Bernstein-type inequalities for a zero-preserving operator on the space of polynomials

Mudassir Ahmad Bhat ${ }^{\text {a }}$, Suhail Gulzar ${ }^{\text {b,* }}$, Ravinder Kumar ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Chandigarh University,Mohali, Punjab, India
${ }^{\text {b }}$ Department of Mathematics, Government College for Engineering \& Technology Ganderbal, J\& K, India

(Communicated by Ali Jabbari)

Abstract

In this paper, we study zero-preserving character of a linear operator on the space of complex-polynomials which also preserve Bernstein-type inequalities for polynomials.

Keywords: Gauss Lucas theorem, Inequalities in the Complex Domain, polynomials
2020 MSC: 30C10, 26D10, 41A17

1 Bernstein's Inequality

Let \mathcal{P}_{n} denote the space of polynomials of degree at most n over the field of complex numbers. If $P \in \mathcal{P}_{n}$, then according to Bernstein's inequality [3],

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq n \max _{|z|=1}|P(z)| . \tag{1.1}
\end{equation*}
$$

The result is sharp and equality in 1.1 holds if $P(z)=a z^{n}, a \neq 0$. In other words, the Bernstein's inequality gives us the exact constant C_{n} in the inequality

$$
\begin{equation*}
\max _{|z|=1}|T[P](z)| \leq C_{n} \max _{|z|=1}|P(z)| \tag{1.2}
\end{equation*}
$$

for the operator $T \equiv \frac{d}{d z}$. In this case $C_{n}=n$.
This inequality of Bernstein has an analogue [2] for trigonometric polynomials which states that if $t(\theta)=\sum_{k=-n}^{n} a_{k} e^{i k \theta}$ is a trigonometric polynomial of degree n with $\mid t(\theta)) \mid \leq 1$ for $0 \leq \theta<2 \pi$ then

$$
\begin{equation*}
\left|t^{\prime}(\theta)\right| \leq n \quad \text { for } \quad 0 \leq \theta<2 \pi \tag{1.3}
\end{equation*}
$$

Note that if $P(z)$ is a polynomial of degree n, then $t(\theta)=P\left(e^{i \theta}\right)$ is a trigonometric polynomial with $\left|\frac{1}{M} t(\theta)\right| \leq 1$ for $\theta \in \mathbb{R}$, where $M=\max _{|z|=1}|P(z)|$. By applying (1.3) to $\frac{1}{M} t(\theta)$, one can get inequality 1.1).

[^0]Bernstein's inequality for trigonometric polynomials has played a fundamental role in harmonic analysis, approximation theory [9 and in the study of random trigonometric series [7. It also has found its usage in the theory of Banach spaces [13, p. 20-21].

Many mathematician's have studied this problem of characterization of C_{n} for different operators defined on \mathcal{P}_{n} (for more details see [14, P. 538]). Jain [6], studied the operator $T_{\alpha}[P](z):=z P^{\prime}(z)-\alpha P(z)$ and proved that if $P \in \mathcal{P}_{n}$ and $\alpha \in \mathbb{C}$ with $|\alpha| \leq n / 2$, then

$$
\begin{equation*}
\max _{|z|=1}\left|z P^{\prime}(z)-\alpha P(z)\right| \leq|n-\alpha| \max _{|z|=1}|P(z)| . \tag{1.4}
\end{equation*}
$$

That is, for this operator $C_{n}=|n-\alpha|$. One can easily observe that Bernstein's inequality is a special of Jain's result and follows by taking $\alpha=0$.

Let $P \in \mathcal{P}_{n}$ with $|P(z)| \leq\left|M z^{n}\right|$ for $|z| \leq 1$, then the inequality 1.1) can be reformulated as:

$$
\begin{equation*}
\left|P^{\prime}(z)\right| \leq\left|\frac{d}{d z}\left(M z^{n}\right)\right| \quad \text { for } \quad|z|=1 \tag{1.5}
\end{equation*}
$$

As an extension of Berntein's inequality, Malik and Vong [10] proved that if an nth degree polynomial $F(z)$ has all zeros in $|z| \leq 1$ and $P \in \mathcal{P}_{n}$ with $|P(z)| \leq|F(z)|$ for $|z|=1$, then for $\alpha \in \mathbb{C}$ with $|\alpha| \leq n / 2$

$$
\begin{equation*}
\left|z P^{\prime}(z)-\alpha P(z)\right| \leq\left|z F^{\prime}(z)-\alpha F(z)\right| \quad \text { for } \quad|z| \geq 1 \tag{1.6}
\end{equation*}
$$

The inequality (1.4) can be obtained from (1.6) by taking $F(z)=M z^{n}$, where $M=\max _{|z|=1}|P(z)|$.

