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Abstract

In this paper, we show that the following three-dimensional rational system of difference equations

xn =
zn−1zn−3

bxn−2 + azn−3
, yn =

xn−1xn−3

dyn−2 + cxn−3
, zn =

yn−1yn−3

fzn−2 + eyn−3
, n ∈ N0,

where the parameters a, b, c, d, e, f and the initial values x−i, y−i, z−i, i ∈ {1, 2, 3}, are real numbers, can be solved in
explicit form. In addition, the solutions of aforementioned systems according to the special cases of the parameters
are given in closed form. Later, the forbidden set of the initial values for aforementioned system is described. Finally,
an application and numerical examples to support our results are given.
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1 Introduction

There are different types of difference equations in theory of difference equations. One of them is

xn+1 = anxn + bn, n ∈ N0. (1.1)

The equation (1.1) is non-homogeneous linear difference equation of the first-order with variable coefficients. Equation
(1.1) and its special cases were solved by Levy and Lessman in [23]. The general solution of equation (1.1) can be
written in the following form

xn = x0

n−1∏
k=0

ak +

n−1∑
i=0

bi

n−1∏
k=i+1

ak, n ∈ N.

If every n ∈ N0, an = 0, equation (1.1) is expressed as

xn+1 = bn, n ∈ N0. (1.2)
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Then, the general solution of equation (1.2) is xn = bn−1 for n ∈ N.
If every n ∈ N0, bn = 0, then equation (1.1) turns into the following homogeneous linear difference equation of the
first-order with variable coefficients

xn+1 = anxn, n ∈ N0. (1.3)

The general solution of equation (1.3) is

xn = x0

n−1∏
k=0

ak, n ∈ N.

For the case when the sequences (an)n∈N0
and (bn)n∈N0

are constant, that is, an = a, bn = b, n ∈ N0, equation (1.1)
becomes

xn+1 = axn + b, n ∈ N0, (1.4)

which defines non-homogeneous linear difference equation of the first-order with constant coefficients. The general
solution of equation (1.4) is

xn = anx0 + b
1− an

1− a
, n ∈ N, (1.5)

if a ̸= 1 and while

xn = x0 + bn, n ∈ N, (1.6)

if a = 1.
In equation (1.4), if b = 0, we obtain the following equation

xn+1 = axn, n ∈ N0. (1.7)

The solution of equation (1.7) has the following form

xn = anx0, n ∈ N. (1.8)

Another well-known important difference equation is

xn+1 = axn + bxn−1, n ∈ N0. (1.9)

De Moivre solved the homogeneous linear difference equation (1.9) in [6]. The general solution of the sequence
(xn)n≥−1, is given by

xn =
(λ2x−1 − x0)λ

n+1
1 + (x0 − λ1x−1)λ

n+1
2

λ2 − λ1
, n ≥ −1, (1.10)

when b ̸= 0 and a2 + 4b ̸= 0,

xn = (x0 (n+ 1)− x−1λ1n)λ
n
1 , n ≥ −1, (1.11)

when b ̸= 0 and a2 +4b = 0, where λ1 and λ2 are the roots of the polynomial P (λ) = λ2 − aλ− b = 0. Also, the roots

of characteristic equation are λ1,2 = a±
√
a2+4b
2 .

Recently, non-linear difference equations have been studied by mathematicians. A simple example for non-linear
difference equation which can be solved in explicit form is the following difference equation

xn =
bxn−1 + a

dxn−1 + c
, n ∈ N0, (1.12)

where the initial value x−1 is real number. Equation (1.12) is called Riccati difference equation.

If

∣∣∣∣ b a
d c

∣∣∣∣ = 0, then equation (1.12) is trivial such that xn = a
c for n ∈ N0. If d = 0, equation (1.12) turns into the

linear equation

xn =
b

c
xn−1 +

a

c
, n ∈ N0. (1.13)

From (1.5)-(1.6), the general solution of equation (1.13) is
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xn =

(
b

c

)n+1

x−1 +
a

c

1−
(
b
c

)n+1

1− b
c

,

if b
c ̸= 1 and while

xn = x−1 +
a

c
(n+ 1) ,

if b
c = 1.

If d ̸= 0 ̸= (b+ c) and

∣∣∣∣ b a
d c

∣∣∣∣ ̸= 0, by means of the change of variables

xn =
b+ c

d
yn − c

d
, n ≥ −1. (1.14)

Using (1.14) in equation (1.12) we have

yn =
−R+ yn−1

yn−1
, n ∈ N0, (1.15)

where the parameter R = bc−ad
(b+c)2

, and it is called Riccati number. By using the change of variable

yn =
zn+1

zn
, n ≥ −1,

then equation (1.15) transforms into the following second order linear difference equations,

zn+1 = zn −Rzn−1, n ∈ N0. (1.16)

From (1.10)-(1.11), the general solution of equation (1.16) is

zn =

{ (λ1y−1−R)λn
1 −(λ2y−1−R)λn

2

λ1−λ2
, if R ̸= 1

4 ,(
2y−1+(2y−1−1)n

2

) (
1
2

)n
, if R = 1

4 ,
n ∈ N0,

where λ1 = 1+
√
1−4R
2 , λ2 = 1−

√
1−4R
2 , λ1λ2 = R = bc−ad

(b+c)2
, the initial values z−1 = 1 and z0 = y−1.

Then, the solution of equation (1.15) is given by

yn =

{
(λ1y−1−R)λn+1

1 −(λ2y−1−R)λn+1
2

(λ1y−1−R)λn
1 −(λ2y−1−R)λn

2
, if R ̸= 1

4 ,
2y−1+(2y−1−1)(n+1)

4y−1+(4y−1−2)n , if R = 1
4 ,

n ∈ N0.

Moreover, the solution of equation (1.12) is given by

xn =


b+c
d

(
λ1

dx−1+c

b+c −R
)
λn+1
1 −

(
λ2

dx−1+c

b+c −R
)
λn+1
2(

λ1
dx−1+c

b+c −R
)
λn
1 −

(
λ2

dx−1+c

b+c −R
)
λn
2

− c
d , if R ̸= 1

4 ,

b+c
d

2
dx−1+c

b+c +
(
2

dx−1+c

b+c −1
)
(n+1)

4
dx−1+c

b+c +
(
4

dx−1+c

b+c −2
)
n

− c
d , if R = 1

4 ,

n ∈ N0. (1.17)

For more details, see [22].
Difference equations or systems which transform into linear or Riccati difference equations by applying appropriate
transformations have engaged attention of many mathematicians (see, e.g. [2, 3, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]).
For example, following difference equations

xn+1 =
xnxn−2

±xn−1 ∓ xn−2
, n ∈ N0, (1.18)

reduced to the Riccati difference equation under convenient transformations in [1]. Later, in [7, 8], equations in (1.18)
were generalized to the following equations

xn+1 =
axn−lxn−k

bxn−p + cxn−q
and xn+1 =

axn−lxn−k

bxn−p − cxn−q
, n ∈ N0,
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where r := max{l, k, p, q} is non-negative integer, a, b, c are positive constants.

Then, the equations in (1.18) were expanded to the following systems of difference equations

xn+1 =
ynyn−2

xn−1 + yn−2
, yn+1 =

xnxn−2

±yn−1 ± xn−2
, n ∈ N0. (1.19)

in [4]. The solutions of systems in given (1.19) were found by using induction.

But, two-dimensional systems of difference equations in (1.19) were extended to the following two-dimensional
system of difference equations with constant coefficients

xn+1 =
ynyn−2

bxn−1 + ayn−2
, yn+1 =

xnxn−2

dyn−1 + cxn−2
, n ∈ N0, (1.20)

and system (1.20) was solved using convenient transformations in [24].

A natural question is if any of the corresponding three-dimensional relatives to equation (1.18) and system (1.19)
is also solvable. Here we give a positive answer to the question. Namely, we consider the following system

xn =
zn−1zn−3

bxn−2 + azn−3
, yn =

xn−1xn−3

dyn−2 + cxn−3
, zn =

yn−1yn−3

fzn−2 + eyn−3
, n ∈ N0, (1.21)

where the parameters a, b, c, d, e, f and the initial values x−i, y−i, z−i, i ∈ {1, 2, 3}, are real numbers. We solve system
(1.21) in explicit form. Then, the solutions of system (1.21) according to the special cases of the parameters are given
in closed form. Later, the forbidden set of the initial values for system (1.21) is described. Finally, an application and
numerical examples to support our results are given.
The following definition will help us to find solutions.

Definition 1.1. [25] The general equation

xn+1 = h
(
xn+1−(k+1), xn+1−2(k+1), . . . , xn+1−l(k+1)

)
, n ∈ N0,

where l ∈ N and k ∈ N0 is a difference equation with interlacing indices.

2 Solutions of the system (1.21) in explicit form

Suppose that xn0
= 0 for some n0 ≥ −3. Then from the second equation in (1.21) it follows that yn0+1 = 0. If

yn0+1 = 0, then from the third equation in (1.21) it follows that zn0+2 = 0, and consequently fzn0+2 + eyn0+1 = 0,
from which it follows that zn0+4 is not defined. Assume that yn1

= 0 for some n1 ≥ −3. Then from the third equation
in (1.21) it follows that zn1+1 = 0. If zn1+1 = 0, then from the first equation in (1.21) it follows that xn1+2 = 0,
and consequently bxn1+2 + azn1+1 = 0, from which it follows that xn1+4 is not defined. Suppose that zn2 = 0 for
some n2 ≥ −3. Then from the first equation in (1.21) it follows that xn2+1 = 0. If xn2+1 = 0, then from the second
equation in (1.21) it follows that yn2+2 = 0, and consequently dyn2+2 + cxn2+1 = 0, from which it follows that yn2+4

is not defined. This means that the set{
F⃗ : x−j = 0 or y−j = 0 or z−j = 0, j ∈ {1, 2, 3}

}
,

is a subset of the forbidden set of solutions to system (1.21), where

F⃗ = (x−3, x−2, x−1, y−3, y−2, y−1, z−3, z−2, z−1). Thus, for every well-defined solution of system (1.21), we get that
xnynzn ̸= 0, n ≥ −3, if and only if x−jy−jz−j ̸= 0, j ∈ {1, 2, 3}.

