feature of proposed estimation procedure
E.

5 Numerical Illustration

Define F=Inner Level Energy Bonds ϵ
′′

i = Zi; G=Outer Level Energy Bonds ϵi = Ui; H=Intermediate Level Energy
Bonds ϵ′i. Consider the generalized Petersen structure with N=150 electrons (or protons) as vertices in a molecular
structure of a substance. The energy bonds are given below: To note that efficiency depends on choice of constant

Table 3: Energy bond data of N=150 electrons as population

S.No. F = ϵ
′′

i = Zi G = ϵi = Ui H = ϵ′i
1. 25 units 43units 86units
2. 53 units 81units 64units
3. 34 units 14units 86units
4. 43 units 61units 74units
5. 37 units 28units 69units
6. 91 units 23units 41units
7. 34 units 48units 72units
8. 92 units 43units 21units
9. 35 units 63units 71units
10. 27 units 83units 34units
11. 51 units 63units 86units
12. 63 units 72units 65units
13. 39 units 84units 42units
14. 52 units 26units 75units
15. 84 units 35units 42units
16. 28 units 39units 67units
17. 56 units 42units 63units
18. 81 units 33units 26units
19. 29 units 57units 76units
20. 85 units 38units 43units
21. 91 units 34units 78units
22. 38 units 49units 65units
23. 57 units 63units 84units
24. 19 units 43units 96units
25. 65 units 36units 73units
26. 48 units 96units 21units
27. 43 units 65units 92units
28. 45 units 39units 17units
29. 83 units 91units 26units
30. 57units 48units 21units
31. 23 units 58units 61units
32. 47 units 82units 53units
33. 27 units 63units 73units
34. 98 units 34units 61units
35. 45 units 23units 54units
36. 81 units 53units 66units
37. 22 units 93units 81units
38. 55 units 42units 76units
39. 29 units 63units 66units
40. 68 units 41units 96units
41. 25 units 93units 46units
42. 63 units 71units 32units
43. 73 units 61units 24units
44. 58 units 83units 46units
45. 48 units 43units 22units
46. 31 units 48units 69units
47. 47 units 33units 26units
48. 35 units 87units 76units
49. 63 units 71units 36units
50. 85 units 53units 46units
51. 76 units 29units 36units
52. 32 units 61units 59units
53. 47 units 93units 73units
54. 93 units 84units 64units
55. 55 units 84units 29units
56. 48 units 19units 36units
57. 71 units 94units 68units
58. 92units 83units 57units
59. 28 units 59units 28units
60. 38 units 47units 71units
61. 93 units 72units 65units
62. 35 units 83units 57units
63. 45 units 84units 91units
64. 46 units 52units 29units
65. 15 units 73units 82units
66. 37 units 87units 62units
67. 93 units 13units 96units
68. 75 units 84units 56units
69. 39 units 83units 92units
70. 72units 65units 86units
71. 47 units 41units 68units
72. 85 units 38units 21units
73. 68 units 91units 26units
74. 45 units 38units 56units
75. 30 units 43units 82units

