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Abstract

The wide significance of the problem of finding conservation laws in a great number of applications in mechanics and
physics is beyond any doubt. The aim of this paper is to obtain conservation laws of the Sine-Gordon equation via
the concept of moving frames and the variational principle. For this purpose, we first present a Lagrangian whose
Euler-Lagrange equation is the Sine-Gordon equation, and then by Noether’s First Theorem and Mansfield’s method,
we obtain the space of conservation laws in terms of invariants and the adjoint representation of a moving frame, for
that Lagrangian, which is invariant under HRT group action.
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1 Introduction

The nonlinear Sine-Gordon equation is a nonlinear partial difefrential equation arises in various physical applica-
tions such as Josephson junction transmission lines, charge density waves, relativistic field theory, motion of dislocations
in crystals, and so on. In the study of partial differential equations, conservation laws have many considerable uses.
They are momentous for investigating integrability and establishing existence and uniqueness of solutions. In addition,
they play an essential role in descriptions of physically conserved quantities such as mass, energy and momentum, as
well as charge and other constants of motion. In this paper, we will deal with the Sine-Gordon equation given in the
form

utt − c2uxx +m2sinu = 0, (1.1)

where c and m is a known constant, u = u(x, t) represents the wave displacement at position x and time t. In the case
of mechanical transmission line, u = u(x, t) describes an angle of rotation of the pendulums. There are various methods
for finding conservation laws of the Sine-Gordon equation. In 1918, Emmy Noether in pivotal paper [7], proved the
substantial result that for systems arising from a variational principle, every conservation law of the system comes
from a Lie group action that leave the Lagrangian invariant (Theorem 4.29 of [8]). Recently in [2, 4, 5], Mansfield
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and Gonçalves considered diverse Lagrangians, which are invariant under a Lie group action, where independent
variables are invariant. In recent works [3], Mansfield and Gonçalves considered invariant Lagrangians under a Lie
group action, where independent variables are no longer invariant. They presented the mathematical structure behind
both the Euler-Lagrange equations and the set of conservation laws, and they proved that Noether’s conservation laws
can be displayed as the product of adjoint representation of a right moving frame, which is equivariant, and a matrix
where the columns are vectors of invariants.

Our goal in this paper is to find conservation laws of the equation (1.1) by applying Noether’s Theorem and moving
frames. In this paper, after giving a Lagrangian whose Euler-Lagrange equation is the Sine-Gordon equation, first
we take a suitable moving frame for Hyperbolic Rotation- Translation (HRT) group action that leave the Lagrangian
invariant and obtain syzygies between normalized differential invariants, then according to [3], we calculate Noether’s
conservation laws of equation (1.1), in terms of the Adjoint representation of the moving frame, vectors of invariants
and a matrix which represents the group action on the 1-forms.

In section 2, we will briefly give some background on moving frames, differential invariants of a group action,
invariant differential operators, and invariant forms. Throughout section 2 we will use the group action of a hyperbolic
group on the space (x, t, u(x, t)), which the hyperbolic group is symmetry group of the Euler-Lagrange equation and
variational problem.

In section 3, we concentrate on invariant calculus of variations and find the adjoint representation associated to
the hyperbolic group action. Then, we end this section with the calculation of Noether’s conservation laws associated
to equation (1.1), in terms of vectors of invariants, the adjoint representation of the moving frame and a matrix which
represents the group action on the 1-forms.

2 Moving frames, differential invariants of a group action and invariant forms

The Sine-Gordon equation (1.1) is the Euler-Lagrange equation for the variational problem

Φ[u] =

∫∫
1

2
(−u2t + c2u2x − 2m2cosu)dxdt, (2.1)

in other words, the equation (1.1) is the Euler-Lagrange equation of the Lagrangian

L =
1

2
(−u2t + c2u2x − 2m2cosu).

So, variational symmetry Hyperbolic Rotation-Translation (HRT) group G of the functional Φ[u] with infinitesimal
generators

−c∂x + ∂t, c∂x + ∂t, c2t∂x + x∂t, (2.2)

is a symmetry group of the Sine-Gordon equation (1.1) (see Theorem 4.14 of [8]). Note that in [6] we have explained
the structure of Hyperbolic Rotation-Translation group and formation steps of this group.

We remind that a group action of G on M is a map

G×M →M, (g, z) → z̃ = g ·z,

which satisfies either g ·(h·z) = (gh)·z, called a left action, or g ·(h·z) = (hg)·z, called a right action.