2.1 Particular Cases of System (1.21)

Now, we will examine the solutions in 15 different cases depending on whether the parameters are zero or non-zero.
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2.1.1 Case b = d = f = 0, ace ̸= 0.

In this case, system (1.21) reduces to the following system

xn =
zn−1

a
, yn =

xn−1

c
, zn =

yn−1

e
, n ∈ N0. (2.1)

From (2.1), we get

xn =
xn−3

ace
, yn =

yn−3

ace
, zn =

zn−3

ace
, n ≥ 2, (2.2)

which are homogeneous linear third-order difference equations with constant coefficient. Equations in (2.2) are equa-
tions with interlacing indices of order three. Hence, the sequences

x(j)
m = x3m+j , y(j)m = y3m+j , z(j)m = z3m+j , m ≥ −1, j ∈ {2, 3, 4},

are solutions of the first-order difference equation

pm =
pm−1

ace
, m ∈ N0. (2.3)

From (1.8), the solution of difference equation (2.3)

pm =
p−1

(ace)
m+1 , m ∈ N0. (2.4)

From (2.4), we can write the solutions of equations in (2.2) as in the following form

x3m+j =
xj−3

(ace)
m+1 , y3m+j =

yj−3

(ace)
m+1 , z3m+j =

zj−3

(ace)
m+1 , (2.5)

for m ∈ N0 and j ∈ {2, 3, 4}.

2.1.2 Case a = c = e = 0, bdf ̸= 0.

In this case, system (1.21) is expressed as

xn =
zn−1zn−3

bxn−2
, yn =

xn−1xn−3

dyn−2
, zn =

yn−1yn−3

fzn−2
, n ∈ N0. (2.6)

From (2.6), we get

bxnxn−2 = zn−1zn−3, dynyn−2 = xn−1xn−3, fznzn−2 = yn−1yn−3, n ∈ N0. (2.7)

From which it follows that

xnxn−2 =
xn−3xn−5

bdf
, ynyn−2 =

yn−3yn−5

bdf
, znzn−2 =

zn−3zn−5

bdf
, n ≥ 2. (2.8)

By employing the change of variables

kn = xnxn−2, k̂n = ynyn−2, k̃n = znzn−2, n ≥ −1, (2.9)

equations in (2.8) are transformed into the following equations

kn =
kn−3

bdf
, k̂n =

k̂n−3

bdf
, k̃n =

k̃n−3

bdf
, n ≥ 2, (2.10)

which are homogeneous linear third-order difference equations with constant coefficient. Equations in (2.10) are
equations with interlacing indices of order three. Hence, the sequences

k(j)m = k3m+j , k̂(j)m = k̂3m+j , k̃(j)m = k̃3m+j , m ≥ −1, j ∈ {2, 3, 4},

are solutions of the first-order difference equation

rm =
rm−1

bdf
, m ∈ N0.
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From (1.8), the general solution is

rm =
r−1

(bdf)
m+1 , m ∈ N0. (2.11)

From (2.11), we can write the solutions of equations in (2.10),

k3m+j =
kj−3

(bdf)
m+1 , k̂3m+j =

k̂j−3

(bdf)
m+1 , k̃3m+j =

k̃j−3

(bdf)
m+1 , (2.12)

for m ∈ N0, j ∈ {2, 3, 4}. From (2.9), we have that

xn =
kn

kn−2

kn−4

kn−6

kn−8

kn−10
xn−12, n ≥ 9, (2.13)

yn =
k̂n

k̂n−2

k̂n−4

k̂n−6

k̂n−8

k̂n−10

yn−12, n ≥ 9, (2.14)

zn =
k̃n

k̃n−2

k̃n−4

k̃n−6

k̃n−8

k̃n−10

zn−12, n ≥ 9. (2.15)

From (2.13)-(2.15), we get

x12m+l =
k12m+l

k12m+l−2

k12m+l−4

k12m+l−6

k12m+l−8

k12m+l−10
x12(m−1)+l,

y12m+l =
k̂12m+l

k̂12m+l−2

k̂12m+l−4

k̂12m+l−6

k̂12m+l−8

k̂12m+l−10

y12(m−1)+l,

and

z12m+l =
k̃12m+l

k̃12m+l−2

k̃12m+l−4

k̃12m+l−6

k̃12m+l−8

k̃12m+l−10

z12(m−1)+l,

where m ∈ N0 and l = 9, 20, from which it follows that

x12m+3i+p−2 = x3i+p−14

m+1∏
s=1

k12s+3i+p−2

k12s+3i+p−4

k12s+3i+p−6

k12s+3i+p−8

k12s+3i+p−10

k12s+3i+p−12
, (2.16)

y12m+3i+p−2 = y3i+p−14

m+1∏
s=1

k̂12s+3i+p−2

k̂12s+3i+p−4

k̂12s+3i+p−6

k̂12s+3i+p−8

k̂12s+3i+p−10

k̂12s+3i+p−12

, (2.17)

z12m+3i+p−2 = z3i+p−14

m+1∏
s=1

k̃12s+3i+p−2

k̃12s+3i+p−4

k̃12s+3i+p−6

k̃12s+3i+p−8

k̃12s+3i+p−10

k̃12s+3i+p−12

, (2.18)

where m ∈ N0, p ∈ {2, 3, 4} and i ∈ {3, 4, 5, 6}.
By applying solutions (2.12) in (2.16)-(2.18), after some basic calculation, we get

x12m+3i+j =
x3i+j−12

(bdf)
2m+2 , y12m+3i+j =

y3i+j−12

(bdf)
2m+2 , z12m+3i+j =

z3i+j−12

(bdf)
2m+2 , (2.19)

for m ∈ N0, j ∈ {0, 1, 2} and i ∈ {3, 4, 5, 6}.

2.1.3 Case b = 0, acdef ̸= 0.

In this case, system (1.21) becomes

xn =
zn−1

a
, yn =

xn−1xn−3

dyn−2 + cxn−3
, zn =

yn−1yn−3

fzn−2 + eyn−3
, n ∈ N0. (2.20)

Employing the first equation in system (2.20) in the second equation in system (2.20), we get

yn =
zn−2zn−4

a2dyn−2 + aczn−4
, n ≥ 3.
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We consider the following two-dimensional system

yn =
zn−2zn−4

a2dyn−2 + aczn−4
, n ≥ 3, zn =

yn−1yn−3

fzn−2 + eyn−3
, n ∈ N0. (2.21)

The system (2.21) can be written in the form

yn
zn−2

=
1

a2dyn−2

zn−4
+ ac

, n ≥ 3,
zn

yn−1
=

1

f zn−2

yn−3
+ e

, n ∈ N0. (2.22)

Now, we may use the change of variables

yn
zn−2

= tn, n ≥ 1,
zn

yn−1
= t̂n, n ≥ −2. (2.23)

and transform system (2.22) into the following equations

tn =
1

a2dtn−2 + ac
, n ≥ 3, t̂n =

1

f t̂n−2 + e
, n ∈ N0. (2.24)

Equations in (2.24) are equations with interlacing indices of order two. Hence, the sequences

t(i)m =t2m+i, m ∈ N0, i ∈ {1, 2},
t̂(j)m =t̂2m+j , m ≥ −1, j ∈ {0, 1},

are solutions to the following difference equations

t(i)m =
1

a2dt
(i)
m−1 + ac

, m ∈ N, i ∈ {1, 2}, t̂(j)m =
1

f t̂
(j)
m−1 + e

, m ∈ N0, j ∈ {0, 1}. (2.25)

The solutions of difference equations in (2.25)

t2m+i =


c
ad

(
λ1

adti+c

c −R1

)
λm
1 −

(
λ2

adti+c

c −R1

)
λm
2(

λ1
adti+c

c −R1

)
λm−1
1 −

(
λ2

adti+c

c −R1

)
λm−1
2

− c
ad , if R1 ̸= 1

4 ,

c
ad

2
adti+c

c +
(
2

adti+c

c −1
)
m

4
adti+c

c +
(
4

adti+c

c −2
)
(m−1)

− c
ad , if R1 = 1

4 ,

m ∈ N0, (2.26)

t̂2m+j =


e
f

(
λ3

ft̂j−2+e

e −R2

)
λm+1
3 −

(
λ4

ft̂j−2+e

e −R2

)
λm+1
4(

λ3
ft̂j−2+e

e −R2

)
λm
3 −

(
λ4

ft̂j−2+e

e −R2

)
λm
4

− e
f , if R2 ̸= 1

4 ,

e
f

2
ft̂j−2+e

e +

(
2

ft̂j−2+e

e −1

)
(m+1)

4
ft̂j−2+e

e +

(
4

ft̂j−2+e

e −2

)
m

− e
f , if R2 = 1

4 ,

m ∈ N0, (2.27)

for i ∈ {1, 2}, j ∈ {0, 1}, where λ1 = 1+
√
1−4R1

2 , λ2 = 1−
√
1−4R1

2 , λ3 = 1+
√
1−4R2

2 , λ4 = 1−
√
1−4R2

2 , R1 = −d
c2 and

R2 = −f
e2 .

From (2.23), we have that
yn = tnt̂n−2tn−3t̂n−5yn−6, n ≥ 4, (2.28)

zn = t̂ntn−1t̂n−3tn−4zn−6, n ≥ 5. (2.29)

From the first equation in system (2.20) and (2.28)-(2.29), we have

x6m+2ĵ2+î2+1 =
1

a
z2ĵ2+î2

m∏
k=1

t̂6k+2ĵ2+î2
t6k+2ĵ2+î2−1t̂6k+2ĵ2+î2−3t6k+2ĵ2+î2−4, (2.30)

y6m+2ĵ1+î1
= y2ĵ1+î1

m∏
k=1

t6k+2ĵ1+î1
t̂6k+2ĵ1+î1−2t6k+2ĵ1+î1−3t̂6k+2ĵ1+î1−5, (2.31)

z6m+2ĵ2+î2
= z2ĵ2+î2

m∏
k=1

t̂6k+2ĵ2+î2
t6k+2ĵ2+î2−1t̂6k+2ĵ2+î2−3t6k+2ĵ2+î2−4, (2.32)

where m ∈ N0, ĵ1 ∈ {−1, 0, 1}, î1 ∈ {0, 1}, ĵ2 ∈ {0, 1, 2} and î2 ∈ {−1, 0}.
By applying (2.26)-(2.27) in (2.30)-(2.32), after some basic calculation, the solutions in explicit form of system (2.20)
can be found.
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2.1.4 Case d = 0, abcef ̸= 0.