S.No. F = ϵ
′′

i = Zi G = ϵi = Ui H = ϵ′i
76. 41 units 87units 34units
77. 75 units 32units 66units
78. 48 units 32units 71units
79. 87 units 92units 56units
80. 49 units 22units 76units
81. 65 units 86units 56units
82. 45 units 33units 31units
83. 49 units 64units 88units
84. 93 units 21units 65units
85. 75 units 83units 89units
86. 46 units 26units 18units
87. 68 units 37units 28units
88. 88 units 63units 29units
89. 28 units 44units 75units
90. 39 units 42units 56units
91. 37units 47units 76units
92. 82 units 56units 96units
93. 17 units 47units 89units
94. 76 units 44units 28units
95. 45 units 63units 60units
96. 77 units 42units 63units
97. 29 units 51units 36units
98. 39 units 53units 56units
99. 78 units 88units 40units
100. 20 units 75units 64units
101. 73units 37units 58units
102. 84 units 73units 36units
103. 95 units 43units 21units
104. 58 units 68units 28units
105. 71 units 39units 50units
106. 47 units 40units 19units
107. 85 units 73units 26units
108. 60 units 53units 44units
109. 28 units 49units 81units
110. 35 units 63units 66units
111. 48 units 28units 39 units
112. 56 units 54units 87 units
113. 41 units 40 units 81 units
114. 45 units 63 units 21 units
115. 35 units 71 units 66 units
116. 88 units 23 units 86 units
117. 35 units 43 units 88 units
118. 69 units 40 units 66 units
119. 38 units 33units 96units
120. 68 units 43units 56units
121. 21 units 84 units 26 units
122. 25 units 49units 77units
123. 48 units 64 units 92 units
124. 20 units 63units 29 units
125. 28 units 33 units 83 units
126. 77 units 62 units 55 units
127. 60 units 43 units 56 units
128. 65 units 74 units 78 units
129. 48 units 66 units 58 units
130. 94 units 47units 76units
131. 59 units 31 units 63 units
132. 76 units 93 units 84 units
133. 95 units 73 units 66units
134. 70 units 83 units 56 units
135. 46 units 29 units 46units
136. 79 units 92 units 36units
137. 54 units 54 units 47 units
138. 80 units 43units 98 units
139. 95 units 46units 19 units
140. 39 units 63 units 93 units
141. 97 units 76 units 34 units
142. 85 units 94 units 33 units
143. 76 units 33 units 57 units
144. 79 units 65 units 88 units
145. 83 units 60 units 59 units
146. 90 units 22 units 86units
147. 79 units 39 units 88 units
148. 46 units 55 units 39 units
149. 98 units 68 units 88 units
150. 29 units 85 units 89 units

q. There are multiple best and optimum choices available. The best is that who reduces bias and MSE both.

Percentage Relative Efficiency (PRE) =

[
MSE(E)q −MSE(E)qopt

MSE(E)q

]
X100, where q = 1, 2, 3, 4, 5.

The proposed E is best efficient at qopt while comparing with some specific q values (see table 10). The 43% and
50% efficiency observed with respect to q=1 and q=2.
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Table 4: Petersen graph population parameters

S.No. Parameters Value Description/Equation no.
1. N 150 Population Size
2. n 40 Sample Size
3. Z̄ 56.7266 Population Mean
4. Ū 57.7666 Population Mean
5. SZ 22.8684 Populatin Variance
6. SU 21.8792 Population Varance
7. CZ 0.4031 Population Coefficient of Variation
8. CU 0.3787 Population Coefficient of Variation
9. ρUZ 0.0726 Population Correlation Coefficient
10. M 0.0773 Using Corollary 4.1

Table 5: Almost unbiased choice of q for given (M, g) [from eq. (4.10)]

S.No. M g Choice of q Bias MSE
1. 0.0773 0.2666 q1 = 1.0182 0.1585 17.8592
2. 0.0773 0.2666 q2 = 1.9950 0.0087 19.5375
3. 0.0773 0.2666 q3 = 2.9742 -0.0037 10.6090
4. 0.0773 0.2666 q4 = −− – –
5. 0.0773 0.2666 q5 = −− – –

Note 5.1 In [7] the graphical structure spanning tree is used while in [8] the planar graph structure is used.
Moreover, in [10] the binary tree is used whereas in [12,15,17] the stratified sampling procedure is applied for parameter
estimation. Likewise in [18] , the Hamiltonian Circuit is selected for application purpose and in [20] the Bipartite
graph is used. No researcher has yet used Petersen graph as a population who is considered in this paper. Therefore,
comparison with above mentioned references cannot be performed because they are linked with other different graphical
structures.

6 Simulation of Confidence Interval for Robustness

Consider the 10 random samples A1, A2, A3, ..., A10 each of size n=40 from population N=150. Description of
samples are in table 11 given below:

6.1 Confidence Interval

Let P[H] denotes the probability of an event H. The 95% optimum confidence interval (if sample from normal
population) is defined as:
P [estimated mean − 1.96

√
est[MSE(E)]qopt] < Z̄ < P [estimated mean + 1.96

√
est[MSE(E)]qopt] = 0.95, where

qopt is obtained by eq. (4.13) along with sample estimate of MSE using (g, M). The g, M are treated known. It is
evident from table 13 that average confidence intervals are independent of different qopt values.

7 Discussion

The proposed estimation strategy has constants A, B, C, D who are linked with another single constant q > 0.
For data in table 5.1 and population parameters in table 5.2, the most suitable choices of q are in table 5.3 and
table 5.4. For given population (M = 0.0773, g = 0.2666), the proposed estimation strategy is almost unbiased when
q1 = 1.0182, q2 = 1.9950 and q3 = 2.9742. The best is q = q3 = 2.9742 because it reduces MSE also as shown in table
5.3. Likewise, in table 5.4 the choices of q are q1 = 1.8187, q2 = 3.2377, q3 = 4.2569 on which the MSE is optimum
(minimum). Best option is q = q3 = 4.2569 having the least bias. Overall, for given data in table 5.1, the most suitable
range for q is q ∈ (1.8, 2.99) producing optimum MSE with least bias.