2 Zero-Preserving Linear Operator on $\mathcal{P}_{\boldsymbol{n}}$

A linear operator $T: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n}$ is said to preserve zeros if, for every $P \in \mathcal{P}_{n}$ having all its zeros in $|z| \leq 1$, the polynomial $T[P](z)$ also has all its zeros in $|z| \leq 1$. Rahman and Schmeisser [14, p. 538] called such class of operators as B_{n}-operators.

By Gauss-Lucas theorem [14, p. 71], the ordinary derivative is a B_{n} operator. The zero-preserving property of the ordinary derivative and its linearity play lead roles in the proof of inequality (1.6) given in [14]. In fact, this inequality holds for every operator on \mathcal{P}_{n} satisfying these two properties. In this direction, Rahman and Schmeisser [14, p. 538] proved the following:

Theorem 2.1. Let $F(z)$ be a polynomial of degree n having all its zeros in $|z| \leq 1$ and $P \in \mathcal{P}_{n}$ such that $|P(z)| \leq$ $|F(z)|$ for $|z|=1$, then for any B_{n}-operator T, we have

$$
\begin{equation*}
|T[P](z)| \leq|T[F](z)| \quad \text { for } \quad|z| \geq 1 \tag{2.1}
\end{equation*}
$$

The inequality is sharp and equality holds if and only if $P(z)=e^{i \theta} F(z), \theta \in \mathbb{R}$.
In this paper, we first study the zero-preserving character of the operator

$$
\begin{equation*}
T_{m, \alpha}[P](z)=z P^{(m)}(z)-\alpha P^{(m-1)}(z), \quad \text { where } m \in \mathbb{N} \text { with } m \leq n \tag{2.2}
\end{equation*}
$$

defined on the space of polynomials \mathcal{P}_{n} and $\alpha \in \mathbb{C}$. This operator involve the m th and ($m-1$) th derivatives of $P(z)$. Moreover, $P^{(0)}(z)=P(z)$. In this direction, we first prove the following theorem.

Theorem 2.2. 1 Let $P(z)$ be a polynomial of degree n and has all zeros in $|z| \leq r$ and $\alpha \in \mathbb{C}$ with $\Re(\alpha) \leq \frac{n-m+1}{2}$, then all the zeros of $T_{m, \alpha}[P](z)$, given by (2.2), are also in $|z| \leq r$.

For the proof of this theorem, we need the following generalized version of Walsh's Coincidence theorem, due to A. Aziz [1], for the case when the circular region is a circle.

Lemma 2.3. Let $G\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ be a symmetric n-linear form of total degree m, $m \leq n$, in $z_{1}, z_{2}, \ldots, z_{n}$ and let $\mathcal{C}:|z| \leq r$ be a circle containing the n points $w_{1}, w_{2}, \ldots, w_{n}$. Then in \mathcal{C} there exists atleast one point β such that

$$
G(\beta, \beta, \ldots, \beta)=G\left(w_{1}, w_{2}, \ldots, w_{n}\right)
$$

Proof.[Proof of Theorem 2.2] Let w be any zero of the polynomial $T_{m, \alpha}[P](z)$, then

$$
\begin{equation*}
w P^{(m)}(w)-\alpha P^{(m-1)}(w)=0 \tag{2.3}
\end{equation*}
$$

This expression is linear and symmetric in the zeros of $P(z)$. By lemma $2.3, w$ will also satisfy the equation obtained by replacing $P(z)$ in 2.3 by $(z-\beta)^{n}$, where β is a suitable complex number with $|\beta| \leq r$. This implies

$$
\begin{aligned}
n(n-1) \ldots & (n-m+1)(w-\beta)^{n-m} w \\
& \quad-\alpha n(n-1) \ldots(n-m+2)(w-\beta)^{n-m+1}=0
\end{aligned}
$$

or

$$
\begin{equation*}
n(n-1) \ldots(n-m+2)(w-\beta)^{n-m}\{(n-m+1) w-\alpha(w-\beta)\}=0 \tag{2.4}
\end{equation*}
$$