In this case, system (1.21) is equivalent to the system

xn =
zn−1zn−3

bxn−2 + azn−3
, yn =

xn−1

c
, zn =

yn−1yn−3

fzn−2 + eyn−3
, n ∈ N0, (2.33)

which is an analogue of the system (2.20). By interchanging variables yn, zn, xn, c, e, f , a, b, instead of xn, yn, zn, a,
c, d, e, f , respectively, the system in (2.20) is transformed into (2.33). So, by interchanging sn, ŝn instead of tn, t̂n,
the formulas in (2.26)-(2.27), they are transformed into the following formulas

s2m+i =


e
cf

(
λ3

cfsi+e

e −R2

)
λm
3 −

(
λ4

cfsi+e

e −R2

)
λm
4(

λ3
cfsi+e

e −R2

)
λm−1
3 −

(
λ4

cfsi+e

e −R2

)
λm−1
4

− e
cf , if R2 ̸= 1

4 ,

e
cf

2
cfsi+e

e +
(
2

cfsi−2+e

e −1
)
m

4
cfsi−2+e

e +
(
4

cfsi+e

e −2
)
(m−1)

− e
cf , if R2 = 1

4 ,

m ∈ N0, (2.34)

ŝ2m+j =


a
b

(
λ5

bŝj−2+a

a −R3

)
λm+1
5 −

(
λ6

bŝj−2+a

a −R3

)
λm+1
6(

λ5
bŝj−2+a

a −R3

)
λm
5 −

(
λ6

bŝj−2+a

a −R3

)
λm
6

− a
b , if R3 ̸= 1

4 ,

a
b

2
bŝj−2+a

a +
(
2

bŝj−2+a

a −1
)
(m+1)

4
bŝj−2+a

a +
(
4

bŝj−2+a

a −2
)
m

− a
b , if R3 = 1

4 ,

m ∈ N0, (2.35)

for i ∈ {1, 2}, j ∈ {0, 1}, where λ3 = 1+
√
1−4R2

2 , λ4 = 1−
√
1−4R2

2 , λ5 = 1+
√
1−4R3

2 , λ6 = 1−
√
1−4R3

2 , R2 = −f
e2 and

R3 = −b
a2 . Then, (2.30)-(2.32) is transformed into the following formulas

x6m+2ĵ2+î2
= x2ĵ2+î2

m∏
k=1

ŝ6k+2ĵ2+î2
s6k+2ĵ2+î2−1ŝ6k+2ĵ2+î2−3s6k+2ĵ2+î2−4, (2.36)

y6m+2ĵ2+î2+1 =
1

c
x2ĵ2+î2

m∏
k=1

ŝ6k+2ĵ2+î2
s6k+2ĵ2+î2−1ŝ6k+2ĵ2+î2−3s6k+2ĵ2+î2−4, (2.37)

z6m+2ĵ1+î1
= z2ĵ1+î1

m∏
k=1

s6k+2ĵ1+î1
ŝ6k+2ĵ1+î1−2s6k+2ĵ1+î1−3ŝ6k+2ĵ1+î1−5, (2.38)

where m ∈ N0, ĵ1 ∈ {−1, 0, 1}, î1 ∈ {0, 1}, ĵ2 ∈ {0, 1, 2} and î2 ∈ {−1, 0}.
By applying (2.34)-(2.35) in (2.36)-(2.38), after some basic calculation, the solutions in explicit form of system (2.33)
can be found.

2.1.5 Case f = 0, abcde ̸= 0.

In this case, we obtain the system

xn =
zn−1zn−3

bxn−2 + azn−3
, yn =

xn−1xn−3

dyn−2 + cxn−3
, zn =

yn−1

e
, n ∈ N0, (2.39)

which is an analogue of the system (2.33). By interchanging variables yn, zn, xn, c, d, e, a, b, instead of xn, yn, zn,

a, b, c, e, f , respectively, the system in (2.33) is transformed into (2.39). So, by interchanging ln, l̂n instead of sn, ŝn,
the formulas in (2.34)-(2.35), they are transformed into the following formulas

l2m+i =


a
eb

(
λ5

ebli+a

a −R3

)
λm
5 −

(
λ6

ebli+a

a −R3

)
λm
6(

λ5
ebli+a

a −R3

)
λm−1
5 −

(
λ6

ebli+a

a −R3

)
λm−1
6

− a
eb , if R3 ̸= 1

4 ,

a
eb

2
ebli+a

a +
(
2

ebli+a

a −1
)
m

4
ebli+a

a +
(
4

ebli+a

a −2
)
(m−1)

− a
eb , if R3 = 1

4 ,

m ∈ N0, (2.40)

l̂2m+j =


c
d

(
λ1

dl̂j−2+c

c −R1

)
λm+1
1 −

(
λ2

dl̂j−2+c

c −R1

)
λm+1
2(

λ1
dl̂j−2+c

c −R1

)
λm
1 −

(
λ2

dl̂j−2+c

c −R1

)
λm
2

− c
d , if R1 ̸= 1

4 ,

c
d

2
dl̂j−2+c

c +

(
2

dl̂j−2+c

c −1

)
(m+1)

4
dl̂j−2+c

c +

(
4

dl̂j−2+c

c −2

)
m

− c
d , if R1 = 1

4 ,

m ∈ N0, (2.41)
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for i ∈ {1, 2}, j ∈ {0, 1}, where λ5 = 1+
√
1−4R3

2 , λ6 = 1−
√
1−4R3

2 , λ1 = 1+
√
1−4R1

2 , λ2 = 1−
√
1−4R1

2 , R3 = −b
a2 and

R1 = −d
c2 . Then, (2.36)-(2.38) is transformed into the following formulas

x6m+2ĵ1+î1
= x2ĵ1+î1

m∏
k=1

l6k+2ĵ1+î1
l̂6k+2ĵ1+î1−2l6k+2ĵ1+î1−3 l̂6k+2ĵ1+î1−5, (2.42)

y6m+2ĵ2+î2
= y2ĵ2+î2

m∏
k=1

l̂6k+2ĵ2+î2
l6k+2ĵ2+î2−1 l̂6k+2ĵ2+î2−3l6k+2ĵ2+î2−4, (2.43)

z6m+2ĵ2+î2+1 =
1

e
y2ĵ2+î2

m∏
k=1

l̂6k+2ĵ2+î2
l6k+2ĵ2+î2−1 l̂6k+2ĵ2+î2−3l6k+2ĵ2+î2−4, (2.44)

where m ∈ N0, ĵ1 ∈ {−1, 0, 1}, î1 ∈ {0, 1}, ĵ2 ∈ {0, 1, 2} and î2 ∈ {−1, 0}.
By applying (2.40)-(2.41) in (2.42)-(2.44), after some basic calculation, the solutions in explicit form of system (2.39)
can be found.

2.1.6 Case a = 0, bcdef ̸= 0.

In this case, system (1.21) becomes

xn =
zn−1zn−3

bxn−2
, yn =

xn−1xn−3

dyn−2 + cxn−3
, zn =

yn−1yn−3

fzn−2 + eyn−3
, n ∈ N0. (2.45)

System (2.45) can be written in the following form

xn

zn−1
=

1

bxn−2

zn−3

,
yn

xn−1
=

1

d yn−2

xn−3
+ c

,
zn

yn−1
=

1

f zn−2

yn−3
+ e

, n ∈ N0. (2.46)

Next, by employing the change of variables

ûn =
xn

zn−1
, v̂n =

yn
xn−1

, ŵn =
zn

yn−1
, n ≥ −2, (2.47)

and transform (2.46) into the following equations

ûn =
1

bûn−2
= ûn−4, n ≥ 2, v̂n =

1

dv̂n−2 + c
, n ∈ N0, ŵn =

1

fŵn−2 + e
, n ∈ N0, (2.48)

which means that (ûn)n≥−2 are four-periodic, that is,

û4n+ĩ = ûĩ, (2.49)

where n ∈ N0 and ĩ = −2, 1 and the second and the third equations in (2.48) are equations with interlacing indices of
order two. Hence, the sequences

v̂(l)m =
1

dv̂
(l)
m−1 + c

, ŵ(l)
m =

1

fŵ
(l)
m−1 + e

, m ∈ N0, (2.50)

for l ∈ {0, 1}. From equalities in (1.17), the solutions of difference equations in (2.50)

v̂2m+l =


c
d

(
λ1

dv̂l−2+c

c −R1

)
λm+1
1 −

(
λ2

dv̂l−2+c

c −R1

)
λm+1
2(

λ1
dv̂l−2+c

c −R1

)
λm
1 −

(
λ2

dv̂l−2+c

c −R1

)
λm
2

− c
d , if R1 ̸= 1

4 ,

c
d

2
dv̂l−2+c

c +
(
2

dv̂l−2+c

c −1
)
(m+1)

4
dv̂l−2+c

c +
(
4

dv̂l−2+c

c −2
)
m

− c
d , if R1 = 1

4 ,

m ∈ N0, (2.51)

ŵ2m+l =


e
f

(
λ3

fŵl−2+e

e −R2

)
λm+1
3 −

(
λ4

fŵl−2+e

e −R2

)
λm+1
4(

λ3
fŵl−2+e

e −R2

)
λm
3 −

(
λ4

fŵl−2+e

e −R2

)
λm
4

− e
f , if R2 ̸= 1

4 ,

e
f

2
fŵl−2+e

e +
(
2

fŵl−2+e

e −1
)
(m+1)