The action of the Lie group G associated to vector fields (2.2) on a 2-dimensional manifold M with coordinates
(x, t), is given as follows

x̃ = −cα+ cβ +
1

2
(ecθx+ e−cθx+ cecθt− ce−cθt) = −cα+ cβ + x cosh(cθ) + ct sinh(cθ),

t̃ =
1

2c
(2cα+ 2cβ + ecθx− e−cθx+ cecθt+ ce−cθt) = α+ β +

x

c
. sinh(cθ) + t cosh(cθ),

where α, β and θ are constants that parametrize the group action.

Definition 2.1. We say, two smooth surfaces K and O contained in Rn, such that, dim(K) = α, dim(O) = β,
0 ⩽ α, β ⩽ n, α+ β ⩾ n, intersect transversally if for every x ∈ K∩O, the tangent spaces TxK and TxO, as subspaces
of TxRn, satisfy

TxK + TxO = TxRn.
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Suppose G is a Lie group which acts freely and regularly on some domain Ω in smooth manifold M , then as given
in page 115 of [5], for every x ∈ Ω, there is a neighbourhood U of x such that the following hold.
- The group orbits all have the same dimension of the group and foliate U .
- There is a surface K ⊂ U that crosses these orbits transversally at a single point. This surface is called the cross
section.
- If O(z) represents the orbit through z, then the element g ∈ G taking z ∈ U to {k} = O(z) ∩ K is unique.

Now by above conditions, we define a right moving frame as the map ρ : U → G that sends an element z ∈ U to
the unique group element g = ρ(z) such that

ρ(z) · z = k, {k} = O(z) ∩ K.

According to [5] in page 117, for obtaining the right moving frame, first we define the cross section K as the locus
of the set of equations ψj(z) = 0, for j = 1, · · · , r = dim(G), then, to obtain the group element that takes z to k, we
solve the so called normalization equations

ψj(z̃) = ψj(g ·z) = 0, j = 1, · · · , r,

for the r group parameters that describe the Lie group near its identity element, which yields the frame ρ in parametric
form.

We now consider the group action G associated to vector fields (2.2) on the space (x, t, u(x, t)), where u is invariant.

Example 2.2. Consider the group action G on the space (x, t, u(x, t)) as follows(
x̃
t̃

)
=

(
cosh(cθ) c sinh(cθ)
1
c sinh(cθ) cosh(cθ)

)(
x
t

)
+

(
−cα+ cβ
α+ β

)
, ũ = u , (2.3)

where α, β and θ are constants that parametrize the group action. The prolonged action on ux and ut is given
explicitly by

g ·ux = ũx = D̃xũ, g ·ut = ũt = D̃tũ.

The transformed total differentiation operators D̃i are defined by

D̃i =
d

dx̃i
=

p∑
k=1

(
(dx̃/dx)

−T
)
ik
Dk,

where dx̃/dx is the Jacobian matrix. So,

ũx = cosh(cθ)ux − 1

c
sinh(cθ)ut, ũt = −c sinh(cθ)ux + cosh(cθ)ut.

If we take M to be the space with coordinates (x, t, u, ux, ut, uxx, uxt, utt, · · · ), then the action is locally free near
the identity of hyperbolic group G and regular. So, if we take the normalization equations to be x̃ = 0, t̃ = 0 and
ũx = 0, we obtain

α = − 1

2c
.
(ct− x)(cux − ut)√

−c2u2x + u2t
, β =

1

2c
.
cxux + c2tux + xut + ctut√

−c2u2x + u2t
,

θ =
1

c
. ln

(√
−c2u2x + u2t
cux − ut

)
, (2.4)

as the frame in parametric form.

As given in page 128 of [5], if z = (z1, · · · , zn) ∈M , and the normalization equations are z̃i = ci for i = 1, · · · , r =
dim(G), then the components of

ρ(z)· z = (c1, · · · , cr, I(zr+1), · · · , I(zn)),

where
I(zk) = g · zk|g=ρ(z), k = r + 1, · · · , n,

are all invariants.
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Definition 2.3. For any prolonged action in the jet space M = Jn(X ×U), the invariantized jet coordinates known
as the normalized differential invariants are denoted as

J i = I(xi) = x̃i|g=ρ(z), Iαk = I(uαk ) = ũαk |g=ρ(z),

which is the original Fels and Olver notation [1].

According to Theorem 10.3 in page 38 of [1] (Replacement Theorem), any invariant is a function of the I(zk).
Particularly, the set {J i, Iαk } is a complete set of differential invariants for a prolonged action.

