
Int. J. Nonlinear Anal. Appl. 14 (2023) 1, 2279–2300
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2022.27197.3529

Human-Whale cooperation optimization (HWO) algorithm: A
metaheuristic algorithm for solve optimization problems

Farnoosh Parandeh Motlagha, Vahid Khatibi Bardsirib,∗, Amid Khatibi Bardsirib

aDepartment of Computer Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran

bDepartment of Computer Engineering, Bardsir Branch, Islamic Azad University, Bardsir, Iran

(Communicated by Mohammad Bagher Ghaemi)

Abstract

Metaheuristic algorithms are one of the most effective methods for solving optimization problems and are modeled
on the behavior of living things or biological phenomena. The swarm behavior of animals in nature to survive is a
good way to create metaheuristic algorithms with a group intelligence approach. The swarm hunting mechanism is
one of the most interesting meta-behavioral behaviors observed in a large number of organisms, and the chances of
success in prey hunting by swarm behaviors will increase. In this paper, a new metaheuristic algorithm with a swarm
intelligence approach is presented by using the human hunting mechanism and whale. In this type of behavior, whales
and humans participate in hunting in such a way that whales and humans benefit from each other. Implementation
and analysis of the proposed method provided less error than 82.60% of the experiments of other algorithms such
as particle swarm optimization(PSO), firefly algorithm(FA), grasshopper optimization algorithm(GOA) and butterfly
optimization algorithm(BOA). Experiments show that the proposed method converges in complex functions with a
probability of 4.36% in local optimizations, which is less than the comparable algorithms. Experiments show that
the proposed method can be implemented on a wide range of functional optimization problems and reduces the
optimization error due to the simultaneous local and global search of the intelligent algorithm.

Keywords: optimization problems, benchmark function, metaheuristic algorithms, swarm intelligence algorithms,
human-whale cooperation optimization
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1 Introduction

Metaheuristic algorithms are a set of methods for solving optimization problems that are modeled on the modeling
of phenomena in nature and the problem-solving method of animals or physical phenomena [13]. Modeling in meta-
heuristic algorithms involves using the survival mechanism or finding the optimal answer in nature that is used by
animals or the laws of nature. Most of the problems in nature that organisms face are optimization problems because
in these problems each organism tries to find the most optimal solution for finding food, hunting, and making food
[4, 18]. Most of the behavior of animals in nature is swarm behavior because they have learned over time that living
in a group increases their chances of survival. Studies show that in order to find food, they first consider the routes to
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be random and at the same time release an acidic substance called pheromone in their path [2, 29]. Their release of
pheromones or acid causes each ant to know the return paths, and on the other hand, the ants move in paths where
more pheromones have been released. The tracking behavior of the released pheromones causes them to choose short
paths to food and nests. Ant behavior in finding food is an example of swarm intelligence behavior and inspires the
ant optimization algorithm. The ant optimization algorithm can be used in graph-based optimization problems such
as Travelling Salesman Problem (TSP) [7], which is an NP-Hard problem that can be solved by this algorithm. The
swarm hunting mechanism in gray wolves and the attack on one side of the prey is an example of a metaheuristic
algorithm with a swarm hunting approach among animals that inspires the gray wolf optimization(GWO) algorithm
[24]. swarm hunting behavior of Humpback whales in the whale optimization algorithm(WOA) [26], swarm behavior
of spotted hyenas in the spotted hyena optimizer(SHO) algorithm [11], swarm behavior of hawks in group hunting
and prey siege in harris hawks optimization (HHO) algorithm [15]. Swarm hunting behavior can also be seen in
insects and arthropods and is not unique to mammals. Studies show that insect behavior in swarm hunting is highly
intelligent, and therefore a large number of metaheuristic algorithms of this type are considered, including the social
spider optimization(SSO) algorithm [8], antlion optimizer (ALO) algorithm [16], black widow optimization(BWO)
algorithm [14], dragonfly algorithm (DA) [31] was mentioned. Metaheuristic algorithms are divided into categories
based on their nature and type according to Figures 1, such as evolutionary algorithms, swarm-based algorithms,
physical-based algorithms, and human-based algorithms [25]. Evolutionary algorithms use genetic and evolutionary
rules to solve problems and find the optimal answer, a clear example is a genetic algorithm(GA). Swarm intelligence
algorithms can emulate a variety of social inspire, and these inspired are not necessarily hunting-based and can be a
variety of factors, including communicating with light in firefly algorithms(FA) [20], sound communication in the bat
algorithm(BA) [22], communication and swarm heating in the empirical penguin optimization(EPO) algorithm [9].
In some metaheuristic algorithms, each member of the population can use individual and swarm memory to find the
optimal solution, an example of which can be seen in the particle swarm optimization(PSO) algorithm [3]. In some
cases, group intelligence algorithms include insect behavior to find food as a group, such as the fruit fly optimization
algorithm [6]. Studies show that the behavior of some species is very intelligent and clever, and in this type of
behavior, an organism acts in such a way that its behavior alone is highly intelligent and interacts less with existing
species. In this type of behavior, intelligence does not mean group participation, but rather a type of intelligent
behavior on its own. For example, octopus behavior is highly intelligent in finding food, and the octopus optimization
algorithm(COA) [28] is one of these behaviors in nature. As another example in nature, some fish species have
created beautiful lines and shapes on the seabed to guide other fish to mate, and the Circular structures of pufferfish
(CSOPF) algorithms [5] have been coded accordingly. In metaheuristic methods with a physical approach, in most
cases, physical laws are modeled and efforts are made to extract optimal solutions based on these rules. Examples
of metaheuristic algorithms with a physical approach include water evaporation optimization [19], electromagnetic
field optimization [1], lightning search algorithm (LSA) [17] and Gravitational search algorithm(GSA) [21]. Human
behavior-based algorithms also use human interactions and relationships to solve the optimization problem, and in
most cases, the political, cultural, and educational approach is discussed. These algorithms are more intelligent, but
their modeling complexity is more complex. Examples of these algorithms are the poor and rich optimization(PRO)
algorithm [27], teaching–learning-based optimization (TLBO) [33], and football game algorithm [12]. of course, this
classification is not complete for the meta-heuristic algorithm because it does not classify behaviors such as plant
behavior, while a number of metaheuristic algorithms are modeled on plant behavior, such as sunflower optimization
(SFO) algorithm [32] and Forest optimization algorithm [30]. In some cases, transcendental algorithms are modeled
on the behavior of monocellular organisms and can be grouped into biological or group categories, such as bacterial
algorithm [35]. In most studies, metaheuristic algorithms are classified as swarm intelligence, evolutionary, physical,
and biological algorithms.

Evolutionary behaviors are overly random, and due to mutation and crossover operations performed on qualified
members and convergence to optimal local in the first iteration. The challenge with physical algorithms is that they are
not population-based and they have complex relationships, but in practice, these relationships complicate modeling and
lack intelligence, and like swarm intelligence algorithms, population members do not interact and exchange knowledge.
swarm intelligence algorithms are an important category of meta-heuristic algorithms, and in these algorithms, a social
and group nature is used in organisms to solve problems.

An important challenge for these algorithms is that they rely too much on the right member or the most appropriate
solution to the problem, and in most of them, like the whale optimization algorithm, the members of the population
circle and search around the best solution, while it is necessary that search the problem area more and better and of
course smart, however, the problem space needs to be searched more intelligently. Human behavior-based algorithms
use human behavior to solve problems to find the optimal solution. The main weakness of these methods, such as
swarm intelligence algorithms, is that the members of the population rely too heavily on the best solution. In these
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Figure 1: Categorization of a variety of metaheuristic methods based on problem solving approach [10]

algorithms, there is a possibility of deceiving members and converging to local optimal. In this paper, a metaheuristic
algorithm with a swarm intelligence approach based on human and animal behavior is presented, and this algorithm
is one of the limited methods of swarm intelligence that simultaneously uses the behavior of two different species to
solve optimization problems. In this article, the intelligent behavior of humans in fishing with the help of whales
near the coast of Australia, which is a common practice among the natives of Australia, is modeled and formulated
to create a meta-functional method. This article has been prepared and compiled in several sections. First, the
proposed algorithm is formulated and modeled. Then, the proposed algorithm is implemented on a number of standard
benchmark functions and then its accuracy is compared with several metaheuristic algorithms. In the final part of the
article, the proposed algorithm is implemented and evaluated on several practical optimization problems.