4
fŵl−2+e

e +
(
4

fŵl−2+e

e −2
)
m

− e
f , if R2 = 1

4 ,

m ∈ N0, (2.52)
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for l ∈ {0, 1}, where λ1 = 1+
√
1−4R1

2 , λ2 = 1−
√
1−4R1

2 , λ3 = 1+
√
1−4R2

2 , λ4 = 1−
√
1−4R2

2 , R1 = −d
c2 and R2 = −f

e2 .
From (2.47), we get

xn = ûnŵn−1v̂n−2ûn−3ŵn−4v̂n−5ûn−6ŵn−7v̂n−8ûn−9ŵn−10v̂n−11xn−12, n ≥ 9, (2.53)

yn = v̂nûn−1ŵn−2v̂n−3ûn−4ŵn−5v̂n−6ûn−7ŵn−8v̂n−9ûn−10ŵn−11yn−12, n ≥ 9, (2.54)

zn = ŵnv̂n−1ûn−2ŵn−3v̂n−4ûn−5ŵn−6v̂n−7ûn−8ŵn−9v̂n−10ûn−11zn−12, n ≥ 9. (2.55)

From (2.53)-(2.55) we have

x12m+4j+i = x4j+i

m∏
k=1

û12k+4j+iŵ12k+4j+i−1v̂12k+4j+i−2û12k+4j+i−3

×ŵ12k+4j+i−4v̂12k+4j+i−5û12k+4j+i−6ŵ12k+4j+i−7 (2.56)

×v̂12k+4j+i−8û12k+4j+i−9ŵ12k+4j+i−10v̂12k+4j+i−11,

y12m+4j+i = y4j+i

m∏
k=1

v̂12k+4j+iû12k+4j+i−1ŵ12k+4j+i−2v̂12k+4j+i−3

×û12k+4j+i−4ŵ12k+4j+i−5v̂12k+4j+i−6û12k+4j+i−7 (2.57)

×ŵ12k+4j+i−8v̂12k+4j+i−9û12k+4j+i−10ŵ12k+4j+i−11,

z12m+4j+i = z4j+i

m∏
k=1

ŵ12k+4j+iv̂12k+4j+i−1û12k+4j+i−2ŵ12k+4j+i−3

×v̂12k+4j+i−4û12k+4j+i−5ŵ12k+4j+i−6v̂12k+4j+i−7 (2.58)

×û12k+4j+i−8ŵ12k+4j+i−9v̂12k+4j+i−10û12k+4j+i−11,

where m ∈ N0, j = −1, 1 and i = 1, 4.
By applying (2.49), (2.51), (2.52) in (2.56)-(2.58), after some basic calculation, the solutions in explicit form of system
(2.45) can be found.

2.1.7 Case c = 0, abdef ̸= 0.

In this case, system (1.21) is equivalent to the system

xn =
zn−1zn−3

bxn−2 + azn−3
, yn =

xn−1xn−3

dyn−2
, zn =

yn−1yn−3

fzn−2 + eyn−3
, n ∈ N0, (2.59)

which is an analogue of the system (2.45). By interchanging variables yn, zn, xn, d, e, f , a, b, instead of xn, yn, zn,
b, c, d, e, f , respectively, the system in (2.45) is transformed into (2.59). So, by interchanging v̂n instead of ûn the
formulas in (2.49), it is transformed into the following formula

v̂4n+ĩ = v̂̃i, (2.60)

where n ∈ N0 and ĩ = −2, 1. From (2.35), (2.52) and (2.60) we have

x12m+4j+i = x4j+i

m∏
k=1

ŝ12k+4j+iŵ12k+4j+i−1v̂12k+4j+i−2ŝ12k+4j+i−3

×ŵ12k+4j+i−4v̂12k+4j+i−5ŝ12k+4j+i−6ŵ12k+4j+i−7 (2.61)

×v̂12k+4j+i−8ŝ12k+4j+i−9ŵ12k+4j+i−10v̂12k+4j+i−11,

y12m+4j+i = y4j+i

m∏
k=1

v̂12k+4j+iŝ12k+4j+i−1ŵ12k+4j+i−2v̂12k+4j+i−3

×ŝ12k+4j+i−4ŵ12k+4j+i−5v̂12k+4j+i−6ŝ12k+4j+i−7 (2.62)

×ŵ12k+4j+i−8v̂12k+4j+i−9ŝ12k+4j+i−10ŵ12k+4j+i−11,
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z12m+4j+i = z4j+i

m∏
k=1

ŵ12k+4j+iv̂12k+4j+i−1ŝ12k+4j+i−2ŵ12k+4j+i−3

×v̂12k+4j+i−4ŝ12k+4j+i−5ŵ12k+4j+i−6v̂12k+4j+i−7 (2.63)

×ŝ12k+4j+i−8ŵ12k+4j+i−9v̂12k+4j+i−10ŝ12k+4j+i−11,

where m ∈ N0, j = −1, 1 and i = 1, 4.
By applying (2.35), (2.52), (2.60), in (2.61)-(2.63) after some basic calculation, the solutions in explicit form of system
(2.59) can be found.

2.1.8 Case e = 0, abcdf ̸= 0.

In this case, system (1.21) can be written in the form

xn =
zn−1zn−3

bxn−2 + azn−3
, yn =

xn−1xn−3

dyn−2 + cxn−3
, zn =

yn−1yn−3

fzn−2
, n ∈ N0, (2.64)

which is an analogue of the system (2.59). By interchanging variables yn, zn, xn, c, d, f , a, b, instead of xn, yn, zn,
a, b, d, e, f , respectively, the system in (2.59) is transformed into (2.64). So, by interchanging ŵn instead of v̂n the
formulas in (2.60), it is transformed into the following formula

ŵ4n+ĩ = ŵĩ, (2.65)

where n ∈ N0 and ĩ = −2, 1. From (2.35), (2.51) and (2.65) we have

x12m+4j+i = x4j+i

m∏
k=1

ŝ12k+4j+iŵ12k+4j+i−1v̂12k+4j+i−2ŝ12k+4j+i−3

×ŵ12k+4j+i−4v̂12k+4j+i−5ŝ12k+4j+i−6ŵ12k+4j+i−7 (2.66)

×v̂12k+4j+i−8ŝ12k+4j+i−9ŵ12k+4j+i−10v̂12k+4j+i−11,

y12m+4j+i = y4j+i

m∏
k=1

v̂12k+4j+iŝ12k+4j+i−1ŵ12k+4j+i−2v̂12k+4j+i−3

×ŝ12k+4j+i−4ŵ12k+4j+i−5v̂12k+4j+i−6ŝ12k+4j+i−7 (2.67)

×ŵ12k+4j+i−8v̂12k+4j+i−9ŝ12k+4j+i−10ŵ12k+4j+i−11,

z12m+4j+i = z4j+i

m∏
k=1

ŵ12k+4j+iv̂12k+4j+i−1ŝ12k+4j+i−2ŵ12k+4j+i−3

×v̂12k+4j+i−4ŝ12k+4j+i−5ŵ12k+4j+i−6v̂12k+4j+i−7 (2.68)

×ŝ12k+4j+i−8ŵ12k+4j+i−9v̂12k+4j+i−10ŝ12k+4j+i−11,

where m ∈ N0, j = −1, 1 and i = 1, 4.
By applying (2.35), (2.51), (2.65), in (2.66)-(2.68) after some basic calculation, the solutions in explicit form of system
(2.64) can be found.

2.1.9 Case a = c = 0, bdef ̸= 0.

In this case, system (1.21) reduces to the following system

xn =
zn−1zn−3

bxn−2
, yn =

xn−1xn−3

dyn−2
, zn =

yn−1yn−3

fzn−2 + eyn−3
, n ∈ N0. (2.69)

System (2.69) can be written in the form

xn

zn−1
=

1

bxn−2

zn−3

,
yn

xn−1
=

1

d yn−2

xn−3

,
zn

yn−1
=

1

f zn−2

yn−3
+ e

, n ∈ N0.
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Next, by employing the change of variables

ũn =
xn

zn−1
, ṽn =

yn
xn−1

, w̃n =
zn

yn−1
, n ≥ −2, (2.70)

and transform (2.70) into the following equations

ũn =
1

bũn−2
= ũn−4, n ≥ 2, ṽn =

1

dṽn−2
= ṽn−4, n ≥ 2, w̃n =

1

fw̃n−2 + e
, n ∈ N0, (2.71)

which means that (ũn)n≥−2, (ṽn)n≥−2 are four-periodic, that is,

ũ4n+ĩ = ũĩ, ṽ4n+ĩ = ṽ̃i, (2.72)

where n ∈ N0 and ĩ = −2, 1 and the third equation in (2.71) is equation with interlacing indices of order two. Hence,
the sequence

w̃(l)
m =

1

fw̃
(l)
m−1 + e

, m ∈ N0, (2.73)

for l ∈ {0, 1}. From equalities in (2.27), the solution of difference equation in (2.73)

w̃2m+l =


e
f

(
λ3

fw̃l−2+e

e −R2

)
λm+1
3 −

(
λ4

fw̃l−2+e

e −R2

)
λm+1
4(

λ3
fw̃l−2+e

e −R2

)
λm
3 −

(
λ4

fw̃l−2+e

e −R2

)
λm
4

− e
f , if R2 ̸= 1

4 ,

e
f

2
fw̃l−2+e

e +
(
2

fw̃l−2+e

e −1
)
(m+1)

4
fw̃l−2+e

e +
(
4

fw̃l−2+e

e −2
)
m

− e
f , if R2 = 1

4 ,

m ∈ N0, (2.74)

for l ∈ {0, 1}, where λ3 = 1+
√
1−4R2

2 , λ4 = 1−
√
1−4R2

2 and R2 = −f
e2 .