The general Ready-Reckoner table 5.6 and table 5.7 reveal for any given data where M ranging M ∈ (0.05, 0.95), g
ranging g ∈ (0.3, 0.9), the best q ranging q ∈ (1.9, 4.45) for which MSE and bias both are at the lowest level, whatever
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Table 6: Choice of q for optimum MSE for given (M, g) [from eq. (4.13)]

S.No. M g Choice of q MSE Bias
1. 0.0773 0.2666 q1(opt) = 1.8187 9.5372 -0.0412
2. 0.0773 0.2666 q2(opt) = 3.2377 9.5370 -0.0017
3. 0.0773 0.2666 q3(opt) = 4.2569 9.5370 0.0003
4. 0.0773 0.2666 q4(opt) = −− – –
5. 0.0773 0.2666 q5(opt) = −− – –

Table 7: At some special cases of q = 1,2,3,4,5 for (g= 0.2666, M= 0.0773)

S.No. q A B C D Bias (theorem 4.2) MSE (theorem 4.3)
1. 1 0 0 -6 0 0.1376 16.7410
2. 2 0 -2 0 0 0.0115 19.3604
3. 3 2 -2 0 0 -0.0042 10.2305
4. 4 6 0 0 0 0.0000 9.5876
5. 5 12 4 6 0 0.0091 9.8154

be positive 0 < M < 1 and 0 < g < 1 using the proposed estimation strategy. The simulation results of confidence
interval (CI) over 10 samples, each of size n = 40, are in table 6.1 who estimate sample statistic of the proposed over
10 samples as in table 6.2. The calculation of 95% confidence intervals are in table 6.3. All the CI are catching the
true mean value of inner energy variable Z = 56.7. The length of confidence intervals have extremely minor variations
among them. The efficiency comparision of proposed is in table 5.8 over different q. The 43% and 50% efficiency
found with respect to q=1 and q=2. The confidence intervals are robust over different qopt values.
Note 7.1 The main findings are:
(a) thought to estimate energy bonding through sampling procedure,
(b) application of Petersen graph as a model tool for such estimator which is found well proved effective for energy
bonds,
(c) introduction of a new imputation procedure named after “Pattern Imputation” against a sample based missing
value in sample data in Petersen Graph which is found useful,
(d) proposal of a new sample based estimation strategy E which is proved efficient enough for estimating the energy
levels at the optimum choice of constant q = qopt,
(e) use of confidence intervals as a tool to check the robustness of predicted value of energy bonds,
(f) generation of ready-reckoner tables for quick and best selection of constant value q whatever be characterization
of population in terms of M and g.

8 Conclusion

On recapitulation, the problem opted in this paper is to estimate the average optimum bounded inner energy
level between any two inner vertices of a chemical bond structure like the generalised Petersen graph, with the use
of sampling and imputation technique. As a matter of simplicity, the single pair energy bonding was taken into
consideration among inner and outer chemical structure. A method of imputation, named after “Pattern Imputation”
is proposed in the content to maintain the completeness in the symmetry in view to sampling strategy implementation.
Pattern imputation was found efficient and useful for filling the missing data. An estimation strategy is proposed whose
expressions of bias and mean squared error are derived. It has four constants A, B, C and D who are linked with
another single constant q having expression in terms of power five. This has led to the best selection of q for making
the proposed estimation strategy optimum with least bias. The most plausible selection of q is q ∈ (1.8, 2.99) for
given M = 0.0773, g = 0.2666. Two Ready-Reckoner tables provide general range of most suitable q as q ∈ (1.9, 4.45)
whatsoever be the positive most frequent M (0¡M¡1) and g (0¡g¡1) values characterizing the population. As a part of
secondary verification of performance of proposed estimation strategy, which is sample based with pattern imputation,
the method of simulation of 95% confidence interval (CI) is used as a tool. It is found that all the estimated confidence
intervals are catching the true mean value of main inner energy bond of interest which is major strength of the
proposed. There is minor insignificant variations in the lengths of C.I. (Confidence Interval) which support to the
robustness of efficiency. Future prospects of the work undertaken herein are to extend the same to the case of Double
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Table 8: Ready reckoner for choice of q providing almost unbiasedness for given (M,g) (using corollary 4.1, eq. (4.10)) [Range 0.05 ≤ M ≤
0.95; Range 0.3 ≤ g ≤ 0.9]