Since $\Re(\alpha) \leq \frac{n-m+1}{2}$, then $\Re\left(\frac{\alpha}{n-m+1}\right) \leq \frac{1}{2}$. This implies that

$$
\left|\frac{\alpha}{n-m+1}\right| \leq\left|\frac{\alpha}{n-m+1}-1\right|
$$

or

$$
\begin{equation*}
|\alpha| \leq|\alpha-(n-m+1)| \tag{2.5}
\end{equation*}
$$

The equation (2.4) implies that

$$
(w-\beta)=0 \text { or }(n-m+1) w-\alpha(w-\beta)=0
$$

Equivalently,

$$
w=\beta \text { or } w=\frac{\alpha \beta}{\alpha-(n-m+1)} .
$$

This further implies by using (2.5 that,

$$
|w|=|\beta| \text { or }|w|=\frac{|\alpha||\beta|}{|\alpha-(n-m+1)|} \leq \frac{|\alpha||\beta|}{|\alpha|}
$$

Thus,

$$
\Rightarrow|w| \leq|\beta| \leq r
$$

Hence, it follows that all the zeros of $T_{m, \alpha}[P](z)$ also lie in $|z| \leq r$. This completes the proof.
The linearity of $T_{m, \alpha}[P](z)$ is not difficult to verify. Hence, the Theorem 2.2 can also be formulated as:
Theorem 2.4. The operator $T_{m, \alpha}[P](z)$ given by 2.2 is a B_{n}-operator on \mathcal{P}_{n}, if $\Re(\alpha) \leq \frac{n-m+1}{2}$.
Since $T_{m, \alpha}[P](z)$ is a B_{n}-operator on the space of polynomials with a constraint on α, then by applying theorem 2.1 to $T_{m, \alpha}[P](z)=z P^{(m)}(z)-\alpha P^{(m-1)}(z)$, we obtain the following extension of the inequality 1.6).

Corollary 2.5. Let $F(z)$ be a polynomial of degree n and has all its zeros in $|z| \leq 1$. Further, let $P \in \mathcal{P}_{n}$ with

$$
|P(z)| \leq|F(z)| \quad \text { for } \quad|z|=1
$$

Then for any $\alpha \in \mathbb{C}$ with $\Re(\alpha) \leq \frac{n-m+1}{2}$ and $|z| \geq 1$,

$$
\begin{equation*}
\left|z P^{(m)}(z)-\alpha P^{(m-1)}(z)\right| \leq\left|z F^{(m)}(z)-\alpha F^{(m-1)}(z)\right|, \quad m \leq n . \tag{2.6}
\end{equation*}
$$

The bound is sharp and inequality 2.1 becomes equality if $P(z)=e^{i \theta} F(z), \theta \in \mathbb{R}$.

The next Corollary follows by taking $F(z)=\max _{|z|=1}|P(z)| z^{n}$ in Corollary 2.5
Corollary 2.6. Let $P \in \mathcal{P}_{n}$, then for any $\alpha \in \mathbb{C}$ with $\Re(\alpha) \leq \frac{n-m+1}{2}$,

$$
\begin{equation*}
\max _{|z|=1}\left|z P^{(m)}(z)-\alpha P^{(m-1)}(z)\right| \leq \frac{n!}{(n-m+1)!}|\alpha-(n-m+1)| \max _{|z|=1}|P(z)| . \tag{2.7}
\end{equation*}
$$

The result is sharp and equality in (2.7) holds if $P(z)=a z^{n}$.
Thus, $C_{n}=\frac{n!}{(n-m+1)!}|\alpha-(n-m+1)|$ is the exact constant for the operator $T_{m, \alpha}$.
Remark 2.7. For $m=1$, the inequalities $(2.6$ and (2.7) reduces to $\sqrt{1.6}$ and $\sqrt{1.4}$ respectively. Moreover, the the inequalities (2.6) and (2.7) hold for $|\alpha| \leq n / 2$, while as, the Corollaries 2.5 and 2.6 also show that the range of α for which these inequalities hold extends from $|\alpha| \leq n / 2$ to $\Re(\alpha) \leq n / 2$.

3 Polynomials with Constraints

Let \mathcal{P}_{n}^{0} denotes the set of polynomials of degree at n and having no zero in $|z|<1$. It was proved by P.D. Lax [8] that if $P \in \mathcal{P}_{n}^{0}$ then

$$
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq \frac{n}{2} \max _{|z|=1}|P(z)| .
$$

This inequality strengthens the Bernstien's inequality for polynomials not vanishing in $|z|<1$. It was earlier conjectured by P. Erdös.