From (2.70), we get

xn = ũnw̃n−1ṽn−2ũn−3w̃n−4ṽn−5ũn−6w̃n−7ṽn−8ũn−9w̃n−10ṽn−11xn−12, n ≥ 9, (2.75)

yn = ṽnũn−1w̃n−2ṽn−3ũn−4w̃n−5ṽn−6ũn−7w̃n−8ṽn−9ũn−10w̃n−11yn−12, n ≥ 9, (2.76)

zn = w̃nṽn−1ũn−2w̃n−3ṽn−4ũn−5w̃n−6ṽn−7ũn−8w̃n−9ṽn−10ũn−11zn−12, n ≥ 9. (2.77)

From (2.75)-(2.77) we have

x12m+4j+i = x4j+i−12

m∏
k=0

ũ12k+4j+iw̃12k+4j+i−1ṽ12k+4j+i−2ũ12k+4j+i−3

×w̃12k+4j+i−4ṽ12k+4j+i−5ũ12k+4j+i−6w̃12k+4j+i−7 (2.78)

×ṽ12k+4j+i−8ũ12k+4j+i−9w̃12k+4j+i−10ṽ12k+4j+i−11,

y12m+4j+i = y4j+i−12

m∏
k=0

ṽ12k+4j+iũ12k+4j+i−1w̃12k+4j+i−2ṽ12k+4j+i−3

×ũ12k+4j+i−4w̃12k+4j+i−5ṽ12k+4j+i−6ũ12k+4j+i−7 (2.79)

×w̃12k+4j+i−8ṽ12k+4j+i−9ũ12k+4j+i−10w̃12k+4j+i−11,

z12m+4j+i = z4j+i−12

m∏
k=0

w̃12k+4j+iṽ12k+4j+i−1ũ12k+4j+i−2w̃12k+4j+i−3

×ṽ12k+4j+i−4ũ12k+4j+i−5w̃12k+4j+i−6ṽ12k+4j+i−7 (2.80)

×ũ12k+4j+i−8w̃12k+4j+i−9ṽ12k+4j+i−10ũ12k+4j+i−11,

where m ∈ N0, j ∈ {2, 3, 4} and i = 1, 4.
By applying (2.72), (2.74), in (2.78)-(2.80) after some basic calculation, the solutions in explicit form of system (2.69)
can be found.
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2.1.10 Case c = e = 0, abdf ̸= 0.

In this case, system (1.21) is expressed as

xn =
zn−1zn−3

bxn−2 + azn−3
, yn =

xn−1xn−3

dyn−2
, zn =

yn−1yn−3

fzn−2
, n ∈ N0, (2.81)

which is an analogue of the system (2.69). By interchanging variables yn, zn, xn, d, f , a, b, instead of xn, yn, zn, b, d,
e, f , respectively, the system in (2.69) is transformed into (2.81). So, by interchanging ṽn, w̃n, ũn instead of ũn, ṽn,
w̃n the formulas in (2.72),(2.74), they are transformed into the following formulas

ṽ4n+ĩ = ṽ̃i, w̃4n+ĩ = w̃ĩ, (2.82)

where n ∈ N0 and ĩ = −2, 1 and

ũ2m+l =


a
b

(
λ5

bũl−2+a

a −R3

)
λm+1
5 −

(
λ6

bũl−2+a

a −R3

)
λm+1
6(

λ5
bũl−2+a

a −R3

)
λm
5 −

(
λ6

bũl−2+a

a −R3

)
λm
6

− a
b , if R3 ̸= 1

4 ,

a
b

2
bũl−2+a

a +
(
2

bũl−2+a

a −1
)
(m+1)

4
bũl−2+a

a +
(
4

bũl−2+a

a −2
)
m

− a
b , if R3 = 1

4 ,

m ∈ N0, (2.83)

for l ∈ {0, 1}, where λ5 = 1+
√
1−4R3

2 , λ6 = 1−
√
1−4R3

2 and R3 = −b
a2 .

Putting (2.82), (2.83), in (2.78)-(2.80) after some basic calculation, we get solutions of system (2.81).

2.1.11 Case a = e = 0, bcdf ̸= 0.

In this case, system (1.21) can be written in the form

xn =
zn−1zn−3

bxn−2
, yn =

xn−1xn−3

dyn−2 + czn−3
, zn =

yn−1yn−3

fzn−2
, n ∈ N0, (2.84)

which is an analogue of the system (2.81). By interchanging variables yn, zn, xn, c, d, f , b, instead of xn, yn, zn, a, b,
d, f , respectively, system in (2.81) is transformed into (2.84). So, by interchanging ṽn, w̃n, ũn instead of ũn, ṽn, w̃n

the formulas in (2.82)-(2.83), they are transformed into the following formulas

w̃4n+ĩ = w̃ĩ, ũ4n+ĩ = ũĩ, (2.85)

where n ∈ N0 and ĩ = −2, 1 and

ṽ2m+l =


c
d

(
λ1

dṽl−2+c

c −R1

)
λm+1
1 −

(
λ2

dṽl−2+c

c −R1

)
λm+1
2(

λ1
dṽl−2+c

c −R1

)
λm
1 −

(
λ2

dṽl−2+c

c −R1

)
λm
2

− c
d , if R1 ̸= 1

4 ,

c
d

2
dṽj−2+c

c +
(
2

dṽj−2+c

c −1
)
(m+1)

4
dṽj−2+c

c +
(
4

dṽj−2+c

c −2
)
m

− c
d , if R1 = 1

4 ,

m ∈ N0, (2.86)

for l ∈ {0, 1}, where λ1 = 1+
√
1−4R1

2 , λ2 = 1−
√
1−4R1

2 and R1 = −d
c2 .

Putting (2.85), (2.86), in (2.78)-(2.80) after some basic calculation, we get solutions of system (2.84).

2.1.12 Case b = d = 0, acef ̸= 0.

In this case, system (1.21) becomes

xn =
zn−1

a
, yn =

xn−1

c
, zn =

yn−1yn−3

fzn−2 + eyn−3
, n ∈ N0. (2.87)

Employing the first equation in system (2.87) in the second equation in system (2.87), the second equation in system
(2.87) in the third equation in system (2.87), we get

xn =
zn−1

a
, n ∈ N0, yn =

zn−2

ac
, n ≥ 1, zn =

zn−3zn−5

a2c2fzn−2 + acezn−5
, n ≥ 4. (2.88)

We consider the following equation

zn =
zn−3zn−5

a2c2fzn−2 + acezn−5
, n ≥ 4. (2.89)
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The equation (2.89) can be written in the form

zn
zn−3

=
1

a2c2f zn−2

zn−5
+ ace

, n ≥ 4. (2.90)

Now, we may use the change of variables
zn

zn−3
= ẑn, n ≥ 2, (2.91)

and transform equation (2.90) into the following equation

ẑn =
1

a2c2fẑn−2 + ace
, n ≥ 4. (2.92)

Equation (2.92) is equation with interlacing indices of order two. Hence, for m ∈ N0, the sequence

ẑ(i)m = ẑ2m+i, i ∈ {2, 3},

is solution to the following difference equation

ẑ(i)m =
1

a2c2fẑ
(i)
m−1 + ace

, (2.93)

for m ∈ N, i ∈ {2, 3}. From equalities in (1.17), the solution of difference equation in (2.93)

ẑ2m+i =


e

acf

(
λ3

acfẑi+e

e −R2

)
λm
3 −

(
λ4

acfẑi+e

e −R2

)
λm
4(

λ3
acfẑi+e

e −R2

)
λm−1
3 −

(
λ4

acfẑi+e

e −R2

)
λm−1
4

− e
acf , if R2 ̸= 1

4 ,

e
acf

1+
(
2

acfẑi+e

e −1
)
(m+1)

2+
(
4

acfẑi+e

e −2
)
m

− e
acf , if R2 = 1

4 ,

m ∈ N0, (2.94)

for i ∈ {2, 3}, where λ3 = 1+
√
1−4R2

2 , λ4 = 1−
√
1−4R2

2 and R2 = −f
e2 . From (2.91), we have that

zn = ẑnẑn−3zn−6, n ≥ 5. (2.95)

From the first equation in system (2.88), the second equation in system (2.88), (2.94) and(2.95), we have

x6m+2j+ĩ+1 =
1

a
z2j+ĩ−6

m∏
k=0

ẑ6k+2j+ĩẑ6k+2j+ĩ−3, (2.96)

y6m+2j+ĩ+2 =
1

ac
z2j+ĩ−6

m∏
k=0

ẑ6k+2j+ĩẑ6k+2j+ĩ−3, (2.97)

z6m+2j+ĩ = z2j+ĩ−6

m∏
k=0

ẑ6k+2j+ĩẑ6k+2j+ĩ−3, (2.98)

where m ∈ N0, j ∈ {1, 2, 3} and ĩ ∈ {3, 4}.
By applying (2.94) in (2.96)-(2.98), after some basic calculation, the solutions in explicit form of system (2.87) can be
found.

2.1.13 Case d = f = 0, abce ̸= 0.

In this case, system (1.21) reduces to the following system

xn =
zn−1zn−3

bxn−2 + azn−3
, yn =

xn−1

c
, zn =

yn−1

e
, n ∈ N0. (2.99)

which is an analogue of system (2.87). By interchanging variables yn, zn, xn, c, e, a, b, instead of xn, yn, zn, a, c, e,
f , respectively, system in (2.87) is transformed into (2.99). So, by interchanging x̃2m+i instead of z̃2m+i the formulas
in (2.91) and (2.94), they are transformed into the following formulas

xn

xn−3
= x̂n, n ≥ 2, (2.100)
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and

x̂2m+i =


a
ceb

(
λ5

cebx̂i+a

a −R3

)
λm
5 −

(
λ6

cebx̂i+a

a −R3

)
λm
6(

λ5
cebx̂i+a

a −R3

)
λm−1
5

(
λ6

cebx̂i+a

a −R3

)
λm−1
6

− a
ceb , if R3 ̸= 1

4 ,

a
ceb

1+
(
2

cebx̂i+a

a −1
)
(m+1)

2+
(
4

cebx̂i+a

a −2
)
m

− a
ceb , if R3 = 1

4 ,

m ∈ N0, (2.101)

for i ∈ {2, 3}, where λ5 = 1+
√
1−4R3

2 , λ6 = 1−
√
1−4R3

2 and R3 = −b
a2 . From (2.100), we have that

xn = x̂nx̂n−3xn−6, n ≥ 5. (2.102)

From the second equation in system (2.99), the third equation in system (2.99), (2.101) and(2.102), we have

x6m+2j+ĩ = x2j+ĩ−6

m∏
k=0

x̂6k+2j+ĩx̂6k+2j+ĩ−3, (2.103)

y6m+2j+ĩ+1 =
1

c
x2j+ĩ−6

m∏
k=0

x̂6k+2j+ĩx̂6k+2j+ĩ−3, (2.104)

z6m+2j+ĩ+2 =
1

ce
x2j+ĩ−6

m∏
k=0

x̂6k+2j+ĩx̂6k+2j+ĩ−3, (2.105)

where m ∈ N0, j ∈ {1, 2, 3} and ĩ ∈ {3, 4}.
Putting (2.101) in (2.103)-(2.105) after some basic calculation, we get solutions of system (2.99).