Example 2.2 (cont.). The normalized differential invariants up to order two are as follows

g ·z = (x̃, t̃, ũ, ũx, ũt, ũxx, ũxt, ũtt)
∣∣
g=ρ(z)

= (Jx, J t, Iu, Iu1 , I
u
2 , I

u
11, I

u
12, I

u
22)

= (0, 0, u, 0,−
√

−c2u2x + u2t ,−
uxxu

2
t − 2uxtuxut + uttu

2
x

c2u2x − u2t
,

−−c2uxxuxut + c2uxtu
2
x + uxtu

2
t − uttuxut

c2u2x − u2t
,−c

4uxxu
2
x − 2c2uxtuxut + uttu

2
t

c2u2x − u2t
).

If we define the Invariant differential operators as

Di = D̃i

∣∣
g=ρ(z) , where D̃i =

d

dx̃i
=

p∑
k=1

((
dx̃/dx

)−T
)

ik

Dk,

according to Example 4.5.1 in [5], we know in general

DiI
α
k ̸= Iαki.

Definition 2.4. The Invariant differentiation of the jet coordinates, J i and Iαk , denoted as

DjJ
i = δij +Nij , DjI

α
K = IαKj +Mα

Kj ,

where Nij and Mα
Kj are the Correction terms, and δij is the Kronecker delta. For more information on correction

terms see §4.5 in [5].

Now let IαJ and IαL be two generating differential invariants, and let JK = LM such that IαJK = IαLM . Thus, as
given in [5], we will have the so called Syzygies or Differential identities

DKI
α
J −DMI

α
L =Mα

JK −Mα
LM .

For obtaining the Correction terms, we define the Infinitesimals of the prolonged group action with respect to the
group parameters aj , evaluated at the identity element e, as

ξij =
∂x̃i
∂aj

|g=e , ϕαK,j =
∂ũαK
∂aj

|g=e .

Now, let the normalization equations be {ψλ(z) = 0, λ = 1, · · · , r} and suppose the n variables actually occurring
in the ψλ(z) are ζ1, · · · , ζn such that m of these are independent variables and n−m of them are dependent variables
and their derivatives.

Let ϕ denote the r × n matrix

ϕij =

(
∂(g ·ζj)
∂gi

|g=e

)
(I),

and define T to be the invariant p× n total derivative matrix as follows,

Tij = I

(
D

Dxi
ζj

)
,
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and J to be the n× r matrix

Jij =
∂ψj(I)

∂I(ζi)
,

that is, transpose of the Jacobian matrix of the normalization equations ψ1, · · · , ψr, with invariantised arguments.

So, the correction terms can be obtained as follows, that has been proved in [5].

Theorem 2.5. The formulae for the Correction terms are

Nij =

r∑
l=1

Kjlξ
i
l (I), Mα

Kj =

r∑
l=1

Kjlϕ
α
K,l(I),

where l is the index for the group parameters, r = dim(G), and the p× r correction matrix K, is given by

K = −TJ(ϕJ)−1.

Now, we calculate the syzygies of the transformation (2.3) and the invariant differentiation of the jet coordinates
in Example 2.2.

Example 2.2 (cont.). If we set u = u(x, t, τ) and τ̃ = τ and take the normalization equations as before, we obtain

ũτ
∣∣
g=ρ(z) = Iu3 = uτ ,

ũt
∣∣
g=ρ(z) = Iu2 = −

√
−c2u2x + u2t ,

ũxx
∣∣
g=ρ(z) = Iu11 = −uxxu

2
t − 2uxtuxut + uttu

2
x

c2u2x − ut2
,

ũxt
∣∣
g=ρ(z) = Iu12 = −−c2uxxuxut + c2uxtu

2
x + uxtu

2
t − uttuxut

c2u2x − u2t
,

ũtt
∣∣
g=ρ(z) = Iu22 = −c

4uxxu
2
x − 2c2uxtuxut + uttu

2
t

c2u2x − u2t
.

According to Theorem 2.5, we obtain the invariant differentiation of the jet coordinates as follows,

DxI
u
2 = Iu12, DtI

u
2 = Iu22, DτI

u
2 = Iu23,

DxI
u
11 = Iu111 −

2Iu11I
u
12

Iu2
, DtI

u
11 = Iu112 −

2(Iu12)
2

Iu2
, DτI

u
11 = Iu113 −

2Iu12I
u
13

Iu2
,

DxI
u
22 = Iu122 −

2c2Iu11I
u
12

Iu2
, DtI

u
22 = Iu222 −

2c2(Iu12)
2

Iu2
, DτI

u
22 = Iu223 −

2c2Iu12I
u
13

Iu2
,

DxI
u
12=I

u
112−

Iu11
Iu2

(c2Iu11+I
u
22), DtI

u
12=I

u
122−

Iu12
Iu2

(c2Iu11+I
u
22), DτI

u
12=I

u
123−

Iu13
Iu2

(c2Iu11+I
u
22).