2 Human-Whale Cooperation Optimization Algorithm

There are groups of whales that have complex social behavior and a high level of intelligence for interaction and
cooperation between themselves and other species. The whales near the coast of Australia are found in oceans around
the world, from the Arctic to the tropics. The whales choose different prey as food, however, some groups only look
for specific prey such as fish. Some feed only on fish, while others attack flocks of marine mammals, such as jaws, sea
lions, guinea pigs, and even whales. They are at the top of any food pyramid, generally have no natural enemies, and
sometimes prey on large sharks. Figure 2 and Figure 1 show a view of these large creatures that live in the oceans.
They are at the top of the food pyramid, generally have no natural enemies, and sometimes prey on large sharks.
Figure 2 shows the different behaviors of these giant creatures. The whales are very social, and some of them have
mother-based families that make up the most stable of all animals. There is a kind of collective collaboration between
humans and these whales in the behavior of a number of whales near the coast of Australia that live on the shores of
Australia. Here hunters are placed in different parts of the coast with the help of small boats and are waiting for the
herds of fish that are being led by the whales to the fishing boats [34].

Figure 2 shows the swarm behavior of whales hunting and collaborating with Indigenous Australians:

Over time, whales have learned to attack groups of fish in swarms and steer them to the fishermen’s boats so that
they can catch the fish. Fishermen use the rest of the fish to reward whales. The mechanism of human hunting with
the help of giant creatures such as whales is interesting and very effective in its kind and makes fishermen achieve a
large volume of hunting. Fishermen’s and whales’ methods of catching fish are efficient and effective and can inspire
NP-hard problems to solve. Therefore, in this research, the collective and swarm behavior of humans and whales in
fishing is used to create swarm intelligence. In the proposed method, each solution to the problem is coded in the
form of whales or humans and attempts are made to bring the population closer to the optimal point, which is the
center of fish accumulation. The advantage of modeling the proposed method can be summarized as follows:
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� So far, there has been no swarm intelligence system based on the behavior of humans and organisms to create a
mass intelligence algorithm.

� The whale swarm intelligence algorithm, which is a collaboration between humans and whales, has not yet been
investigated.

� The proposed algorithm has intelligent behaviors on the part of humans and whales, and therefore the problem
space is well searched.

The proposed algorithm is fundamentally different from the whale optimization algorithm because there is no discussion
of human and whale cooperation in the whale optimization algorithm, on the other hand, in the whale optimization
algorithm, the problem-solving mechanism is the production of bubbles and rotational and spiral motions. Finally,
the whale optimization algorithm is for humpback whales, but the proposed method is considered for the whale, which
is a different species. In this section, the behavior of humans and whales in hunting is modeled to provide a proposed
and new swarm intelligence algorithm.

2.1 Coding solutions

In the first phase of this study, the behavior of swarm intelligence hunting between humans and whales for fish
and dolphin hunting is reviewed and an attempt is made to provide a metaheuristic algorithm with a global and local
search approach to be able to extract optimal solutions with high accuracy. For this purpose, humans and whales
are considered solutions to the problem of optimization. In this algorithm, based on the cooperation of whales and
humans, an attempt is made to find the optimal space for the problem. In this mechanism, the optimization problem
solutions are encoded as a whale or human, and each of them explores the problem space. In the proposed method, it
is assumed that there is a population of humans and whales, and each of them is considered a solution to the problem.
There is no difference between a whale and a human being in practice, and each of them is considered a solution to
the problem, but whale-type solutions are those solutions that are more fitness because these solutions are close to
the optimal points or swarm of fish. In the proposed method, the population members are expressed in the form of a
set of answers according to Eq. (2.1), some of which are whales and some of which are human:

P = {W1,W2, . . . , Wk, . . . ,H1, H2, . . . , Hm} (2.1)

In this equation, the members of the whale and human population are placed in a set, and their number is assumed to
be k and m, respectively, and n = k+m, where n is the number of members of the proposed algorithm population. In
the proposed method, it can be assumed that initially some of the solutions are whales and some are humans. Here,
for simplicity, half of the population can be considered first whales and half of them as humans, and this has been
formulated in Eq. (2.2):

k = m =
n

2
(2.2)

In the proposed method, the concept of merit is used to select whales and humans. In this study, members of the
more deserving population can be considered whales and more unworthy members can be considered human beings.
With this mechanism, half of the population in each iteration is considered to be a whale and the other half is human.
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In this case, the problem space is divided into two categories, including whales and humans, and whale members are
more worthy because they are closer to the fish category. On the other hand, humans are far from fish and try to get
closer to these centers. n modeling the proposed method, considering that the optimal point is the gathering place
of the fish group, it is assumed that the human population is directed to this point and here we can assume with a
simple assumption that the position of the most optimal whale is the estimated position of the swarm gathering. In
the proposed method, it is assumed that humans or non-optimal solutions move towards it. In the proposed method,
according to the Eq. (2.3) and Eq. (2.4), the population of whales and humans can be placed in two primary population
matrices, and then each member of the population can be evaluated by the evaluation function which is shown here
by f function. Using the evaluation function, each member of the whale and human population is evaluated according
to the Eq. (2.5) and Eq. (2.6):

PW =


W1,1 W1,2 . . . W1,d

W2,1 W2,2 . . . W2,d

...
...

...
...

Wk,1 Wk,2 . . . Wk,d

 (2.3)

SH =


H1,1 H1,2 . . . H1,d

H2,1 H2,2 . . . H2,d

...
...

...
...

Hm,1 Hm,2 . . . Hm,d

 (2.4)

fW =


f([W1,1,W1,2, . . . ,W1,d])
f([W2,1,W2,2, . . . ,W2,d])

...
f([Wk,1,Wk,2, . . . ,Wk,d])

 (2.5)

fH =


f([H1,1, H1,2, . . . , H1,d])
f([H2,1, H2,2, . . . , H2,d])

...
f([Hm,1, Hm,2, . . . , Hm,d])

 (2.6)

In these relations, d is the number of dimensions of the problem and the function of the target, and population of
whales and humans are considered with the PW and SH matrices, respectively. In these relationships, the fitness
of each whale and human population is considered with fW and fH matrices, respectively. Each of the population
matrices is updated regularly in each iteration of the proposed method to search the space under the objective function.

2.2 Estimating position of fish or prey

In the proposed method, it is necessary to provide a mechanism that the position of the fish handle or the optimal
point can be estimated or calculated approximately so that it can be considered as a gathering place for the fish
handle. In the proposed algorithm, the position of the worthy members of the population or the whale is used and
their average position is considered as the optimal point. Assume that the whale population is considered to be a set
of W = {W1,W2, . . . , Wk}. The average or average position of whales is estimated to be the accumulation of fish,
and the Eq. (2.7) can be used:

W =
W1 +W2 + . . .+ Wk

k
=

∑k
i=1 Wi

k
(2.7)

Each member of the set has the position W the position of a whale in the problem area and displays the location and
position of the fish. Each population of the human group, to hunt the fish group, can consider the center of the fish
group and move towards it to reach the optimal point and search for it. Each member of the human population does
not necessarily choose the optimal point to go to the optimal point but defines a vector, and according to this, the
random vector moves toward the optimal point. This mechanism in the proposed method avoids excessive local search
for the current optimal solution and reduces local optimal. Another way to select the position of the swarm of fish is
to use the position of the optimal population whale, which can be displayed here with. Here the most optimal whale
is an exploration to estimate the optimal position or location of the fish that is the optimal solution here.
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2.3 Directing the hunter to the fish group

In the proposed method, every human solution tries to move towards the whales, but this movement is not
necessarily in the direction of a single whale and can be in the direction of the worthy whales of the population. Here
it is assumed that in the first iteration there are k whales and each human solution moves in the direction of k whales
in terms of iterations. Here, in terms of repetition, the number of this k position is reduced so that the nature of
the search in the last iterations is more based on more optimal solutions, and the search changes from global to local
search over time. In Figure 3, a human-type solution for hunting fish calculates its distance from the whales of the
population and then moves in the direction of the outcome of these vectors to the fish groups that can be around
the whales. In the proposed method and the last iteration, only two whale positions are used, and these whales are
considered the most worthy whales in the population:
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Figure 3: Directing a hunter to the whales