2.1.14 Case b = f = 0, acde ̸= 0.

In this case, we obtain the following system

xn =
zn−1

a
, yn =

xn−1xn−3

dyn−2 + cxn−3
, zn =

yn−1

e
, n ∈ N0. (2.106)

which is an analogue of system (2.99). By interchanging variables yn, zn, xn, c, d, e, a, instead of xn, yn, zn, a, b, c,
e, respectively, system in (2.99) is transformed into (2.106). So, by interchanging ỹ2m+i instead of x̃2m+i the formulas
in (2.100) and (2.101), they are transformed into the following formulas

yn
yn−3

= ŷn, n ≥ 2, (2.107)

and

ŷ2m+i =


c

ade

(
λ1

adeŷi+c

c −R1

)
λm
1 −

(
λ2

adeŷi+c

c −R1

)
λm
2(

λ1
adeŷi+c

c −R1

)
λm−1
1

(
λ2

adeŷi+c

c −R1

)
λm−1
2

− c
ade , if R1 ̸= 1

4 ,

c
ade

1+
(
2

adeŷi+c

c −1
)
(m+1)

2+
(
4

adeŷi+c

c −2
)
m

− c
ade , if R1 = 1

4 ,

m ∈ N0, (2.108)

for i ∈ {2, 3}, where λ1 = 1+
√
1−4R1

2 , λ2 = 1−
√
1−4R1

2 and R1 = −d
c2 . From (2.107), we have that

yn = ŷnŷn−3yn−6, n ≥ 5. (2.109)

From the first equation in system (2.106), the third equation in system (2.106), (2.108) and(2.109), we have

x6m+2j+ĩ+2 =
1

ae
y2j+ĩ−6

m∏
k=0

ŷ6k+2j+ĩŷ6k+2j+ĩ−3, (2.110)

y6m+2j+ĩ = y2j+ĩ−6

m∏
k=0

ŷ6k+2j+ĩŷ6k+2j+ĩ−3, (2.111)

z6m+2j+ĩ+1 =
1

e
y2j+ĩ−6

m∏
k=0

ŷ6k+2j+ĩŷ6k+2j+ĩ−3, (2.112)

where m ∈ N0, j ∈ {1, 2, 3} and ĩ ∈ {3, 4}.
Putting (2.108) in (2.110)-(2.112) after some basic calculation, we get solutions of system (2.106).
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2.1.15 Case abcdef ̸= 0.

In this case, system (1.21) can be written in the form

zn−1

xn
=

bxn−2 + azn−3

zn−3
,
xn−1

yn
=

dyn−2 + cxn−3

xn−3
,
yn−1

zn
=

fzn−2 + eyn−3

yn−3
, (2.113)

for n ∈ N0. Next, by employing the change of variables

un =
zn−1

xn
, vn =

xn−1

yn
, wn =

yn−1

zn
, n ≥ −2, (2.114)

system (2.113) is transformed into the following system

un =
aun−2 + b

un−2
, vn =

cvn−2 + d

vn−2
, wn =

ewn−2 + f

wn−2
, n ∈ N0. (2.115)

Equations in (2.115) are equations with interlacing indices of order two. Hence, the sequences

u(i)
m = u2m+i, v(i)m = v2m+i, w(i)

m = w2m+i, m ≥ −1, i ∈ {0, 1},

are solutions to the following difference equations

u(i)
m =

au
(i)
m−1 + b

u
(i)
m−1

, v(i)m =
cv

(i)
m−1 + d

v
(i)
m−1

, w(i)
m =

ew
(i)
m−1 + f

w
(i)
m−1

, (2.116)

for m ∈ N0, i ∈ {0, 1}. The solutions of difference equations in (2.116)

u
(i)
m−1 =


(
λ̂2−u

(i)
−1

)
λ̂m+1
1 +

(
u
(i)
−1−λ̂1

)
λ̂m+1
2(

λ̂2−u
(i)
−1

)
λ̂m
1 +

(
u
(i)
−1−λ̂1

)
λ̂m
2

, a2 + 4b ̸= 0,(
u
(i)
−1(m+1)−λ̂1m

)
λ̂m
1(

u
(i)
−1m−λ̂1(m−1)

)
λ̂m−1
1

, a2 + 4b = 0,

m ∈ N0,

v
(i)
m−1 =


(
λ̂4−v

(i)
−1

)
λ̂m+1
3 +

(
v
(i)
−1−λ̂3

)
λ̂m+1
4(

λ̂4−v
(i)
−1

)
λ̂m
3 +

(
v
(i)
−1−λ̂3

)
λ̂m
4

, c2 + 4d ̸= 0,(
v
(i)
−1(m+1)−λ̂3m

)
λ̂m
3(

v
(i)
−1m−λ̂3(m−1)

)
λ̂m−1
3

, c2 + 4d = 0,

m ∈ N0,

w
(i)
m−1 =


(
λ̂6−w

(i)
−1

)
λ̂m+1
5 +

(
w

(i)
−1−λ̂5

)
λ̂m+1
6(

λ̂6−w
(i)
−1

)
λ̂m
5 +

(
w

(i)
−1−λ̂5

)
λ̂m
6

, e2 + 4f ̸= 0,(
w

(i)
−1(m+1)−λ̂5m

)
λ̂m
5(

w
(i)
−1m−λ̂5(m−1)

)
λ̂m−1
5

, e2 + 4f = 0,

m ∈ N0,

for i ∈ {0, 1}, where λ̂1 = a+
√
a2+4b
2 , λ̂2 = a−

√
a2+4b
2 , λ̂3 = c+

√
c2+4d
2 , λ̂4 = c−

√
c2+4d
2 , λ̂5 =

e+
√

e2+4f

2 and λ̂6 =
e−

√
e2+4f

2 . and consequently

u2(m−1)+i =

(
λ̂2 − zi−3

xi−2

)
λ̂m+1
1 +

(
zi−3

xi−2
− λ̂1

)
λ̂m+1
2(

λ̂2 − zi−3

xi−2

)
λ̂m
1 +

(
zi−3

xi−2
− λ̂1

)
λ̂m
2

, m ∈ N0, (2.117)

when a2 + 4b ̸= 0, for i ∈ {0, 1},

v2(m−1)+i =

(
λ̂4 − xi−3

yi−2

)
λ̂m+1
3 +

(
xi−3

yi−2
− λ̂3

)
λ̂m+1
4(

λ̂4 − xi−3

yi−2

)
λ̂m
3 +

(
xi−3

yi−2
− λ̂3

)
λ̂m
4

, m ∈ N0, (2.118)

when c2 + 4d ̸= 0, for i ∈ {0, 1},

w2(m−1)+i =

(
λ̂6 − yi−3

zi−2

)
λ̂m+1
5 +

(
yi−3

zi−2
− λ̂5

)
λ̂m+1
6(

λ̂6 − yi−3

zi−2

)
λ̂m
5 +

(
yi−3

zi−2
− λ̂5

)
λ̂m
6

, m ∈ N0, (2.119)
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when e2 + 4f ̸= 0, for i ∈ {0, 1} and

u2(m−1)+i =

(
zi−3

xi−2
(m+ 1)− λ̂1m

)
λ̂m
1(

zi−3

xi−2
m− λ̂1 (m− 1)

)
λ̂m−1
1

, m ∈ N0, (2.120)

when a2 + 4b = 0, for i ∈ {0, 1},

v2(m−1)+i =

(
xi−3

yi−2
(m+ 1)− λ̂3m

)
λ̂m
3(

xi−3

yi−2
m− λ̂3 (m− 1)

)
λ̂m−1
3

, m ∈ N0, (2.121)

when c2 + 4d = 0, for i ∈ {0, 1},

w2(m−1)+i =

(
yi−3

zi−2
(m+ 1)− λ̂5m

)
λ̂m
5(

yi−3

zi−2
m− λ̂5 (m− 1)

)
λ̂m−1
5

, m ∈ N0, (2.122)

when e2 + 4f = 0, for i ∈ {0, 1}.
From (2.114), we have that

xn =
xn−6

unwn−1vn−2un−3wn−4vn−5
, n ≥ 3, (2.123)

yn =
yn−6

vnun−1wn−2vn−3un−4wn−5
, n ≥ 3, (2.124)

zn =
zn−6

wnvn−1un−2wn−3vn−4un−5
, n ≥ 3. (2.125)