S.No. M g Choice of q Bias MSE
1. 0.05 0.3 q1 = 1.0120 0.1508 17.4464
2. 0.05 0.3 q2 = 1.9949 0.0089 19.5205
3. 0.05 0.3 q3 = 2.9840 -0.0046 10.8929
4. 0.05 0.3 q4 = −− – –
5. 0.05 0.3 q5 = −− – –
6. 0.05 0.6 q1 = 1.0120 0.1500 17.3825
7. 0.05 0.6 q2 = 1.9903 0.0090 19.5127
8. 0.05 0.6 q3 = 2.9898 -0.0157 30.7244
9. 0.05 0.6 q4 = −− – –
10. 0.05 0.6 q5 = −− – –
11. 0.05 0.9 q1 = 1.0121 0.1492 17.3242
12. 0.05 0.9 q2 = 1.9856 0.0091 19.5114
13. 0.05 0.9 q3 = 2.9976 -0.0943 815.5990
14. 0.05 0.9 q4 = −− – –
15. 0.05 0.9 q5 = −− – –
16. 0.35 0.3 q1 = 1.0674 0.2416 22.2782
17. 0.35 0.3 q2 = 1.9714 -0.0065 20.4181
18. 0.35 0.3 q3 = 2.9201 0.0011 13.6369
19. 0.35 0.3 q4 = −− – –
20. 0.35 0.3 q5 = −− – –
21. 0.35 0.6 q1 = 1.0682 0.2333 21.6708
22. 0.35 0.6 q2 = 1.9446 -0.0069 20.3828
23. 0.35 0.6 q3 = 2.9553 0.0038 59.1187
24. 0.35 0.6 q4 = −− – –
25. 0.35 0.6 q5 = −− – –
26. 0.35 0.9 q1 = 1.0690 0.2251 21.0742
27. 0.35 0.9 q2 = 1.9195 -0.00072 20.3381
28. 0.35 0.0.9 q3 = 2.9890 0.0242 1805.3500
29. 0.35 0.9 q4 = −− – –
30. 0.35 0.9 q5 = −− – –

S.No. M g Choice of q Bias MSE
31. 0.65 0.3 q1 = 1.1049 0.3519 28.1439
32. 0.65 0.3 q2 = 1.9538 -0.0241 21.3308
33. 0.65 0.3 q3 = 2.8847 0.0136 17.8414
34. 0.65 0.3 q4 = −− – –
35. 0.65 0.3 q5 = −− – –
36. 0.65 0.6 q1 = 1.1070 0.3320 26.6866
37. 0.65 0.6 q2 = 1.9124 -0.0251 21.1868
38. 0.65 0.6 q3 = 2.9365 0.0426 99.8734
39. 0.65 0.6 q4 = −− – –
40. 0.65 0.6 q5 = −− – –
41. 0.65 0.9 q1 = 1.1091 0.3121 25.2619
42. 0.65 0.9 q2 = 1.8745 -0.0260 21.0199
43. 0.65 0.9 q3 = 2.9840 0.3035 34.74.6470
44. 0.65 0.9 q4 = −− – –
45. 0.65 0.9 q5 = −− – –
46. 0.95 0.3 q1 = 1.1321 0.4816 35.0244
47. 0.95 0.3 q2 = 1.9404 -0.0434 22.2394
48. 0.95 0.3 q3 = 2.8622 0.0327 23.4848
49. 0.95 0.3 q4 = −− – –
50. 0.95 0.3 q5 = −− – –
51. 0.95 0.6 q1 = 1.1356 0.4452 32.3878
52. 0.95 0.6 q2 = 1.8883 -0.0450 21.9297
53. 0.95 0.6 q3 = 2.9246 0.1016 153.7084
54. 0.95 0.6 q4 = −− – –
55. 0.95 0.6 q5 = −− – –
56. 0.95 0.9 q1 = 1.1393 0.4094 29.8488
57. 0.95 0.9 q2 = 1.8413 -0.0466 21.5656
58. 095 0.9 q3 = 2.9810 0.7690 5860.4860
59. 0.95 0.9 q4 = −− – –
60. 0.95 0.9 q5 = −− – –

pair and Triple pair of energy bonding using other different types of sampling strategies. This scientific contribution
helps to the chemical scientists to evaluate the bonding energy among electron-proton and to utilize it for well-being
of mankind in terms of anticipation in an active chemical process.
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Table 11: Ten random ssample selection