It has been observed that a non-optimal solution such as Hi to move towards whales and chase fish or the same
optimal solution initially selects a number of optimal wall populations. To select these whales, the roulette wheel
mechanism can be used, and then any human or non-optimal solution can calculate its distance from a whale such as
Wj as a Eq. (2.8):

W =
W1 +W2 + · · ·+ Wk

k
=

∑k
i=1 Wi

k
(2.8)

In order to increase the dynamism and intelligence of the search algorithm, we can define a search radius around whale
Wj and the size of Rj and calculate the distance Hi from this circle to the center of the Wj whale and as a Eq. (2.9):

Dij =
∥∥∥RjW j −Hi

∥∥∥ (2.9)

In this Eq., the calculation of the human distance from the whale is affected by the Rj factor, which can be a random
number between zero and one. On the other hand, this can be suggested as a Eq. (2.10):

Dij = ∥Wj ±Rj −Hi∥ (2.10)

To update the position of a human-type solution or a hunter such as Hi in the direction of the whale such as Wj , the
Eq. (2.11) can be used:

Hi = Wj + θ ·Dij (2.11)

If we expand this relation according to Eq. (2.11), then to change the displacement of the predator of Eq. (2.12), the
following is presented:

Xi = Wj + θ · ∥Wj ±Rj −Hi∥ (2.12)

In this Eq., θ plays an important role in changing the nature of the search from global to local. With this mechanism,
in the last iterations, most of the space around the optimal solutions can be searched by local search, and in the first
iteration, most of the search is considered as a global search so that the algorithm is less involved in local search.
Nonlinear relationships can be used to model the θ parameter. Here, using the cosine function, this parameter can be
dynamic and not changed by iteration. To change the θ parameter in the proposed algorithm, we can use Eq. (2.13):

θ = θ0 − a · cos f0(
π

2
× It

MaxIt
− π

2
) (2.13)
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In this regard, the parameter θ0 and its initial value are considered to be 3, and It and MaxIt are the current iteration
number and the maximum iteration of the proposed algorithm, and a is a coefficient to reduce the graph. Here, a
hunter-type solution moves in the direction of a whale, and this displacement is equal to the value of Xi, and if the
number of whales to be moved in their direction is equal to L. The displacement equation can be proposed as a Eq.
(2.14), and this equation can be expanded more accurately as Eq. (2.15):

Hi =

∑L
i=1 Xi

L
(2.14)

Hi =

∑L
i=1 Wj + θ · ∥Wj ±Rj −Hi∥

L
(2.15)

L is the number of whales used by a hunter for tracking in each iteration, and their number can be reduced in each
iteration so that in the final iterations, only the optimal whales can be searched.
Here it is assumed that in the first iteration of the algorithm, the total population of whales in the number of k is
used, and in the last iteration of the algorithm, only their k/4 is used. The number of L in each iteration can be
suggested by the Eq. (2.16):

L = k − 3

4

( it− 1

MaxIt−1

)
k (2.16)

By gradually reducing the L parameter, the hunter can look for more optimal solutions in the final iteration.

2.4 Besieging fish

In addition to guiding predators, whales try to lead them to a specific area by rotating them around a fish handle
to make it easier for them to hunt. In the proposed method, it is assumed that the whale gathering center or the most
optimal position of the whales is considered as the gathering of fish, and each of the whales made circular movements
around it so that they could surround them. This behavior is an attempt to locally search for the optimal whale or
optimal solution and can be simulated by the triangular relations of sine or cosine as shown in Figure 4:
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3

4
(

𝑖𝑡 − 1

𝑀𝑎𝑥𝐼𝑡 − 1
)𝑘 

By gradually reducing the L parameter, the hunter can look for more optimal solutions in the 

final iteration. 

2-4- Besieging fish 

In addition to guiding predators, whales try to lead them to a specific area by rotating them 

around a fish handle to make it easier for them to hunt. In the proposed method, it is assumed 

that the whale gathering center or the most optimal position of the whales is considered as the 

gathering of fish, and each of the whales made circular movements around it so that they 

could surround them. This behavior is an attempt to locally search for the optimal whale or 

optimal solution and can be simulated by the triangular relations of sine or cosine as shown in 

Figure (4): 

 

Figure 4: Siege of fish by whales 

Triangular laws such as sine are used to model the behavior of the siege. An example of this 

equation can be given in Eq (17): 

(17) 𝑊𝑖 = 𝐷 ∗ 𝑒𝑥𝑝(𝑏𝑝) ∗ sin(2𝜋𝑝) + 𝑊∗ 

 

Figure 4: Siege of fish by whales

Triangular laws such as sine are used to model the behavior of the siege. An example of this equation can be given
in Eq. (2.17):

Wi = D∗ exp (bp) ∗ sin (2πp) +W ∗ (2.17)

In this regard, W ∗ is the optimal whale position, b and p are e random number in the range [−1,+1] and b is a random
number between zero and one, and D is the distance between the Wi whale and the optimal whale. As a Eq. (2.18),
it is defined:

D = |W ∗ −Wi| (2.18)

To be more effective, the siege is carried out with two different strategies, such as Eq. (2.19), and 50% of the siege
cases are considered to be the most optimal whale, and in 50% of the siege cases, the average population is considered:

Wi =

{
|W ∗ −Wi| .ebpsin (2pπ) +W ∗ r > 0.5∣∣W −Wi

∣∣ .ebpsin (2pπ) +W r ≤ 0.5
(2.19)

r is a random number between zero and one that causes the algorithm to switch between two types of searches with
equal probability. This strategy makes the search behavior of the proposed algorithm not necessarily local search
and is searched simultaneously and with equal probability about the optimal point and the point of gravity of the
population.
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2.5 Hunter attack

In the proposed method, and especially in the final iterations, it is necessary for the predatory population to attack
the swarm of fish that have been caught. Initially, a small number of hunters attack the fish population to perform a
nationwide search mechanism, and then, in the final iteration, the number of hunters is steadily increasing to further
search for worthy members or worthy whales. In the proposed method, the number of hunters who attack the fish
swarm or optimal solutions in each iteration is calculated from Eq. (2.20), and this equation can be shown more
simply and in the form of Eq. (2.21):

A = m− L (2.20)

A = m− k +
3

4
(

it− 1

MaxIt−1
)k (2.21)

In these relationships, m is equal to the number of hunter populations, k is the number of whales, and A is the number
of hunters who attempt to attack prey or optimal areas such as the Eq. (2.22) in each iteration :

Hi = W ∗ + (1− it

MaxIt
)(W ∗ +R) (2.22)

R The search radius is considered to be the optimal solution and can be continuously reduced to increase the effec-
tiveness so that the nature of the search gradually changes from one place to another according to iteration. In the
proposed method, in order to be able to identify local or global search, the S factor such as Eq. (2.23) can be used:

S = θ × rand (−1,+1) ∗ (1− it

MaxIt
) (2.23)

The value of S varies frequently between the value of the interval [−θ0,+θ0] an example of which can be seen in the
random behavior of this function, as shown in Figure 5. According to the diagram, it can be seen that its value is
constantly decreasing, and if the value of |S| is more or less than one, the search will be global and local, respectively.

The value of S varies frequently between the value of the interval  [−𝜃0, +𝜃0] an example of 

which can be seen in the random behavior of this function, as shown in Figure (5). According 

to the diagram, it can be seen that its value is constantly decreasing, and if the value of | S | 

More or less than one, the search will be global and local, respectively. 
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whale optimization algorithm. The proposed method to find the optimal solution, first 

initializes the initial parameters such as the initial population and the number of repetitions. 

In the second stage, an initial population of random solutions is created and half of the 

solutions that are more worthy are considered as whales and other solutions are considered as 

hunters. In the next step, the position of the fish mass is assumed to be based on the position 

of the average whale or optimal whale point. In the next step, the hunters move towards the 

prey, then the siege is surrounded by whales with rotational movements, and then the whale 

population and the hunter are regularly updated, and finally the best member is transferred to 

the output as the optimal solution. 