From (2.123)-(2.125), we have

x6m+l =
x6(m−1)+l

u6m+lw6m+l−1v6m+l−2u6m+l−3w6m+l−4v6m+l−5
,

y6m+l =
y6(m−1)+l

v6m+lu6m+l−1w6m+l−2v6m+l−3u6m+l−4w6m+l−5
,

and
z6m+l =

z6(m−1)+l

w6m+lv6m+l−1u6m+l−2w6m+l−3v6m+l−4u6m+l−5
,

where m ∈ N and l = −3, 2, from which it follows that

x6m+2j+i−1 =
x2j+i−1∏m

k=1 u6k+2j+i−1w6k+2j+i−2v6k+2j+i−3u6k+2j+i−4w6k+2j+i−5v6k+2j+i−6
, (2.126)

y6m+2j+i−1 =
y2j+i−1∏m

k=1 v6k+2j+i−1u6k+2j+i−2w6k+2j+i−3v6k+2j+i−4u6k+2j+i−5w6k+2j+i−6
, (2.127)

z6m+2j+i−1 =
z2j+i−1∏m

k=1 w6k+2j+i−1v6k+2j+i−2u6k+2j+i−3w6k+2j+i−4v6k+2j+i−5u6k+2j+i−6
, (2.128)
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where m ∈ N0, j ∈ {−1, 0, 1} and i ∈ {0, 1}.
By applying (2.117)-(2.119) in (2.126)-(2.128), after some basic calculation, we obtain

x6m+2j+i−1 = x2j+i−1

( m∏
k=1

(
λ̂2 −

zi2−3

xi2−2

)
λ̂3k+j+i+1
1 +

(
zi2−3

xi2−2
− λ̂1

)
λ̂3k+j+i+1
2(

λ̂2 −
zi2−3

xi2−2

)
λ̂3k+j+i
1 +

(
zi2−3

xi2−2
− λ̂1

)
λ̂3k+j+i
2

×

(
λ̂6 − yi−3

zi−2

)
λ̂3k+j+1
5 +

(
yi−3

zi−2
− λ̂5

)
λ̂3k+j+1
6(

λ̂6 − yi−3

zi−2

)
λ̂3k+j
5 +

(
yi−3

zi−2
− λ̂5

)
λ̂3k+j
6

×

(
λ̂4 −

xi2−3

yi2−2

)
λ̂3k+j+i
3 +

(
xi2−3

yi2−2
− λ̂3

)
λ̂3k+j+i
4(

λ̂4 −
xi2−3

yi2−2

)
λ̂3k+j+i−1
3 +

(
xi2−3

yi2−2
− λ̂3

)
λ̂3k+j+i−1
4

(2.129)

×

(
λ̂2 − zi−3

xi−2

)
λ̂3k+j
1 +

(
zi−3

xi−2
− λ̂1

)
λ̂3k+j
2(

λ̂2 − zi−3

xi−2

)
λ̂3k+j−1
1 +

(
zi−3

xi−2
− λ̂1

)
λ̂3k+j−1
2

×

(
λ̂6 −

yi2−3

zi2−2

)
λ̂3k+j+i−1
5 +

(
yi2−3

zi2−2
− λ̂5

)
λ̂3k+j+i−1
6(

λ̂6 −
yi2−3

zi2−2

)
λ̂3k+j+i−2
5 +

(
yi2−3

zi2−2
− λ̂5

)
λ̂3k+j+i−2
6

×

(
λ̂4 − xi−3

yi−2

)
λ̂3k+j−1
3 +

(
xi−3

yi−2
− λ̂3

)
λ̂3k+j−1
4(

λ̂4 − xi−3

yi−2

)
λ̂3k+j−2
3 +

(
xi−3

yi−2
− λ̂3

)
λ̂3k+j−2
4

)−1

,

y6m+2j+i−1 = y2j+i−1

( m∏
k=1

(
λ̂4 −

xi2−3

yi2−2

)
λ̂3k+j+i+1
3 +

(
xi2−3

yi2−2
− λ̂3

)
λ̂3k+j+i+1
4(

λ̂4 −
xi2−3

yi2−2

)
λ̂3k+j+i
3 +

(
xi2−3

yi2−2
− λ̂3

)
λ̂3k+j+i
4

×

(
λ̂2 − zi−3

xi−2

)
λ̂3k+j+1
1 +

(
zi−3

xi−2
− λ̂1

)
λ̂3k+j+1
2(

λ̂2 − zi−3

xi−2

)
λ̂3k+j
1 +

(
zi−3

xi−2
− λ̂1

)
λ̂3k+j
2

×

(
λ̂6 −

yi2−3

zi2−2

)
λ̂3k+j+i
5 +

(
yi2−3

zi2−2
− λ̂5

)
λ̂3k+j+i
6(

λ̂6 −
yi2−3

zi2−2

)
λ̂3k+j+i−1
5 +

(
yi2−3

zi2−2
− λ̂5

)
λ̂3k+j+i−1
6

(2.130)

×

(
λ̂4 − xi−3

yi−2

)
λ̂3k+j
3 +

(
xi−3

yi−2
− λ̂3

)
λ̂3k+j
4(

λ̂4 − xi−3

yi−2

)
λ̂3k+j−1
3 +

(
xi−3

yi−2
− λ̂3

)
λ̂3k+j−1
4

×

(
λ̂2 −

zi2−3

xi2−2

)
λ̂3k+j+i−1
1 +

(
zi2−3

xi2−2
− λ̂1

)
λ̂3k+j+i−1
2(

λ̂2 −
zi2−3

xi2−2

)
λ̂3k+j+i−2
1 +

(
zi2−3

xi2−2
− λ̂1

)
λ̂3k+j+i−2
2

×

(
λ̂6 − yi−3

zi−2

)
λ̂3k+j−1
5 +

(
yi−3

zi−2
− λ̂5

)
λ̂3k+j−1
6(

λ̂6 − yi−3

zi−2

)
λ̂3k+j−2
5 +

(
yi−3

zi−2
− λ̂5

)
λ̂3k+j−2
6

)−1

,
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z6m+2j+i−1 = z2j+i−1

( m∏
k=1

(
λ̂6 −

yi2−3

zi2−2

)
λ̂3k+j+i+1
5 +

(
yi2−3

zi2−2
− λ̂5

)
λ̂3k+j+i+1
6(

λ̂6 −
yi2−3

zi2−2

)
λ̂3k+j+i
5 +

(
yi2−3

zi2−2
− λ̂5

)
λ̂3k+j+i
6

×

(
λ̂4 − xi−3

yi−2

)
λ̂3k+j+1
3 +

(
xi−3

yi−2
− λ̂3

)
λ̂3k+j+1
4(

λ̂4 − xi−3

yi−2

)
λ̂3k+j
3 +

(
xi−3

yi−2
− λ̂3

)
λ̂3k+j
4

×

(
λ̂2 −

zi2−3

xi2−2

)
λ̂3k+j+i
1 +

(
zi2−3

xi2−2
− λ̂1

)
λ̂3k+j+i
2(

λ̂2 −
zi2−3

xi2−2

)
λ̂3k+j+i−1
1 +

(
zi2−3

xi2−2
− λ̂1

)
λ̂3k+j+i−1
2

(2.131)

×

(
λ̂6 − yi−3

zi−2

)
λ̂3k+j
5 +

(
yi−3

zi−2
− λ̂5

)
λ̂3k+j
6(

λ̂6 − yi−3

zi−2

)
λ̂3k+j−1
5 +

(
yi−3

zi−2
− λ̂5

)
λ̂3k+j−1
6

×

(
λ̂4 −

xi2−3

yi2−2

)
λ̂3k+j+i−1
3 +

(
xi2−3

yi2−2
− λ̂3

)
λ̂3k+j+i−1
4(

λ̂4 −
xi2−3

yi2−2

)
λ̂3k+j+i−2
3 +

(
xi2−3

yi2−2
− λ̂3

)
λ̂3k+j+i−2
4

×

(
λ̂2 − zi−3

xi−2

)
λ̂3k+j−1
1 +

(
zi−3

xi−2
− λ̂1

)
λ̂3k+j−1
2(

λ̂2 − zi−3

xi−2

)
λ̂3k+j−2
1 +

(
zi−3

xi−2
− λ̂1

)
λ̂3k+j−2
2

)−1

,

if a2 + 4b ̸= 0, c2 + 4d ̸= 0, e2 + 4f ̸= 0, for m ∈ N0, j ∈ {−1, 0, 1}, i ∈ {0, 1} and

i2 :=

{
1, i+ 1 ≡ 1 (mod2)

0, i+ 1 ≡ 0 (mod2)
. Similarly, by using (2.120)-(2.122) in (2.126)-(2.128), after some basic calculation, we

obtain

x6m+2j+i−1 = x2j+i−1

( m∏
k=1

(
zi2−3

xi2−2
(3k + j + i+ 1)− λ̂1 (3k + j + i)

)
λ̂3k+j+i
1(

zi2−3

xi2−2
(3k + j + i)− λ̂1 (3k + j + i− 1)

)
λ̂3k+j+i−1
1

×

(
yi−3

zi−2
(3k + j + 1)− λ̂5 (3k + j)

)
λ̂3k+j
5(

yi−3

zi−2
(3k + j)− λ̂5 (3k + j − 1)

)
λ̂3k+j−1
5

×

(
xi2−3

yi2−2
(3k + j + i)− λ̂3 (3k + j + i− 1)

)
λ̂3k+j+i−1
3(

xi2−3

yi2−2
(3k + j + i− 1)− λ̂3 (3k + j + i− 2)

)
λ̂3k+j+i−2
3

(2.132)

×

(
zi−3

xi−2
(3k + j)− λ̂1 (3k + j − 1)

)
λ̂3k+j−1
1(

zi−3

xi−2
(3k + j − 1)− λ̂1 (3k + j − 2)

)
λ̂3k+j−2
1

×

(
yi2−3

zi2−2
(3k + j + i− 1)− λ̂5 (3k + j + i− 2)

)
λ̂3k+j+i−2
5(

yi2−3

zi2−2
(3k + j + i− 2)− λ̂5 (3k + j + i− 3)

)
λ̂3k+j+i−3
5

×

(
xi−3

yi−2
(3k + j − 1)− λ̂3 (3k + j − 2)

)
λ̂3k+j−2
3(

xi−3

yi−2
(3k + j − 2)− λ̂3 (3k + j − 3)

)
λ̂3k+j−3
3

)−1

,
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y6m+2j+i−1 = y2j+i−1

( m∏
k=1

(
xi2−3

yi2−2
(3k + j + i+ 1)− λ̂3 (3k + j + i)