We know that there are two ways to reach Iu113 and since both ways must be equal, we get the following syzygy
between Iu3 and Iu11:

D3I
u
11 =

(
(D1)

2 − 2Iu12D1

Iu2
+
Iu11D2

Iu2

)
Iu3 ,

similarly, there are two possibilities to obtain Iu223, so we get a syzygy between Iu3 and Iu22 and the syzygy is:

D3I
u
22 =

(
(D2)

2 − c2Iu12D1

Iu2

)
Iu3 .

Finally, there are two syzygies between Iu3 and Iu12, which are as follows:

D3I
u
12 =

(
D1D2 −

Iu22D1

Iu2

)
Iu3 , (2.5)
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D3I
u
12 =

(
D2D1 +

Iu12D2

Iu2
− c2Iu11D1

Iu2
− Iu22D1

Iu2

)
Iu3 . (2.6)

To prove the relations (2.5) and (2.6), from the normalization equations in Example 2.2 we get the following table
of infinitesimals: 

x t τ u ux ut uxx uxt utt . . .

α −c 1 0 0 0 0 0 0 0 . . .

β c 1 0 0 0 0 0 0 0 . . .

θ c2t x 0 0 −ut −c2ux −2uxt −c2uxx − utt −2c2uxt . . .

,
also, according to the formulas in description after Definition 2.4 and Theorem 2.5, we obtain

ϕ =


α

β

θ

∣∣∣∣∣∣∣∣∣∣
x t ux

−c 1 0

c 1 0

0 0 −Iu2

 ,

J =


J1

J2

Iu1

∣∣∣∣∣∣∣∣∣∣
ψ1(I) ψ2(I) ψ3(I)
1 0 0

0 1 0

0 0 1

 ,

T =


x

t

τ

∣∣∣∣∣∣∣∣∣∣
x t ux
1 0 Iu11
0 1 Iu12
0 0 Iu13

 ,

K =



a b θ

x
1

2c
−1

2

Iu11
Iu2

t − 1

2c
−1

2

Iu12
Iu2

τ 0 0
Iu13
Iu2


.

Now, since we know that there are several ways in which to reach Iu123, thus we have the invariant differentiation
formulae,

D3I
u
12 = Iu123 +Mu

123 = Iu123 +

(
0 0

Iu13
Iu2

) 0

0

−c2Iu11 − Iu22

 = Iu123 −
(c2Iu11 + Iu22)I

u
13

Iu2
,

D2D1I
u
3 = D2I

u
13 = Iu123 +Mu

132 = Iu123 +

(
− 1

2c
−1

2

Iu12
Iu2

) 0

0

−Iu23

 = Iu123 −
Iu12I

u
23

Iu2
,

D1D2I
u
3 = D1I

u
23 = Iu123 +Mu

231 = Iu123 +

(
1

2c
−1

2

Iu11
Iu2

) 0

0

−c2Iu13

 = Iu123 −
c2Iu11I

u
13

Iu2
,

hence, by placing the second two relations in the first relation, we obtain the following two syzygies between Iu3 and
Iu12:

D3I
u
12 =

(
D1D2 −

Iu22D1

Iu2

)
Iu3 ,
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D3I
u
12 =

(
D2D1 +

Iu12D2

Iu2
− c2Iu11D1

Iu2
− Iu22D1

Iu2

)
Iu3 .

We see that from equations (2.5) and (2.6), the invariant operators Dx and Dt do not commute. So, the invariant
total differentiation operators do not commute. In fact, we have the theorem below.

Theorem 2.6. [1] Denote the invariantized derivatives of the infinitesimals ξkl , for k, i = 1, · · · , p and l = 1, · · · , r,
by

Ξk
li = D̃iξ

k
l (z̃)

∣∣
g=ρ(z) ,

then the commutators are given by

[Di,Dj ] =

p∑
k=1

Ak
ijDk, Ak

ij =

r∑
l=1

KjlΞ
k
li −KilΞ

k
lj .

Definition 2.7. The Invariant one-forms are denoted as

I(dxi) = dx̃i
∣∣
g=ρ(z) =

( p∑
j=1

Dj(x̃i)dxj

) ∣∣
g=ρ(z) .

Theorem 2.8. [3] Consider the set of invariant total differentiation operators, {Di}, and the set of invariant one-
forms, {I(dxj)}. So if

Di(I(dxj)) =

p∑
k=1

Bk
ijI(dxk),

then Bj
ki = Ai

jk.

By above theorem, we can verify that an invariant total differentiation operator Di sends invariant differential
forms to invariant differential forms. In fact, if Di is the invariant differentiation operator and ω is a form, then Di(ω)
denote as a Lie derivative. For more details see [3].