Sample No. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

(z1, u1) (53,81) (25,43) (46,55) (34,14) (98,68) (53,81) (25,43) (29,85) (91,23) (90,22)
(z2, u2) (34,14) (34,14) (79,39) (91,23) (46,55) (37,28) (53,81) (95,46) (92,43) (98,68)
(z3, u3) (91,23) (91,23) (80,43) (35,63) (76,33) (34,48) (37,28) (79,92) (27,83) (80,43)
(z4, u4) (35,63) (35,63) (79,92) (63,72) (39,63) (39,84) (91,23) (59,31) (51,63) (95,73)
(z5, u5) (63,72) (27,83) (70,83) (84,35) (80,43) (56,42) (35,63) (48,66) (88,23) (59,31)
(z6, u6) (51,63) (63,72) (95,73) (56,42) (59,31) (81,33) (51,63) (60,43) (38,49) (28,33)
(z7, u7) (57,48) (52,26) (59,31) (85,38) (94,47) (19,43) (39,84) (69,40) (19,43) (21,84)
(z8, u8) (47,82) (84,35) (48,66) (57,63) (77,62) (43,65) (84,35) (88,23) (43,65) (69,40)
(z9, u9) (98,34) (29,57) (77,62) (48,96) (28,33) (57,48) (56,42) (41,40) (23,58) (35,71)
(z10, u10) (55,42) (91,34) (28,33) (83,91) (20,63) (47,82) (91,34) (48,28) (98,34) (41,40)
(z11, u11) (63,71) (38,49) (48,64) (47,82) (25,49) (98,34) (57,63) (28,49) (45,23) (48,28)
(z12, u12) (58,83) (19,43) (21,84) (45,23) (38,33) (55,42) (65,36) (60,53) (31,48) (29,51)
(z13, u13) (31,48) (43,65) (38,33) (55,42) (41,40) (25,93) (45,39) (77,42) (32,61) (17,47)
(z14, u14) (35,87) (45,39) (69,40) (25,93) (60,53) (31,48) (57,48) (82,56) (48,19) (39,42)
(z15, u15) (85,53) (57,48) (88,23) (58,83) (58,68) (76,29) (27,63) (45,33) (28,59) (93,21)
(z16, u16) (32,61) (47,82) (35,71) (47,33) (73,37) (93,84) (68,41) (49,22) (15,73) (65,86)
(z17, u17) (93,84) (98,34) (56,54) (85,53) (39,53) (92,83) (73,61) (41,87) (93,13) (49,22)
(z18, u18) (48,19) (22,93) (28,49) (47,93) (77,42) (45,84) (31,48) (68,91) (68,91) (30,43)
(z19, u19) (92,59) (55,42) (85,73) (48,19) (76,44) (47,41) (47,33) (37,87) (30,43) (68,91)
(z20, u20) (38,47) (29,63) (78,88) (28,59) (37,47) (68,91) (76,29) (48,19) (48,32) (72,65)
(z21, u21) (45,38) (63,71) (76,44) (35,83) (46,26) (49,22) (32,61) (47,93) (65,86) (93,13)
(z22, u22) (30,43) (47,93) (37,47) (46,52) (75,83) (93,21) (55,84) (76,29) (68,37) (45,84)
(z23, u23) (29,85) (55,84) (28,44) (93,13) (93,21) (46,26) (38,47) (35,87) (77,42) (28,59)
(z24, u24) (46,55) (75,84) (93,21) (72,65) (49,64) (28,44) (75,83) (25,93) (39,53) (55,84)
(z25, u25) (90, 22) (47,41) (87,92) (68,91) (87,92) (39,42) (54,54) (29,63) (73,37) (85,53)
(z26, u26) (79,39) (49,22) (75,32) (41,87) (41,87) (17,47) (88,63) (55,42) (71,39) (63,71)
(z27, u27) (83,60) (45,33) (30,43) (87,92) (68,91) (60,53) (35,71) (81,53) (47,40) (48,43)
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Table 12: Sample statistics of 10 samples