 

 

Figure 5: Factor search in HWO

2.6 Flowcharts and pseudo code

Figure 6 and 7 show the pseudo code and flowchart, respectively, the proposed method or whale optimization
algorithm. The proposed method to find the optimal solution first initializes the initial parameters such as the initial
population and the number of repetitions. In the second stage, an initial population of random solutions is created and
half of the solutions that are more worthy are considered whales, and other solutions are considered hunters. In the next
step, the position of the fish mass is assumed to be based on the position of the average whale or optimal whale point.
In the next step, the hunters move toward the prey, then the siege is surrounded by whales with rotational movements,
then the whale population and the hunter are regularly updated, and finally, the best member is transferred to the
output as the optimal solution.
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Pseudo code of Human-Whale Cooperation Optimization (HWO) Algorithm 

Set: The population size,Max Iterationt, Dim, it=1 , BestSol.Cost=inf, etc 

Initialize the random population 𝑿𝒊(𝒊 = 𝟏, 𝟐,… ,𝑵) & Calculate the fitness values of population  

Population is divided into whale an hunter 𝑾𝒊(𝒊 = 𝟏,𝟐,… ,𝑵/𝟐) & 𝑯𝒊(𝒊 = 𝟏,𝟐,… ,𝑵/𝟐) 
while(It<=MaxIt)  

    𝑳 = 𝒌 −
𝟑

𝟒
(

𝒊𝒕−𝟏

𝑴𝒂𝒙𝑰𝒕−𝟏
)𝒌  % Calculate the number of Helping Whales 

    𝜽 = 𝜽𝟎 − 𝒂. 𝐜𝐨𝐬 (
𝝅

𝟐
×

𝑰𝒕

𝑴𝒂𝒙𝑰𝒕
−

𝝅

𝟐
) %Calculate Hunter Search Factor 

    𝑺 = 𝜽 × 𝒓𝒂𝒏𝒅(−𝟏,+𝟏) ∗ (𝟏 −
𝒊𝒕

𝑴𝒂𝒙𝑰𝒕
) % Calculate global or local search coefficient 

    𝑺𝒖𝒎=0 

    for i=1: N/2 
            𝑺𝒖𝒎 = 𝑺𝒖𝒎 + 𝑾𝒊 % Calculate the average position of whales 

    end for 

    �̅̅̅� =
𝑺𝒖𝒎

𝑵/𝟐
 

  for i=1:N/2 % Directing hunters to whales 

    for j=1: L 

            𝑹𝒋 = 𝒓𝒂𝒏𝒅 

            if rand>0.5 

                  𝑫𝒊𝒋 = ‖𝑹𝒋𝑾𝒋 − 𝑯𝒊‖ & 𝑿𝒊 = 𝑾𝒋 + 𝜽.𝑫𝒊𝒋 

            else 

                  𝑫𝒊𝒋 = ‖𝑾𝒋 ± 𝑹𝒋 − 𝑯𝒊‖  &  𝑿𝒊 = 𝑾𝒋 + 𝜽. 𝑫𝒊𝒋 

            endif 

    end for 

       𝑯𝒊 =
∑ 𝑿𝒊

𝑳
𝒊=𝟏

𝑳
 or 𝑯𝒊 =

∑ 𝑾𝒋+𝜽.‖𝑾𝒋±𝑹𝒋−𝑯𝒊‖
𝑳
𝒊=𝟏

𝑳
 % Hunter moves along several whales 

if Cost(𝑯𝒊) better than BestSol.Cost 

  BestSol=𝑯𝒊 or 𝑾∗=𝑯𝒊 

end for 

for i=1:N/2 %Collaboration between hunters 

        A=randperm(N/2),  A(A==i)=[],  a=A(1),   b=A(2), c=A(3) 

        𝑯𝒊=𝑯𝒂+rand(𝑯𝒃 − 𝑯𝒄) 
end for 

    for i=1: N/2 

             if rand>0.5 

                  𝑾𝒊=𝑾𝒊+rand.(𝑾∗ − �̅̅̅�) %Search for optimal point by whales 
            else 

                  𝑾𝒊=𝑾𝒊+rand.(𝑾∗ − 𝑾𝒊) %Search for gravity point by whales 

            endif 

    end for 

    for i=1: N/2 

             if |𝑺|<1 

                 if 𝒓𝒂𝒏𝒅>0.5 
                     𝑾𝒊 = |𝑾∗ − 𝑾𝒊)|. 𝒆

𝒃𝒑 𝐬𝐢𝐧(𝟐𝒑𝝅) + 𝑾∗ %Rotate search around the optimal point by whales 

                 else 

                    𝑾𝒊 = |�̅̅̅� − 𝑾𝒊)|. 𝒆
𝒃𝒑 𝐬𝐢𝐧(𝟐𝒑𝝅) + �̅̅̅�  %Rotate search around the optimal point by whales 

                 endif 

            else 

                  𝑹𝒂𝒏𝒅𝒐𝒎 𝒔𝒆𝒂𝒓𝒄𝒉 

            endif 

Update BestSol or 𝑾∗ & It=It+1 

end for 

end while 

Output 𝑾∗ or  BestSol 
-  

Figure 6: Pseudo code of Human-Whale Cooperation Optimization (HWO) Algorithm
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Figure 7: the  Human-Whale Cooperation Optimization (HWO) Algorithm 

 

Start 

Creating a number of random solutions space 𝑋𝑖(𝑖 = 1,2,… ,𝑁) 

𝑊𝑖(𝑖 = 1,2,… ,𝑁/2) & 𝐻𝑖(𝑖 = 1,2,… ,𝑁/2) pop divide it into whales and hunters 

 
hunting guide whales 𝐿 = 𝑘 −

3

4
(

𝑖𝑡−1

𝑀𝑎𝑥𝐼𝑡−1
)𝑘 

Ye
s 

        Cooperation between hunters:  𝐻𝑖=𝐻𝑎+rand(𝐻𝑏 − 𝐻𝑐) 

 

𝑟𝑎𝑛𝑑 ≥ 0.5 

 
 𝑊𝑖=𝑊𝑖+rand.(𝑊∗ − �̅�) 𝑊𝑖=𝑊𝑖+rand.(𝑊∗ − 𝑊𝑖)  

𝑏𝑒𝑠𝑡 = 𝑊𝑖 

It<=MaxIt 

Set the hunting factor parameter: 𝜃 = 𝜃0 − 𝑎. cos (
𝜋

2
×

𝐼𝑡

𝑀𝑎𝑥𝐼𝑡
−

𝜋

2
) 

local and global search factor parameter: 𝑆 = 𝜃 × 𝑟𝑎𝑛𝑑(−1, +1) ∗ (1 −
𝑖𝑡

𝑀𝑎𝑥𝐼𝑡
) 

Hunting by whales: 𝐻𝑖 =
∑ 𝑊𝑗+𝜃.‖𝑊𝑗±𝑅𝑗−𝐻𝑖‖

𝐿
𝑖=1

𝐿
 

Ye
s 

No 

|𝑆| ≤ 1 

 Yes 

𝑟𝑎𝑛𝑑 ≥ 0.5 

 𝑊𝑖 = |𝑊∗ − 𝑊𝑖)|. 𝑒
𝑏𝑝 sin(2𝑝𝜋) + 𝑊∗ 𝑊𝑖 = |�̅� − 𝑊𝑖)|. 𝑒

𝑏𝑝 sin(2𝑝𝜋) + �̅̅̅� 

Yes No 

No 
Random search 

𝑓(𝑊𝑖) < 𝑏𝑒𝑠𝑡 

 𝑏𝑒𝑠𝑡 = 𝐻𝑖 

𝑓(𝐻𝑖) < 𝑏𝑒𝑠𝑡 

Yes 

No 

Yes
s 

No 
It=It+1 

Stop 

No 

Output:best 

 

Figure 7: The Human-Whale Cooperation Optimization (HWO) Algorithm
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3 Implementation results