Finally, in the end of this section, from the Theorem 2.8 we obtain the Lie derivatives of I(dxj) with respect to Di

for the hyperbolic group action on (x, t, τ) as in Example 2.2, that will be required in the next section.

Conclusion 2.9. Let g ∈ G act on (x, t, τ, u(x, t, τ)) that has been given in Example 2.2. Then the Lie derivatives
of I(dxj) with respect to Di are as shown in Table 1.

Table 1: Lie derivatives of the I(dxj) with respect to the Di.

Lie derivative I(dx) I(dt) I(dτ)

Dx c2.
Iu
11

Iu
2
I(dt) − Iu

12

Iu
2
I(dt)− Iu

13

Iu
2
I(dτ) 0

Dt c2
(
− Iu

11

Iu
2
I(dx)− Iu

13

Iu
2
I(dτ)

) Iu
12

Iu
2
I(dx) 0

Dτ c2.
Iu
13

Iu
2
I(dt)

Iu
13

Iu
2
I(dx) 0

3 Invariant calculus of variations and structure of Noether’s conservation laws

In this section, we will calculate the Noether’s Conservation Laws of the Sine-Gordon Equation by the concept
of Invariant Calculus of Variations as formulated by Gonçalves and Mansfield [2, 3, 4] and Mansfield [5]. Suppose
the Lagrangian L̄[u] of the variational problem Φ̄[u] =

∫
L̄[u] dx to be a smooth function of x = (x1, · · · , xp) ,

u = (u1, · · · , uq) and finitely many derivatives of uα, where Φ̄[u] is invariant under some group action with finite
set of generators {κ1, · · · , κN}. So as given in [3], we can rewrite Φ̄[u] as Φ[κ] =

∫
L[κ] I(dx), in which I(dx) =
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I(dx1) · · · I(dxp) denotes the invariant volume form and dx = dx1 · · · dxp is the standard volume form. Now, we
suppose the functional Φ̄[u] be extremized by x → (x,u(x)), then for a small perturbation of u

0 =
d

dε
|ε=0 Φ̄[u+ εv] =

∫ q∑
α=1

[
Eα(L̄)vα +

p∑
i=1

d

dxi

( ∂L̄
∂uαi

vα + · · ·
)]
dx,

where

Eα =
∑
K

(−1)
K D|K|

Dxk1
1 Dx

k2
2 · · ·Dxkp

p

∂

∂uαK
,

is the Euler operator with respect to the dependent variable uα. And symbolically,

d

dε

∣∣∣∣ε=0Φ̄[u+ εv] =
d

dτ

∣∣
uτ=vΦ̄[u] .

According to [3], we have

0 = Dt

∫
L[κ] I(dx) = Dp+1

∫
L[κ] I(dx)

=

∫ (∑
α

Eα(L)Iατ I(dx) +

p∑
i=1

Di

[ p+1∑
j=1

FijI(dx1) · · · Î(dxj) · · · I(dxp+1)
])
,

where Eα(L) are the invariantized Euler-Lagrange equations, Fij depends on I
α
K,p+1 and I

α
J withK and J multi-indices

of differentiation with respect to xi, for i = 1, · · · , p, and

I(dx1) · · · Î(dxj) · · · I(dxp+1) = I(dx1) · · · I(dxj−1)I(dxj+1) · · · I(dxp+1).

Theorem 3.1. [3] The process of calculating the invariantized Euler-Lagrange equations produces boundary terms∫ p∑
i=1

Di

(p+1∑
j=1

FijI(dx1) · · · Î(dxj) · · · I(dxp+1)
)
,

that can be written as ∫ p∑
i=1

d
((

−1
)i−1

[∑
K,α

IαK,τC
α
K,i

]
I(dx1) · · · Î(dxj) · · · I(dxp+1)

)
,

where K is a multi-index of differentiation with respect to xi, for i = 1, · · · , p, and Cα
K,i are functions of IαJ , with J a

multi-index of differentiation with respect to xi.

Now, we consider the variational problem (2.1), that its Euler-Lagrange equation is the nonlinear Sine-Gordon
equation (1.1).