The exact constant C_{n} in Corollary 2.6 can also be strengthened for $P \in \mathcal{P}_{n}^{0}$ by using the following result of Rahman and Schmeisser [14, p. 539].

Lemma 3.1. Let $P \in \mathcal{P}_{n}^{0}$ and $\varphi_{n}(z)=z^{n}$, then for any B_{n}-operator T,

$$
|T[P](z)| \leq \frac{\left(|T[1](z)|+\left|T\left[\varphi_{n}\right](z)\right|\right)}{2} \max _{|z|=1}|P(z)| \quad \text { for } \quad|z| \geq 1
$$

If we take $T=T_{m, \alpha}$ in Lemma 3.1, then

$$
T_{m, \alpha}\left[\varphi_{n}\right](z)=\frac{n!}{(n-m+1)!}((n-m+1)-\alpha) z^{n-m+1}
$$

and

$$
T_{m, \alpha}[1](z)=-\delta_{m 1} \alpha,
$$

where $\delta_{m 1}$ denotes Kronecker delta.
Thus, we have the following Erdös-Lax type inequality for $T_{m, \alpha}$.
Theorem 3.2. Let $P \in \mathcal{P}_{n}^{0}$, then for every $\alpha \in \mathbb{C}$ with $\Re(\alpha) \leq \frac{n-m+1}{2}$,

$$
\max _{|z|=1}\left|z P^{(m)}(z)-\alpha P^{(m-1)}(z)\right| \leq C_{n}^{m} \max _{|z|=1}|P(z)|
$$

where

$$
\begin{equation*}
C_{n}^{m}=\delta_{m 1}|\alpha|+\frac{n!}{(n-m+1)!} \frac{|\alpha-(n-m+1)|}{2} . \tag{3.1}
\end{equation*}
$$

The inequality is sharp and $P(z)=a z^{n}+b$ is an extremal polynomial, $|a|=|b| \neq 0$.
A polynomial $f(z)$ of degree n is said to be self-inversive if $f(z)=\sigma q(z)$, where $q(z)=z^{n} \overline{f(1 / \bar{z})}$ and $|\sigma|=1$. The Theorem 3.2 also holds if $P(z)$ is a self-inversive polynomials. The following lemma due to Rahman and Schmeisser [14, p. 539] is needed for the proof.

Lemma 3.3. Let $P \in \mathcal{P}_{n}, Q(z)=z^{n} \overline{P(1 / \bar{z})}$ and $\varphi_{n}(z)=z^{n}$, then for any B_{n}-operator T

$$
|T[P](z)|+|T[Q](z)| \leq\left(|T[1](z)|+\left|T\left[\varphi_{n}\right](z)\right|\right) \max _{|z|=1}|P(z)| \quad|z| \geq 1
$$

Theorem 3.4. Let $P(z)$ be a self-inversive polynomial of degree n, then for every $\alpha \in \mathbb{C}$ with $\Re(\alpha) \leq \frac{n-m+1}{2}$,

$$
\begin{equation*}
\max _{|z|=1}\left|z P^{(m)}(z)-\alpha P^{(m-1)}(z)\right| \leq C_{n}^{m} \max _{|z|=1}|P(z)| \tag{3.2}
\end{equation*}
$$

where C_{n}^{m} is given by (3.1). The inequality (3.2) is sharp and $P(z)=a z^{n}+\bar{a}$ is an extremal polynomial, $a \in \mathbb{C} \backslash\{0\}$.
Proof. Let $Q(z)=z^{n} \overline{P(1 / \bar{z})}$ then $P(z)=\sigma Q(z)$ for some unit modulus complex number σ. This implies that

$$
\begin{equation*}
\left|z P^{(m)}(z)-\alpha P^{(m-1)}(z)\right|=\left|z Q^{(m)}(z)-\alpha Q^{(m-1)}(z)\right| \quad \forall z \in \mathbb{C} \tag{3.3}
\end{equation*}
$$

Moreover, from Lemma 3.3 with $T=T_{m, \alpha}$, we have

$$
\begin{align*}
\mid z P^{(m)}(z) & -\alpha P^{(m-1)}(z)\left|+\left|z Q^{(m)}(z)-\alpha Q^{(m-1)}(z)\right|\right. \tag{3.4}\\
& \leq\left(\delta_{m 1}|\alpha|+\frac{n!}{(n-m+1)!}|\alpha-(n-m+1)|\right) \max _{|z|=1}|P(z)|
\end{align*}
$$

The inequality (3.2) follows by combining inequalities 3.3) and 3.4. This completes the proof.