To implement the human-whale cooperation optimization algorithm and other metaheuristic algorithms, MATLAB
2013 programming software or higher versions of this software and Windows 7 operating system with an Intel 5-
core processor and 4 GB of memory are used. In order to measure the efficiency of the proposed method, a set
of evaluation functions is used in MATLAB software. For this purpose, the proposed algorithm, along with other
metaheuristic algorithms on each of the benchmark functions, performs the desired algorithms as many times as the
experiment is repeated and the average convergence diagram is calculated. In order to provide the possibility of
comparison on each benchmark function of the evaluation chart, the mean convergence of all metaheuristic algorithms
used is analyzed graphically. It is also used to evaluate the average proposed algorithm (AVE), standard deviation
(STD), and Wilcoxon test rank. In experiments, the proposed method in these indicators should be compared and
evaluated with other metaheuristic algorithms. The proposed method in this paper has been compared with the
proposed metaheuristic algorithm and especially swarm intelligence such as the grey wolf optimizer algorithm, salp
swarm algorithm, butterfly optimization algorithm, the grasshopper optimization algorithm, and whale optimization
algorithm in statistical indicators of mean error, rank, and standard deviation. In the experiments, an evaluation
function is selected and each of these metaheuristic algorithms is performed 50 times on the evaluation function with a
population equal to 30, the number of repetitions of 100 or 200. In the next step, the mean error, rank, and standard
deviation for each of them are calculated and finally, the experiments are analyzed on a number of benchmark functions.
In the experiments, the implementation parameters of the proposed method such as search radius, the base parameter
for rotational motion and delta are considered equal to R = 2, b = 1 and θ0 = 3, respectively. In the particle swarm
optimization algorithm, the inertial coefficient is 0.8, and the individual and swarm learning coefficients are both
2. In the differential evolution algorithm, the probability of combining is 0.2 and the minimum and maximum beta
coefficients are 0 and 2, respectively. In the grasshopper optimization algorithm, the maximum and minimum values
of the C coefficient are 1 and 0.00001, respectively, and on the other hand, the coefficients f and l in this algorithm are
0.5 and 1.5, respectively. The attractiveness coefficients and power in the butterfly optimization algorithm, which are
displayed with c and a, are set at 0.1 and 0.01, respectively. The parameters used in the whale optimization algorithm
such as b and l are also considered to be two random numbers in the range [0, 1].

3.1 Evaluation functions

To evaluate meta-heuristic algorithms, a set of standard benchmark functions is usually required to evaluate the
meta-heuristic algorithm. A number of benchmark functions used in this study in Table 1, Table 2 and Table 3 are
shown with their optimal criteria and range.

Table 1: Unimodal functions
Function Dimension Range fmin

f1(x) =
∑n

i=1 x
2
i 30,100, 500, 1000 [100, 100] 0

f2 (x) =
∑n

i=1 |xi|+
∏n

i=1 |xi| 30,100, 500, 1000 [10, 10] 0

f3(x) =
∑n

i=1

(∑i
j−1 xj

)2

30,100, 500, 1000 [100, 100] 0

f4 (x) = maxi {|xi|, 1 ≤ i ≤ n} 30,100, 500, 1000 [100, 100] 0

f5(x) =
∑n−1

i=1

[
100

(
xi+1 − x2

i

)2
+(xi − 1)

2
]

30,100, 500, 1000 [30, 30] 0

f6(x) =
∑n

i=1 ([xi+0.5])
2

30,100, 500, 1000 [100, 100] 0
f7(x) =

∑n
i=1 ix

4
i+rand [0, 1) 30,100, 500, 1000 [128, 128] 0

Benchmark functions have been used as standard target functions to measure the efficiency of a meta-heuristic
algorithm in many studies, so in this study, these criteria are used to evaluate the convergence of the algorithms.
Benchmark functions are a set of mathematical functions that are essentially considered a function of cost and find-
ing the national minimum in them is the main goal. Figure 8 shows one example of single-objective functions in
three-dimensional mode and shows one example of multi-objective evaluation functions in MATLAB programming
environment [23]:

3.2 HWO analysis

Analysis of problem space and benchmark functions show that evaluation functions such as Ackley, unlike e
functions such as Sphere, have a more complex problem space, and this makes meta-algorithms more challenging. The
main reason for the complex space of these benchmark functions can be considered in the presence of multiple local
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Table 2: Multi-modal functions
Function Dimension Range fmin

f8(x) =
∑n

i=1 − xi sin
(√

|xi|
)

30,100, 500, 1000 [500, 500] −418.9829×n

f9(x) =
∑n

i=1

[
x2
i − 10 cos (2πxi)+10

]
30,100, 500, 1000 [5.12, 5.12] 0

f10(x) = −20 exp (−0.2
√

1
n

∑n
i=1 x

2
i ) 30,100, 500, 1000 [32, 32] 0

− exp
(
1
n

∑n
i=1 cos (2πxi)

)
+20+e

f11(x) =
1

4000

∑n
i=1 x

2
i −

∏n
i=1 cos

(
xi√
i

)
+ 1 30,100, 500, 1000 [600, 600] 0

f12(x) =
π
n

{
10 sin (πy1) 30,100, 500, 1000 [50, 50] 0

+
∑n−1

i=1 (yi − 1)2
[
1 + 10sin2(πyi+1)

]
+(yn − 1)2

}
+
∑n

i=1 u(xi, 10, 100, 4)

yi = 1 + xi+1
4 u(xi, a, k,m) =


k(xi − a)m xi>a

0− a < xi < a

k(−xi − a)m xi < −a

f13(x) = 0.1

{
sin2(3πx1) 30,100, 500, 1000 [50, 50] 0

+
∑n

i=1 (xi − 1)
2 [

1 + sin2(3πxi+1)
]

+(xn − 1)2
[
1+sin2(2πxn)

]}
+
∑n

i=1 u(xi, 5, 100, 4)

Benchmark functions have been used as standard target functions to measure the efficiency of 

a meta-heuristic algorithm in many studies, so in this study, these criteria are used to evaluate 

the convergence of the algorithms. Benchmark functions are a set of mathematical functions 

that are essentially considered a function of cost and finding the national minimum in them is 

the main goal. Figure (8) shows one examples of single-objective functions in three-

dimensional mode and shows one examples of multi-objective evaluation functions in 

MATLAB programming environment[35]: 

 

 

 

 

 

 

 

 

Figure 8: Three-dimensional mode displays two benchmark functions, F1 and F10 
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makes meta-algorithms more challenging. The main reason for the complex space of these 

benchmark functions can be considered in the presence of multiple local optimal that is 

located around the global optimization and finding the global optimal in them is not easy and 

there is a possibility of their deception in the local optimal. Here are two examples of 

implementing the proposed algorithm on the Ackley function, and the population size is 30 

and the number of iteration is 200, and each experiment is repeated 50 times, and in each 

experiment the different values of the parameter a in Figure 4 diagrams are used to show the 

effect of this parameter on the convergence of the proposed algorithm. In the diagram on the 

Figure (9), the value of the parameter a = 0.5, a = 1, a = 1.5 and a = 2 with a high slope. The 

analysis of the two figures shows that the proposed method is constantly reducing the error of 

global calculation based on iteration, and this reduction of this error also depends on the 

parameter  a, and it is observed that for a = 1.5 the error of the proposed method is less and 

used. The low slope has a greater effect on the accuracy of the proposed method in reducing a 

by iteration.  

Figure 8: Three-dimensional mode displays two benchmark functions, F1 and F10

optimal that is located around the global optimization and finding the global optimal in them is not easy and there is
a possibility of their deception in the local optimal. Here are two examples of implementing the proposed algorithm
on the Ackley function, and the population size is 30 and the number of iterations is 200, and each experiment is
repeated 50 times, and in each experiment, the different values of the parameter an in Figure 4 diagrams are used to
show the effect of this parameter on the convergence of the proposed algorithm. In the diagram on the Figure 9, the
value of the parameter a = 0.5, a = 1, a = 1.5 and a = 2 with a high slope. The analysis of the two figures shows
that the proposed method is constantly reducing the error of global calculation based on iteration, and this reduction
of this error also depends on the parameter a, and it is observed that for a = 1.5 the error of the proposed method is
less and used. The low slope has a greater effect on the accuracy of the proposed method in reducing a by iteration.