Example 3.2. Consider the variational problem

Φ[u] =

∫∫
1

2

(
− u2t + c2u2x − 2m2 cosu

)
dxdt, (3.1)

which is invariant under the action (2.3). To find the invariantized Euler-Lagrange equation, introduce a dummy
invariant independent variable τ to effect the variation, and set u = u(x, t, τ), therefore ũτ

∣∣
g=ρ(z) = Iu3 = uτ . Rewriting

the above variational problem in terms of the invariants of the group action yields∫∫
1

2

(
− (Iu2 )

2 + c2(Iu1 )
2 − 2m2 cos (Iu)

)
I(dx)I(dt). (3.2)
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To obtain the invariantized Euler-Lagrange equation and boundary terms, after differentiating (3.2) under the
integral sign we obtain

Dτ

∫∫
1

2

(
− (Iu2 )

2 + c2(Iu1 )
2 − 2m2 cos (Iu)

)
I(dx)I(dt)

=

∫∫ [ (
−Iu2 .Dτ (I

u
2 ) + c2Iu1 .Dτ (I

u
1 ) +m2 sin (Iu).Dτ (I

u)
)
I(dx)I(dt)

+
1

2

(
−(Iu2 )

2
+ c2(Iu1 )

2 − 2m2 cos (Iu)
)
Dτ (I(dx)I(dt))

]
.

Using Table 1 we see that Dτ (I(dx)I(dt)) = 0. Then performing integration by parts, and substituting Iu1 equal
to zero in the second integral yields∫∫ (

Iu22 − c2Iu11 +m2 sin (Iu)
)
I(dx)I(dt) +

∫∫
Dt

(
−Iu2 Iu3 I(dx)I(dt)

)
.

Thus, we obtain the invariantized Euler-Lagrange equation

Eu(L) = Iu22 − c2Iu11 +m2 sin (Iu) = utt − c2uxx +m2 sinu.

Therefore, according to Theorem 3.1 the boundary terms can be written as∫∫
d(Iu2 I

u
3 I(dx)). (3.3)

Note that to find the boundary terms (3.3), after differentiating the multiple integral (3.2) under the integral sign,
we see that since the syzygy D3I

u
12 has not appear in the result of the differentiation, thus none of the equations

(2.5) or (2.6) have included. But if the syzygy D3I
u
12 appeared in the multiple integral after differentiation, then if we

include any of the equations (2.5) or (2.6), we get equivalent boundary terms. Because, we claim that the equations
(2.5) and (2.6) are equal:

Proof . We prove that the equations

D3I
u
12 =

(
D1D2 −

Iu22D1

Iu2

)
Iu3

and

D3I
u
12 =

(
D2D1 +

Iu12D2

Iu2
− c2Iu11D1

Iu2
− Iu22D1

Iu2

)
Iu3

are equal. To prove it suffices to show that(
D1D2 −

Iu22D1

Iu2

)
Iu3 =

(
D2D1 +

Iu12D2

Iu2
− c2Iu11D1

Iu2
− Iu22D1

Iu2

)
Iu3

or

D1D2 = D2D1 +
Iu12D2

Iu2
− c2Iu11D1

Iu2
.

According to Theorem 2.6, we have

[Di,Dj ] =

p∑
k=1

Ak
ijDk, Ak

ij =

r∑
l=1

KjlΞ
k
li −KilΞ

k
lj , Ξk

li = D̃iξ
k
l (z̃)

∣∣
g=ρ(z) .

On the other hand, from the formulas in description after Definition 2.4, we obtain

ξ11 = −c, ξ21 = 1, ξ31 = 0,
ξ12 = c, ξ22 = 1, ξ32 = 0,
ξ13 = c2t, ξ23 = x, ξ33 = 0.
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Hence,

Ξ2
31 = D̃xξ

2
3(z̃) = 1,

Ξ1
32 = D̃yξ

1
3(z̃) = c2,

and Ξk
li = 0, if Ξk

li ̸= Ξ2
31, Ξ

k
li ̸= Ξ1

32,

A1
12 = −c2K13 = B1

21, A2
13 = K33 = B1

32,

A1
21 = c2K13 = B2

11, A2
31 = −K33 = B3

12,

A1
32 = −c2K33 = B3

21, A2
12 = K23 = B1

22,

A1
23 = c2K33 = B2

31, A2
21 = −K23 = B2

12.

So, we have

[D1,D2] = A1
12D1 +A2

12D2 = −c2K13D1 +K23D2 = −c
2Iu11D1

Iu2
+
Iu12D2

Iu2
,

on the other hand,
[D1,D2] = D1D2 −D2D1,

thus, we conclude that

D1D2 −D2D1 = −c
2Iu11D1

Iu2
+
Iu12D2

Iu2
,

or

D1D2 = D2D1 +
Iu12D2

Iu2
− c2Iu11D1

Iu2
.

□

Now, we present an important theorem that has been proved in [3].