4 Concluding Remarks and Open problems

1. If one refers to proof of Theorem 2.1, we can conclude that the linearity and zero-preserving property of $B_{n^{-}}$ operator plays a fundamental role in the proof. There are operators on \mathcal{P}_{n} which have zero-preserving property like Nagy's generalized derivative (see [4, 16]) but are not linear. A natural question one can ask here is that, whether theorem 2.1, holds for operators which are not linear but does preserve location of zeros, or does there exist non-linear zero-preserving operators on \mathcal{P}_{n} which satisfy the conclusion of Theorem 2.1.
2. For $m=1$, the operator $T_{m, \alpha}$ takes the form of Simirnov operator (see [5, 15]). In [15, Chapter V], Simirnov proved that his operator preserves inequalities between polynomials. According to his result, for $m=1$, the Corollary 2.5 holds for all α 's with $\alpha / n \in \bar{\Omega}_{|z|}$ where $\Omega_{|z|}$ denotes the image of the disc $\{t:|t| \leq|z|\}$ under the mapping $\phi(t)=\frac{t}{1+t}$. In this regard, the extension of $T_{m, \alpha}$ in Simirnov's settings is a plausible question to ask.

5 Acknowledgment

The authors are thankful to the referee for comments and suggestions.

References

[1] A. Aziz, On the location of the zeros of certain composite polynomials, Pacific J. Math. 118 (1985), 17-26.
[2] S.N. Bernstein, Sur. ĺordre de la meilleure appromation des functions continues par des Polynomes de degré donné, Mem. Acad. Roy. Belgique, 12 (1912), no. 4, 1-103.
[3] S. Bernstein, Sur la limitation des dérivées des polynomes, C. R. Math. Acad. Sci. Paris 190 (1930), 338-340.
[4] P.L. Cheung, T.W. Ng, J. Tsai and S.C.P. Yam, Higher-order, polar and Sz.-Nagy's generalized derivatives of random polynomials with independent and identically distributed zeros on the unit circle, Comput. Meth. Funct. Theory 15 (2015), no. 1, 159-186.
[5] E.G. Ganenkova and V.V. Starkov, The Möbius transformation and Smirnov's inequality for polynomials, Math. Notes 105 (2019), no. 2, 58-68.
[6] V.K. Jain, Generalization of certain well known inequalities for polynomials, Glas. Mat. 32 (1997), 45-51.
[7] J.P. Kahane, Some Random Series of Functions, Cambridge University Press, Cambridge, 1985.
[8] P.D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944), 509-513.
[9] G.G. Lorentz, Approximation of Functions, Chelsea Publishing Company, NewYork, 1986.
[10] M.A. Malik and M.C. Vong, Inequalities concerning the derivative of polynomials, Rend. Circ. Mat. Palermo 34 (1985), 422-426.
[11] M. Marden, Geometry of polynomials, American Mathematical Society, Providence, 1985.
[12] G.V. Milovanović, D.S. Mitrinović and Th. M. Rassias, Topics in Polynomials: Extremal Properties, Inequalities, Zeros, World Scientific Publishing Company, Singapore, 1994.
[13] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Volume 94, Cambridge University Press, Cambridge, 1989.
[14] Q.I. Rahman and G. Schmeisser, Analytic theory of Polynomials, Clarendon Press Oxford, 2002.
[15] V.I. Smirnov and N.A. Lebedev, Constructive Theory of Functions of a Complex Variable, Nauka, Moscow, Leningrad, 1964.
[16] S. Gulzar, N.A. Rather and F.A. Bhat, The location of critical points of polynomials, Asian-Eur. J. Math. 12 (2019), no. 1, 1950087.

[^0]: *Corresponding author
 Email addresses: bhatmudasir99@gmail.com (Mudassir Ahmad Bhat), sgmattoo@gmail.com (Suhail Gulzar), ravinderpoonia25@gmail.com (Ravinder Kumar)

 Received: September 2021 Accepted: June 2022