Comparison and analysis of global optimal calculation error in different functions with metaheuristic algorithms
with different approaches have also been compared in Figure 10, and the error has been compared in terms of iteration
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Figure 9: The effect of a high-slope parameter on reducing the optimal calculation error 

Comparison and analysis of global optimal calculation error in different functions with 

metaheuristic algorithms with different approaches have also been compared in Figure 10, 

and the error has been compared in terms of iteration in them. According to the experiments 

performed in the convergence diagrams of the proposed method and other metaheuristic 

algorithms, it can be concluded that in most experiments, the error of calculating the global 

optimal by the proposed algorithm compared to the butterfly optimization algorithm, 

grasshopper optimization, whale optimization, particle swarm optimization, and firefly 

algorithms are less. In most cases, the slope of the reduction in the calculation error of the 

global optimal in different benchmark functions in the proposed method is higher. In other 

words, the slope of the reduction in the error of the human-whale cooperation optimization 

algorithm to achieve the optimal solutions is higher than metaheuristic  algorithms.  In more 

complex benchmark functions, metaheuristic and proposed algorithms are more challenging 

to find the optimal error, but in general, the proposed method is less involved in local 

optimization because the slope of the error reduction is higher than other algorithms. 

According to the diagrams, the reduction of the optimal calculation error in terms of iteration 

of meta-heuristic algorithms can provide the following results: 

▪ The proposed algorithm reduces the optimal calculation error in terms of iteration. This 

error reduction is reduced by a steeper slope than other methods. The rapid reduction of 

error in terms of iteration indicates that the local and global search mechanism of the 

proposed algorithm is efficient. 

▪ The reason for the success of the proposed method in reducing the error rate is that the 

proposed algorithm leads the population to global optimizations with high acceleration. 

Figure 9: The effect of a high-slope parameter on reducing the optimal calculation error

in them. According to the experiments performed in the convergence diagrams of the proposed method and other
metaheuristic algorithms, it can be concluded that in most experiments, the error of calculating the global optimal
by the proposed algorithm compared to the butterfly optimization algorithm, grasshopper optimization, whale opti-
mization, particle swarm optimization, and firefly algorithms are less. In most cases, the slope of the reduction in
the calculation error of the global optimal in different benchmark functions in the proposed method is higher. In
other words, the slope of the reduction in the error of the human-whale cooperation optimization algorithm to achieve
the optimal solutions is higher than metaheuristic algorithms. In more complex benchmark functions, metaheuristics
and proposed algorithms are more challenging to find the optimal error, but in general, the proposed method is less
involved in local optimization because the slope of the error reduction is higher than other algorithms. According
to the diagrams, the reduction of the optimal calculation error in terms of iteration of meta-heuristic algorithms can
provide the following results:

� The proposed algorithm reduces the optimal calculation error in terms of iteration. This error reduction is
reduced by a steeper slope than other methods. The rapid reduction of error in terms of iteration indicates that
the local and global search mechanism of the proposed algorithm is efficient.

� The reason for the success of the proposed method in reducing the error rate is that the proposed algorithm
leads the population to global optimizations with high acceleration.

� The proposed algorithm in functions such as F10 that have local optimization has been able to reduce the error
reduction slope and this indicates that the algorithm is not caught in local optimization or its convergence rate
to local optimization is low.

� Our experiments show that the convergence rate of the proposed algorithm on the evaluation functions with
local optimization is about 4.36%, and this rate is 7.64% in the gray wolf optimization algorithm and 8.67% in
the butterfly optimization algorithm.

3.3 Qualitative analysis

The qualitative analysis of the human-whale cooperation optimization algorithm uses four evaluation functions
F1, F9, F10, and F11. For qualitative analysis, we can analyze the changes in the history of solutions to the optimal
solution and also analyze and evaluate the average competency of population members as well as the convergence
diagram in terms of iteration. Figure 11 shows the analysis of the F1 and F10 functions with a population size of 30
and an iteration number of 20. The diagrams of the history of whales and hunters’ movement towards the optimal
solution in the evaluation functions used show that the human-whale cooperation optimization algorithm has a clear
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Figure 10: The output of the proposed algorithm and other algorithms on several functions 

▪ The proposed algorithm in functions such as F10 that have local optimization has been 

able to reduce the error reduction slope and this indicates that the algorithm is not caught 

in local optimization or its convergence rate to local optimization is low. 

Figure 10: The output of the proposed algorithm and other algorithms on several functions

and similar pattern for guiding the population to the optimal solution. The proposed algorithm first tries to search
the space around the optimal solution to find the most optimal solution, and then, by repeating the algorithm, the
members of the population are sent to the optimal solution, which here are the coordinates of the origin. The trajectory
diagram helps us to better understand the behavior of whales and predators to find the optimal solution. The path
diagram or trajectory diagram shows how well the best solution is trying to reach and change the optimal solution,
and this change of direction is ultimately such that the optical member is directed to the optimal solution.

3.4 Sustainability

One of the important factors that show how accurate and practical a meta-heuristic algorithm is is the sustainability
of that algorithm. The sustainability of a meta-heuristic algorithm can be analyzed using indicators such as standard
deviation(STD), which are analyzed in the next section of these calculations. Another important factor in analyzing the
sustainability of metaheuristic algorithms is the error of calculating the global optimal in the metaheuristic algorithm by
increasing the dimensions of the problem and if it does not decrease much, it indicates the intelligence of the algorithm.
In other words, by increasing the dimensions of the problem, if a meta-heuristic algorithm increases its computational
error, it will not be highly stable. Here, to evaluate the sustainability of the human-whale cooperation optimization
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algorithm, the behavior of the algorithm and the error of calculating the global optimal can be examined by increasing
the dimensions, and therefore in this section, the dimensions are changed from 2 to 100 other metaheuristic algorithms
are compared with a population of 30 and a repeat of 100. Analyzing the diagrams in Figure 12 on two functions
shows that the error of calculating the proposed method and other algorithms increases with increasing dimensions,
but this increase in the proposed method is less than other algorithms and this shows the proposed algorithm compared
to the algorithm. This suggests that the proposed algorithm is more stable than competing algorithms because the
error-increasing diagrams are below the other diagrams.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: The earch history diagrams, trajectory diagrams, and the average merit chart of population members of 

the human-whale cooperation optimization algorithm in the F1 and F10 functions, 

 

Figure 11: The earch history diagrams, trajectory diagrams, and the average merit chart of population members of the human-whale
cooperation optimization algorithm in the F1 and F10 functions,
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Figure 12: Sustainability of human-whale cooperation optimization algorithm in functions 

3-5-Analysis 

To evaluate the proposed method in this section, three criteria of mean error, rank, and 

deviation are measured and the results of experiments on F1 to F7 benchmark functions in 

Table (3) and the results of experiments on F8 to F13 benchmark functions in Table (4) and 

in Finally, the results of experiments on F14 to F23 benchmark functions are also listed in 

Table (5), so that the proposed algorithm can be compared with other metaheuristic 

algorithms in these three metrics. According to the experiments performed on the 23 

evaluation functions, it can be concluded that the human-whale cooperation optimization 

algorithm performed 19 times better than other metaheuristic algorithms in the average error 

evaluation index, and in the ranking index, in most experiments, it ranks better than particle 

swarm optimization algorithm, evolutionary difference, firefly algorithm, gray wolf 

algorithm, slap swarm algorithm, butterfly optimization algorithm, grasshopper algorithm, 

and whale optimization algorithm. The closer the rank index is to the number one, the more 

accurate the metaheuristic algorithm is in finding the optimal solution, and if the algorithm 

rank in a benchmark function is 8, then the algorithm's performance is poor and has the worst 

accuracy in detecting the optimal solution. Analysis of the proposed algorithm and other 

algorithms shows that the gray wolf optimization algorithm after the proposed method in 

most cases has less error in finding the optimal solution and is in second place. Analysis of 

the STD index also shows that the standard deviation of the experimental results of the 

proposed method in finding the optimal solution is less than most other algorithms in most 

experiments, and this shows the greater stability of the algorithm to find the optimal solution. 