Sample No. Mean (z̄) Mean(ū) sz su cz cu ρzu
A1 59.4750 57.0250 22.0953 22.2682 0.3715 0.3905 0.0316
A2 53.4500 54.3000 23.4728 22.5687 0.4391 0.4156 0.0910
A3 59.4750 55.2500 24.4036 21.5737 0.4103 0.3904 0.0417
A4 57.8500 58.9250 22.0995 24.4712 0.3820 0.4152 0.1005
A5 54.7000 59.5500 21.9676 17.3144 0.4016 0.2907 0.0827
A6 54.8500 55.0000 24.3548 25.2428 0.4440 0.4589 0.0493
A7 56.6750 55.8250 21.9678 19.4786 0.3876 0.3489 0.0524
A8 55.7000 53.0750 21.1238 23.8249 0.3792 0.4488 0.3351
A9 57.1000 49.5000 25.4365 22.6441 0.4454 0.4574 0.3132
A10 54.3750 55.9000 24.0413 22.0023 0.4421 0.3936 0.2333

Table 13: Estimated confidence intervals over 10 samples at the qopt values

Sample No. qopt E est(MSE) C.I. Length
A1 q1(opt) = 1.8187 59.5277 8.9592 [53.66,65.39] 11.7333
A2 q1(opt) = 1.8187 53.6398 10.0225 [47.43,59.84] 12.4100
A3 q1(opt) = 1.8187 59.6364 10.9072 [53.16,66.10] 12.9462
A4 q1(opt) = 1.8187 57.7591 8.8675 [51.92,63.59] 11.6731
A5 q1(opt) = 1.8187 54.5616 8.7947 [48.74,60.37] 11.6251
A6 q1(opt) = 1.8187 55.0114 10.8551 [48.55,61.46] 12.9152
A7 q1(opt) = 1.8187 56.7976 8.8245 [50.97,62.62] 11.6447
A8 q1(opt) = 1.8187 5.9514 7.7704 [50.48,61.41] 10.9272
A9 q1(opt) = 1.8187 57.4857 11.3746 [50.87,64.09] 13.2207
A10 q1(opt) = 1.8187 54.4885 10.3214 [48.19,60.78] 12.5931

Average [50.32,62.66] 12.1688
A1 q2(opt) = 3.2377 59.5340 8.9636 [53.66,65.40] 11.7362
A2 q2(opt) = 3.2377 53.6975 10.0205 [47.49,59.90] 12.4088
A3 q2(opt) = 3.2377 59.6752 10.9103 [53.20,66.14] 12.9480
A4 q2(opt) = 3.2377 57.7599 8.8656 [51.92,63.59] 11.6719
A5 q2(opt) = 3.2377 54.5687 8.7929 [48.75,60.38] 11.6239
A6 q2(opt) = 3.2377 55.0529 10.8583 [48.59,61.51] 12.9170
A7 q2(opt) = 3.2377 56.8222 8.8257 [50.99,62.64] 11.6455
A8 q2(opt) = 3.2377 56.0485 7.7463 [50.59,61.50] 10.9102
A9 q2(opt) = 3.2377 57.7266 11.3455 [51.12,64.32] 13.2037
A10 q2(opt) = 3.2377 54.5108 10.3055 [48.21,60.80] 12.5844

Average [55.81,62.61] 12.1649
A1 q3(opt) = 4.2569 59.5341 8.9635 [53.66,65.40] 11.7361
A2 q3(opt) = 4.2569 53.6997 10.0206 [47.49,59.90] 12.4089
A3 q3(opt) = 4.2569 59.6763 10.9102 [53.20,66.15] 12.9480
A4 q3(opt) = 4.2569 57.7604 8.8657 [51.92,63.59] 11.6719
A5 q3(opt) = 4.2569 54.5698 8.7929 [48.75,60.38] 11.6239
A6 q3(opt) = 4.2569 55.0542 10.8582 [48.59,65.51] 12.9171
A7 q3(opt) = 4.2569 56.8228 8.8256 [51.00,62.64] 11.6455
A8 q3(opt) = 4.2569 56.0530 7.7472 [50.59,61.50] 10.9108
A9 q3(opt) = 4.2569 57.7421 11.3466 [51.13,64.34] 13.2044
A10 q3(opt) = 4.2569 54.5113 10.3061 [48.21,60.80] 12.5844

Average [50.45,69.56] 12.1651
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