Theorem 3.3. Let
∫
L(k1, k2, · · · ) I(dx) be invariant under G ×M → M , where M = Jn(X,U), with generating

invariants κj, for j = 1, · · · .N . Introduce a dummy invariant variable t to effect the variation and then integration
by parts yields

Dt

∫
L(k1, k2, · · · ) I(dx)

=

∫ [∑
α

Eα(L)Iαt I(dx) +

p∑
k=1

d
((
−1
)k−1

(∑
J,α

IαJtC
α
J,k

)
I(dx1) · · · Î(dxk) · · · I(dxp+1)

)]
,

where this defines the vectors Cα
k = (Cα

J,k). Recall that Eα(L) are the invariantized Euler- Lagrange equations and
IαJt = I(uαJt), where J is a multi-index of differentiation with respect to the variables xi, for i = 1, · · · , p. Let
(a1, · · · , ar) be the coordinates of G near the identity e, and vi, for i = 1, · · · , r, the associated infinitesimal vector
fields. Furthermore, let Ad(g) be the Adjoint representation of G with respect to these vector fields. For each dependent
variable, define the matrices of characteristics to be,

Qα(z̃) = (D̃K(Qα
i )), α = 1, · · · , q,

where K is a multi-index of differentiation with respect to the xk, and

Qα
i = ϕαi −

p∑
k=1

ξki u
α
k =

∂ũα

∂ai
|g=e −

p∑
k=1

∂x̃k
∂ai

|g=e u
α
k ,

are the components of the q-tuple Qi known as the characteristic of the vector field vi. Let Qα(J, I), for α = 1, · · · , q,
be the invariantization of the above matrices. Then, the r conservation laws obtained via Noether’s Theorem can be
written in the form,

d(Ad(ρ)−1(υ1, · · · , υp)MJ d
p−1x̂) = 0 ,
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where
υk =

∑
α

(−1)
k−1

(Qα(J, I)Cα
k + L(Ξ(J, I))k),

are the vectors of invariants, with (Ξ(J, I))k the kth column of Ξ(J, I), MJ is the matrix of first minors of the Jacobian

matrix evaluated at the frame, J = dx̃/dx
∣∣
g=ρ(z) , and

dp−1x̂ =


d̂x1dx2 · · · dxp
dx1d̂x2dx3 · · · dxp

...

dx1 · · · dxp−1d̂xp

 =


dx2dx3 · · · dxp
dx1dx3 · · · dxp

...

dx1dx2 · · · dxp−1

 .

Lemma 3.4. The inverse of the Adjoint representation of the hyperbolic group G with respect to its generating vector
fields evaluated at the frame (2.4) is

Ad(ρ(z))−1 =



cux − ut√
−c2u2x + u2t

0 0

0

√
−c2u2x + u2t
cux − ut

0

−1

2

(ct− x)(cux − ut)√
−c2u2x + u2t

1

2

(x+ ct)
√

−c2u2x + u2t
cux − ut

1


. (3.4)

Proof . Consider the action (2.3) and let it act on the infinitesimal vector fields generating the hyperbolic group G ,

v1 = −c∂x + ∂t, v2 = c∂x + ∂t, v3 = c2t∂x + x∂t,

as follow

g.
(
α′(−c∂x + ∂t) + β′(c∂x + ∂t) + γ′(c2t∂x + x∂t)

)
= α′(−c∂x̃ + ∂t̃) + β′(c∂x̃ + ∂t̃) + γ′(c2t̃∂x̃ + x̃∂t̃)

= α′(−c cosh(cθ )∂x + sinh(cθ )∂t − c sinh(cθ)∂x + cosh(cθ)∂t)

+β′(c cosh(cθ )∂x − sinh(cθ )∂t − c sinh(cθ)∂x + cosh(cθ)∂t)

+γ′
[
c2(α+ β +

x

c
sinh(cθ ) + t cosh(cθ ))(cosh(cθ )∂x − 1

c
sinh(cθ )∂t)

+(−cα+ cβ + x cosh(cθ ) + ct sinh(cθ ))(−c sinh(cθ )∂x + cosh(cθ )∂t)
]

= α′[(cosh(cθ ) + sinh(cθ))(−c∂x + ∂t)] + β′[(cosh(cθ )− sinh(cθ))(c∂x + ∂t)]

+γ′
[
− cα

(
cosh(cθ) + sinh(cθ)

)
(−c∂x+ ∂t)

+cβ
(
cosh(cθ)− sinh(cθ)

)
(c∂x+ ∂t) + (c2t∂x+ x∂t)

]
=

(
α′ β′ γ′

) cosh(cθ ) + sinh(cθ ) 0 0
0 cosh(cθ )− sinh(cθ ) 0

−cα (cosh(cθ ) + sinh(cθ )) cβ (cosh(cθ )− sinh(cθ )) 1


×

 −c∂x + ∂t
c∂x + ∂t

c2t∂x + x∂t

 ,

where the above 3 × 3 matrix, Ad(g), is the Adjoint representation of G with respect to its generating infinitesimal
vector fields. So Ad(g)−1 is