The stability of the proposed method is higher than other methods because, with increasing 
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Figure 12: Sustainability of human-whale cooperation optimization algorithm in functions

3.5 Analysis

To evaluate the proposed method in this section, three criteria of mean error, rank, and deviation are measured
and the results of experiments on F1 to F7 benchmark functions in Table 3 and the results of experiments on F8 to
F13 benchmark functions in Table 4 and in Finally, the results of experiments on F14 to F23 benchmark functions are
also listed in Table 5, so that the proposed algorithm can be compared with other metaheuristic algorithms in these
three metrics. According to the experiments performed on the 23 evaluation functions, it can be concluded that the
human-whale cooperation optimization algorithm performed 19 times better than other metaheuristic algorithms in
the average error evaluation index, and in the ranking index, in most experiments, it ranks better than particle swarm
optimization algorithm, evolutionary difference, firefly algorithm, gray wolf algorithm, slap swarm algorithm, butterfly
optimization algorithm, grasshopper algorithm, and whale optimization algorithm. The closer the rank index is to the
number one, the more accurate the metaheuristic algorithm is in finding the optimal solution, and if the algorithm
rank in a benchmark function is 8, then the algorithm’s performance is poor and has the worst accuracy in detecting
the optimal solution. Analysis of the proposed algorithm and other algorithms shows that the gray wolf optimization
algorithm after the proposed method in most cases has less error in finding the optimal solution and is in second place.
Analysis of the STD index also shows that the standard deviation of the experimental results of the proposed method
in finding the optimal solution is less than most other algorithms in most experiments, and this shows the greater
stability of the algorithm to find the optimal solution. The stability of the proposed method is higher than other
methods because, with increasing dimensions, there is no significant reduction in calculating the error of the proposed
method and this indicates that the proposed method can be used for complex problems with high dimensions. The
proposed method has a lower mean error for optimal calculation in 19 of the 23 benchmark functions, and this value
is equal to 82.60% of the evaluation functions.
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Table 3: Comparison of error in uni-modal functions
CostFunction Metric HWO BOA PSO DE FA GWO GOA SSA

F1 AVG 1.58E-12 0.4211 1.7238 1.7777 2.2135 1.58E-09 0.007306 0.45696
STD 4.9E-12 0.73235 1.6998 1.34357 1.68752 1.3E-11 0.006741 0.191704
RANK 1.3 4.2 6 6.1 6.7 1.7 3 4

F2 AVG 4.46E-06 0.013497 39.96887 33.31704 30.25814 2.31E-07 36.16126 6.389916
STD 9.95E-06 0.007186 41.14289 14.59301 3.122407 4.64E-07 5.781187 2.737418
RANK 1.8 3 6.1 6.4 6.3 1.2 7.2 4

F3 AVG 8.59E-10 7434.709 7591.773 8753.185 10924.27 0.648974 14351.71 1743.068
STD 1.49E-09 9169.176 3037.575 2693.226 2454.431 0.917841 2492.443 1157.252
RANK 1 4.3 5.2 5.6 6.2 2.5 7.6 3.6

F4 AVG 1.41E-07 0.012973 44.23104 56.92657 56.17796 0.002077 60.25541 17.21565
STD 2.79E-07 0.011302 18.84296 3.554017 9.638731 0.002014 6.071298 5.171652
RANK 1 2.9 5.8 6.4 6.9 2.1 6.8 4.1

F5 AVG 8.470349 41883365 2291061 8809313 25328510 8.908562 26912013 120593.4
STD 0.4323 16126576 1689901 5875508 9620100 0.063418 16507134 234807.8
RANK 1.1 7.4 4.1 5 6.6 1.9 6.8 3.1

F6 AVG 7.07E-06 10367.94 3525.608 10778.69 14340.91 0.624021 13141.29 742.9453
STD 1.35E-05 9539.639 1569.957 2834.784 2188.068 0.251607 2925.132 1474.074
RANK 1 5.6 4.3 5.8 7.1 2 6.7 3.5

F7 AVG 0.001201 0.005538 1.223793 3.288311 0.008758 0.002906 6.106226 0.129071
STD 0.000693 0.005124 0.584899 1.463638 0.004522 0.004446 3.082125 0.102831
RANK 1.4 2.9 6.1 7.3 3.6 2.1 7.6 5

Table 4: Comparison of error in multi-modal functions
CostFunction Metric HWO BOA PSO DE FA GWO GOA SSA

F8 AVG -39200.9 -2688.8 -5.1E+78 -3538.19 -4555.92 -1.1E+07 -2436.81 -134481
STD 23.8431 430.8567 1.61E+79 372.9681 489.3166 17690867 429.9333 200986.9
RANK 3.3 2.4 7.7 6 5 7.3 1 3.3

F9 AVG 1.92E-10 0.005778 81.7201 94.43346 80.17709 2.810926 91.44911 48.81308
STD 3.01E-10 0.005764 16.40374 6.658141 14.71925 8.888929 15.75242 9.928804
RANK 1 2.9 6.3 7.2 5.5 2.1 6.9 4.1

F10 AVG 4.36E-06 0.013166 15.73703 19.0244 19.24043 1.92E-06 18.60506 10.30364
STD 7.95E-06 0.009876 1.818641 0.367317 0.390993 1.82E-06 0.118468 1.76693
RANK 1.4 3 5 7.1 7.6 1.6 6.3 4

F11 AVG 1.74E-12 0.000977 33.93312 94.14153 124.1417 0.098187 117.5729 3.159438
STD 4.03E-12 0.002389 13.07585 29.03922 33.73477 0.209564 36.02208 1.856087
RANK 1 2.5 5.1 6.3 7.4 2.2 7.2 4

F12 AVG 3.49E-05 56558213 1912292 16082252 52310071 0.173418 70835550 2790.213
STD 4.38E-05 27953267 1919813 9150143 36315375 0.140097 40341973 8124.223
RANK 1 6.9 4 5.3 6.5 2 7.3 3

F13 AVG 0.35605 1.87E+08 4624338 61421341 98101300 0.288271 1.24E+08 73584.81
STD 0.3558 91183793 4917286 22527323 41976536 0.121274 82618511 95755.5
RANK 1.5 7.7 3.9 5.4 6.4 1.5 6.5 3.1

3.6 HWO for classical engineering problems

The pressure vessel design problem for gas storage capsules and oil metals that are used in refineries as distillation
towers is very important in the oil and gas industry. Figure ?? shows this problem, which has four continuous variables.
In this case, the goal of the designers is to increase the bearing capacity of the pressure tank as much as possible and
at the same time minimize the cost of designing the tank. Minimizing the cost function of the Pressure vessel design
problem allows a solid structure to be provided at the lowest possible cost and high strength. The objective function
defines the problem of optimizing the gas pressure tank according to the relationship and according to the variables
of body radius, body length, body thickness, and end thickness of the cap, and this issue has a number of conditions
and limitations that are stated following the objective function. where z1, z2, z3 and z14 are the thickness of the body,
the thickness of the cap, the radius of the cylinder, and the length of the cylinder, respectively (Eq. 3.24).

f = [z1z2z3z4] = [TsThRL] , (3.24)
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Table 5: Comparison of errors of the proposed algorithm and other algorithms with multi-objective functions
CostFunction Metric HWO BOA PSO DE FA GWO GOA SSA

F14 AVG 1.191088 9.728288 1.273478 3.182885 1.636128 3.512561 10.80063 1.735439
STD 1.559269 3.712016 0.43363 1.565201 0.978683 2.913483 5.62999 1.129537
RANK 1.55 7.4 3 5.2 3.1 4.9 6.95 3.9

F15 AVG 0.003216 0.019839 0.001593 0.009264 0.001263 0.005069 0.057421 0.002572
STD 0.001351 0.025874 0.000506 0.004326 0.000636 0.005047 0.055058 0.002382
RANK 2.9 6.2 3.4 6.1 2.3 4.5 7.7 2.9

F16 AVG -1.03163 -0.82869 -1.03151 -1.00171 -1.03165 -1.03163 -0.78678 -1.03019
STD 2.05E-10 0.345936 0.000216 0.015159 1.48E-05 3.41E-07 0.394245 0.002681
RANK 1.2 6.7 4.8 7.3 3.8 3.2 3.6 5.4

F17 AVG 0.397987 0.459846 0.39846 0.433108 0.397899 0.407625 0.466542 0.404427
STD 7.86E-15 0.10561 0.000804 0.030689 7.44E-06 0.015732 0.133871 0.00882
RANK 1 6.4 4.1 6.8 3 5.2 4.1 5.4

F18 AVG 3.000001 31.78297 3.000573 3.664853 3.000213 9.151628 16.5 3.001485
STD 1.65E-06 33.98329 0.000643 0.840048 0.000207 11.36556 26.23928 0.003043
RANK 1.3 7.6 3.8 6.5 3.5 6.1 3.4 3.8

F19 AVG -3.86217 -3.6673 -3.86233 -3.81942 -3.86268 -3.75533 -3.65006 -3.82323
STD 4.92E-05 0.149103 0.000522 0.02507 6.61E-05 0.10149 0.23407 0.111563
RANK 1.5 6.7 3 5.7 2.4 6.4 6.7 3.6

F20 AVG -3.25586 -2.71567 -3.16172 -2.78922 -3.23362 -2.82325 -1.70059 -3.19307
STD 0.076626 0.199936 0.06522 0.189005 0.052918 0.21271 0.659644 0.151489
RANK 2.1 6.4 3.2 5.9 2.2 5.6 7.8 2.8

F21 AVG -8.87602 -3.23494 -3.79125 -1.3858 -8.93828 -4.37105 -0.88891 -8.11637
STD 2.648484 2.184127 1.939383 0.513734 2.094238 1.53979 0.688367 2.81246
RANK 2.5 5.4 4.6 7 2 4.4 7.5 2.6

F22 AVG -8.74509 -2.6207 -4.54106 -1.851 -7.34531 -5.13085 -1.27165 -8.10113
STD 0.274113 1.319504 2.66781 0.673575 3.049751 2.124433 0.866043 2.685062
RANK 2.5 5.8 4.4 7 2.7 3.5 7.5 2.6

F23 AVG -8.24377 -2.55884 -5.58245 -2.09469 -8.84752 -4.61002 -1.62696 -6.81999
STD 2.982962 2.251974 3.205711 0.5133 2.747315 2.330573 1.286726 3.682492
RANK 2.1 6.3 4.3 6.3 2.3 3.9 7.4 3.4

Figure 13: Pressure vessel design problem

min (z) = 0.6224z1z3z4 + 1.7781z2z
2
3 + 3.1661z21z4 + 19.84z21z3

Subject to : g1 (
−→z ) = −z1 + 0.0193z3 ≤ 0

g2 (
−→z ) = −z3 + 0.00954z3 ≤ 0

g3 (
−→z ) = −Πz23z4 − 4

3Πz33 + 1, 296, 000 ≤ 0
g4(

−→z ) = z4 − 240 ≤ 0,

In Table 6, the solution to the pressure vessel design problem and finding its optimal parameters as well as the value
of the cost function are compared by the proposed method with other methods and it is observed that the proposed
method calculates more optimal values. The optimal design of spring as an important component in power transmission
systems will transfer the maximum possible power with minimal design costs (Figure 14):

The cost function of this problem is defined and modeled as the following relation and at the same time its
conditions and limitations are formulated by Eq. (3.25):

f = [z1z2z3] = [dDN ] , (3.25)
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z1, z2 and z3 are the diameter of each spring ring, the diameter of the spring and the number of spring rings per meter,
respectively. Solving the Tension/compression spring problem with the HWO algorithm and comparing its optimal
value with other meta-heuristic methods according to Table 7, shows that the HWO algorithm provides more optimal
values than other methods. Three-bar truss design with the help of three rods is also one of the practical optimization
problems that are used in the construction industry and the purpose of this problem is according to Figure 15, the
purpose of designing this structure with the least possible weight and high resistance:
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Figure 15: Three-bar truss problem

The cost function of Three-bar truss problem and the variables used in it can be displayed as follows, and on the
other hand, this problem has a number of limitations and conditions that are implemented on the solutions and the
cost function (Eq. (3.26)):
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The goal of this problem is to find solutions that minimize the function of the goal. In this case, the solution is the
length of the bars, which need to be optimally selected. Experiments and the implementation of the proposed method
on this problem show that the proposed method has been able to optimize or minimize the cost function compared to
other metaheuristic algorithms according to Table 8.

Table 6: Comparison of results for Pressure vessel design problem[15]

Algorithms Ts (x1 ) Th (x2 ) R(x3 ) L(x4 ) Optimal
HWO 0.810245 0.400352 41.7845 178.0012 5924.2638
HHO 0.81758383 0.4072927 42.09174576 176.7196352 6000.46259
GWO 0.8125 0.4345 42.089181 176.758731 6051.5639
GA 0.812500 0.437500 42.097398 176.654050 6059.9463

HPSO 0.812500 0.437500 42.0984 176.6366 6059.7143
G-QPSO 0.812500 0.437500 42.0984 176.6372 6059.7208
WEO 0.812500 0.437500 42.098444 176.636622 6059.71
IACO 0.812500 0.437500 42.098353 176.637751 6059.7258
BA 0.812500 0.437500 42.098445 176.636595 6059.7143
MFO 0.8125 0.4375 42.098445 176.636596 6059.7143
CSS 0.812500 0.437500 42.103624 176.572656 6059.0888
ESs 0.812500 0.437500 42.098087 176.640518 6059.7456

CPSO 0.812500 0.437500 42.091266 176.746500 6061.0777
BIANCA 0.812500 0.437500 42.096800 176.6580 0 0 6059.9384
MDDE 0.812500 0.437500 42.098446 176.636047 6059.701660
DELC 0.812500 0.437500 42.0984456 176.6365958 6059.7143
WOA 0 .812500 0 .437500 42 .0982699 176 .638998 6059 .7410
GA3 0.812500 0.437500 42.0974 176.6540 6059.9463

Table 7: Comparison of results for tension/compression spring problem [15]

Algorithms d DDD NNN Optimal
HWO 0.051073 0.342851 11.2542 0.0118533
HHO 0.051796393 0.359305355 11.138859 0.0126654
SSA 0.051207 0.345215 12.004032 0.0126763
TEO 0.051775 0.3587919 11.16839 0.012665
MFO 0.051994457 0.36410932 10.868422 0.0126669
SFS 0.051689061 0.356717736 11.288966 0.01266523
GWO 0.05169 0.356737 11.28885 0.012666
WOA 0 .051207 0 .345215 12 .004032 0 .0126763
GA2 0.051480 0.351661 11.632201 0.012704
GA3 0.051989 0.363965 10.890522 0.012681
CPSO 0.051728 0.357644 11.244543 0.012674
DEDS 0.051689 0.356717 11.288965 0.012665
GSA 0.050276 0.323680 13.525410 0.012702

4 Conclusion

Metaheuristic algorithms inspired by the laws of nature and their mechanisms are a good and ideal way to solve
optimization problems. Meta-heuristic algorithms and swarm intelligence algorithms, unlike conventional methods of
solving optimization problems such as mathematical methods, do not require an information gradient, therefore they
can be used to solve various and complex optimization problems. Meta-heuristic algorithms are classified into different
categories such as evolutionary algorithms and swarm intelligence algorithms. Swarm Intelligence Algorithms have
used group behavior of animals to solve the optimization problem. In this paper, the behavior of whales and their
involvement with humans in fishing are used to model the HWO algorithm. Experiments on many benchmark func-
tions and some optimization problems show the proposed method at least of particle swarm optimization algorithms,
evolutionary difference, firefly algorithm, gray wolf algorithm, salp optimization algorithm, butterfly optimization al-
gorithm, grasshopper optimization algorithm, and whale optimization algorithm more accurate in finding the optimal
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Table 8: Comparison of results for Three-bar truss problem [15]

Algorithms x1 x2 Optimal
HWO 0.7887354 0.407078 263.7958599
HHO 0.788662816 0.408283133832900 263.8958434
DEDS 0.78867513 0.40824828 263.8958434
MVO 0.78860276 0.408453070000000 263.8958499
GOA 0.788897555578973 0.407619570115153 263.895881496069
MFO 0.788244771 0.409466905784741 263.8959797

PSO-DE 0.7886751 0.4082482 263.8958433
SSA 0.788665414 0.408275784444547 263.8958434
MBA 0.7885650 0.4085597 263.8958522
CS 0.788 0.408 263.68

solution. In most experiments, the proposed method ranks first in finding the optimal solution with the least error.
Due to the importance of optimization methods in increasing the accuracy of machine learning techniques, future
research uses the HWO algorithm to select features and applications related to machine learning and detect fake pages
on the Internet.
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