Ad(g)−1 =


cosh(cθ )− sinh(cθ ) 0 0

0 cosh(cθ ) + sinh(cθ ) 0

cα −cβ 1

 .
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Now evaluating Ad(g)−1 at the frame (2.4), we obtain

Ad(ρ(z))−1 =



cux − ut√
−c2u2x + u2t

0 0

0

√
−c2u2x + u2t
cux − ut

0

−1

2

(ct− x)(cux − ut)√
−c2u2x + u2t

1

2

(x+ ct)
√

−c2u2x + u2t
cux − ut

1


.

□

Now, we calculate the Noether’s conservation laws of the nonlinear Sine-Gordon equation (1.1), namely, the Euler-
Lagrange equations for the variational problem (3.1).

Theorem 3.5. The three Noether’s conservation laws of Euler-Lagrange equations for the variational problem∫∫
1

2

(
− u2t + c2u2x − 2m2 cosu

)
dxdt,

are

d





cux − ut√
−c2u2x + u2t

0 0

0

√
−c2u2x + u2t
cux − ut

0

−1

2

(ct− x)(cux − ut)√
−c2u2x + u2t

1

2

(x+ ct)
√

−c2u2x + u2t
cux − ut

1



×



1

2
c(Iu2 )

2
+ cm2 cos (Iu) −1

2
(Iu2 )

2
+m2 cos (Iu)

−1

2
c(Iu2 )

2 − cm2 cos (Iu) −1

2
(Iu2 )

2
+m2 cos (Iu)

0 0

 .

×


−ut√

−c2u2x + u2t

−ux√
−c2u2x + u2t

−c2ux√
−c2u2x + u2t

−ut√
−c2u2x + u2t


 dt

dx


 = 0.

Proof . According to Theorem 3.3, the elements of Cu
i correspond to the coefficients of the IαJτ in (3.3), as follows:

Cu
1 =

 0
0
0

 , Cu
2 =

 −Iu2
0
0

 ,
and the (Ξ(J, I))i, for i = 1, 2, are

(Ξ(J, I))1 =


ξx

α −c
β c
θ 0

, (Ξ(J, I))2 =


ξt

α 1
β 1
θ 0

.
Since Iu1 = 0, the invariantized matrix of characteristics is,

Qu(J, I) =


Qu Dx(Q

u) Dt(Q
u)

α −Iu2 cIu11 − Iu12 cIu12 − Iu22

β −Iu2 −cIu11 − Iu12 −cIu12 − Iu22

θ 0 −Iu2 0

,
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thus, the vectors of invariants are

υ1 =


1
2c(I

u
2 )

2
+ cm2 cos (Iu)

− 1
2c(I

u
2 )

2 − cm2 cos (Iu)

0

 , υ2 =


− 1

2 (I
u
2 )

2
+m2 cos (Iu)

− 1
2 (I

u
2 )

2
+m2 cos (Iu)

0

 ,
and according to Lemma 3.4, the inverse of the Adjoint representation Ad(ρ)−1 is as (3.4). Finally, the Jacobian
matrix J is

J =


∂x̃

∂x

∣∣
g=ρ(z)

∂x̃

∂t

∣∣
g=ρ(z)

∂t̃

∂x

∣∣
g=ρ(z)

∂t̃

∂t

∣∣
g=ρ(z)

 =


cosh(cθ) c. sinh(cθ)

1

c
. sinh(cθ) cosh(cθ)



=


−ut√

−c2u2x + u2t

−c2ux√
−c2u2x + u2t

−ux√
−c2u2x + u2t

−ut√
−c2u2x + u2t


and its matrix of first minors, MJ , is

MJ =


−ut√

−c2u2x + u2t

−ux√
−c2u2x + u2t

−c2ux√
−c2u2x + u2t

−ut√
−c2u2x + u2t

 .

Thus, the conservation laws are

d
(
Ad(ρ)

−1
.
[
υ1 υ2

]
.MJ .d

1x̂
)
= 0, where, d1x̂ =

[
dt
dx

]
.

□

4 Concluding Remarks

We see that the three Noether’s conservation laws of the Sine-Gordon equation (1.1) are in terms of vectors of
invariants, the adjoint representation of the moving frame and a matrix which represents the group action on the 1-
forms. Also, we notice that since we have already proved that equations (2.5) and (2.6) are equivalent, for calculation
of boundary terms if we substitute DτI

u
12 by equation (2.6) instead of equation (2.5), or we use a combination of the

two; in any case the conservation laws are equivalent.
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