)
λ̂3k+j+i
3(

xi2−3

yi2−2
(3k + j + i)− λ̂3 (3k + j + i− 1)

)
λ̂3k+j+i−1
3

×

(
zi−3

xi−2
(3k + j + 1)− λ̂1 (3k + j)

)
λ̂3k+j
1(

zi−3

xi−2
(3k + j)− λ̂1 (3k + j − 1)

)
λ̂3k+j−1
1

×

(
yi2−3

zi2−2
(3k + j + i)− λ̂5 (3k + j + i− 1)

)
λ̂3k+j+i−1
5(

yi2−3

zi2−2
(3k + j + i− 1)− λ̂5 (3k + j + i− 2)

)
λ̂3k+j+i−2
5

(2.133)

×

(
xi−3

yi−2
(3k + j)− λ̂3 (3k + j − 1)

)
λ̂3k+j−1
3(

xi−3

yi−2
(3k + j − 1)− λ̂3 (3k + j − 2)

)
λ̂3k+j−2
3

×

(
zi2−3

xi2−2
(3k + j + i− 1)− λ̂1 (3k + j + i− 2)

)
λ̂3k+j+i−2
1(

zi2−3

xi2−2
(3k + j + i− 2)− λ̂1 (3k + j + i− 3)

)
λ̂3k+j+i−3
1

×

(
yi−3

zi−2
(3k + j − 1)− λ̂5 (3k + j − 2)

)
λ̂3k+j−2
5(

yi−3

zi−2
(3k + j − 2)− λ̂5 (3k + j − 3)

)
λ̂3k+j−3
5

)−1

,

z6m+2j+i−1 = z2j+i−1

( m∏
k=1

(
yi2−3

zi2−2
(3k + j + i+ 1)− λ̂5 (3k + j + i)

)
λ̂3k+j+i
5(

yi2−3

zi2−2
(3k + j + i)− λ̂5 (3k + j + i− 1)

)
λ̂3k+j+i−1
5

×

(
xi−3

yi−2
(3k + j + 1)− λ̂3 (3k + j)

)
λ̂3k+j
3(

xi−3

yi−2
(3k + j)− λ̂3 (3k + j − 1)

)
λ̂3k+j−1
3

×

(
zi2−3

xi2−2
(3k + j + i)− λ̂1 (3k + j + i− 1)

)
λ̂3k+j+i−1
1(

zi2−3

xi2−2
(3k + j + i− 1)− λ̂1 (3k + j + i− 2)

)
λ̂3k+j+i−2
1

(2.134)

×

(
yi−3

zi−2
(3k + j)− λ̂5 (3k + j − 1)

)
λ̂3k+j−1
5(

yi−3

zi−2
(3k + j − 1)− λ̂5 (3k + j − 2)

)
λ̂3k+j−2
5

×

(
xi2−3

yi2−2
(3k + j + i− 1)− λ̂3 (3k + j + i− 2)

)
λ̂3k+j+i−2
3(

xi2−3

yi2−2
(3k + j + i− 2)− λ̂3 (3k + j + i− 3)

)
λ̂3k+j+i−3
3

×

(
zi−3

xi−2
(3k + j − 1)− λ̂1 (3k + j − 2)

)
λ̂3k+j−2
1(

zi−3

xi−2
(3k + j − 2)− λ̂1 (3k + j − 3)

)
λ̂3k+j−3
1

)−1

,

if a2 + 4b = 0, c2 + 4d = 0, e2 + 4f = 0, for m ∈ N0, j ∈ {−1, 0, 1}, i ∈ {0, 1} and

i2 :=

{
1, i+ 1 ≡ 1 (mod2)

0, i+ 1 ≡ 0 (mod2)
. We say that the following result holds from the above calculations.

Theorem 2.1. Suppose that a, b, c, d, e, f and the initial values x−i, y−i, i ∈ {1, 2, 3}, are real numbers. Then, the
following statements hold.

a) If b = d = f = 0 and ace ̸= 0, then the general solutions of system (1.21) is given by formulas in (2.5).

b) If a = c = e = 0 and bdf ̸= 0, then the general solutions of system (1.21) is given by formulas in (2.19).

c) If b = 0 and acdef ̸= 0, then the general solutions of system (1.21) is given by formulas in (2.30)-(2.32).

d) If d = 0 and abcef ̸= 0, then the general solutions of system (1.21) is given by formulas in (2.36)-(2.38).

e) If f = 0 and abcde ̸= 0, then the general solutions of system (1.21) is given by formulas in (2.42)-(2.44).
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f) If a = 0 and bcdef ̸= 0, then the general solutions of system (1.21) is given by formulas in (2.56)-(2.58).

g) If c = 0 and abdef ̸= 0, then the general solutions of system (1.21) is given by formulas in (2.61)-(2.63).

h) If e = 0 and abcdf ̸= 0, then the general solutions of system (1.21) is given by formulas in (2.66)-(2.68).

i) If a = c = 0 and bdef ̸= 0, then the general solutions of system (1.21) is given by formulas in (2.78)-(2.80).

j) If c = e = 0 and abdf ̸= 0, then the general solutions of system (1.21) is given by formulas in (2.78)-(2.80).

k) If a = e = 0 and bcdf ̸= 0, then the general solutions of system (1.21) is given by formulas in (2.78)-(2.80).

l) If b = d = 0 and acef ̸= 0, then the general solutions of system (1.21) is given by formulas in (2.96)-(2.98).

m) If d = f = 0 and abce ̸= 0, then the general solutions of system (1.21) is given by formulas in (2.103)-(2.105).

n) If b = f = 0 and acde ̸= 0, then the general solutions of system (1.21) is given by formulas in (2.110)-(2.112).

o) If abcdef ̸= 0, a2 + 4b ̸= 0, c2 + 4d ̸= 0 and e2 + 4f ̸= 0, then the general solutions of system (1.21) is given by
formulas in (2.129)-(2.131).

p) If abcdef ̸= 0, a2 + 4b = 0, c2 + 4d = 0 and e2 + 4f = 0, then the general solutions of system (1.21) is given by
formulas in (2.132)-(2.134).

By the following theorem, we characterize the forbidden set of the initial values for system (1.21).

Theorem 2.2. The forbidden set of the initial values for system (1.21) is given by the set

F =
⋃

m∈N0

1⋃
i=0

{ zi−3

xi−2
= f̂−m−1

(
− b

a

)
,

xi−3

yi−2
= g−m−1

(
−d

c

)
,

yi−3

zi−2
= h−m−1

(
−f

e

)}⋃ 3⋃
j=1

{(
x⃗−(3,1), y⃗−(3,1), z⃗−(3,1)

)
∈ R9 : (2.135)

x−j = 0 or y−j = 0 or z−j = 0
}
,

where x⃗−(3,1) = (x−3, x−2, x−1), y⃗−(3,1) = (y−3, y−2, y−1), z⃗−(3,1) = (z−3, z−2, z−1).

Proof . At the beginning of Section 2, we have acquired that the set

3⋃
j=1

{(
x⃗−(3,1), y⃗−(3,1), z⃗−(3,1)

)
∈ R9 : x−j = 0 or y−j = 0 or z−j = 0

}
,

where x⃗−(3,1) = (x−3, x−2, x−1), y⃗−(3,1) = (y−3, y−2, y−1), z⃗−(3,1) = (z−3, z−2, z−1), belongs to the forbidden set of the
initial values for system (1.21). If x−j ̸= 0, y−j ̸= 0 and z−j ̸= 0, j ∈ {1, 2, 3}, then system (1.21) is undefined if and
only if

bxn−2 + azn−3 = 0, dyn−2 + cxn−3 = 0, fzn−2 + eyn−3 = 0,

for n ∈ N0. By taking into account the change of variables (2.114), we can write the corresponding conditions

un−2 = − b

a
, vn−2 = −d

c
and wn−2 = −f

e
, n ∈ N0. (2.136)

Thus, we can define the forbidden set of the initial values for system (1.21) by using equations in (2.115). We know
that following statements

u2m+i = f̂m+1 (ui−2) (2.137)

v2m+i = gm+1 (vi−2) (2.138)

w2m+i = hm+1 (wi−2) (2.139)

where m ∈ N0, i ∈ {0, 1}, f̂ (x) = ax+b
x , g (x) = cx+d

x and h (x) = ex+f
x , characterize the solutions of equations in

(2.115). By using the conditions (2.136) and the statements (2.137)-(2.139), we get

ui−2 = f̂−m−1

(
− b

a

)
, (2.140)
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vi−2 = g−m−1

(
−d

c

)
, (2.141)

wi−2 = h−m−1

(
−f

e

)
, (2.142)

where m ∈ N0, i ∈ {0, 1} and abcdef ̸= 0. This means that if one of the conditions in (2.140)-(2.142) holds, then
m−th iteration or (m+ 1)−th iteration in system (1.21) cannot be calculated. Consequently, desired result follows
from (2.135). □

3 An application

In this section, we will derive the solution forms of system (1.21) with a = b = f = 1, c = 3, d = −1, e = 2 that
is, we get the following system

xn =
zn−1zn−3

xn−2 + zn−3
, yn =

xn−1xn−3

−yn−2 + 3xn−3
, zn =

yn−1yn−3

zn−2 + 2yn−3
, n ∈ N0. (3.1)

From (2.116), we get

u(i)
m =

u
(i)
m−1 + 1

u
(i)
m−1

, v(i)m =
3v

(i)
m−1 − 1

v
(i)
m−1

, w(i)
m =

2w
(i)
m−1 + 1

w
(i)
m−1

, (3.2)

for m ∈ N0, i ∈ {0, 1}. It is well-known that the substitutions

u
(i)
m−1 =

rm
rm−1

, v
(i)
m−1 =

sm
sm−1

, w
(i)
m−1 =

tm
tm−1

, m ∈ N0,

transforms equations in (3.2) into the following second order linear difference equations,

rm+1 − rm − rm−1 = 0, m ∈ N0, (3.3)

sm+1 − 3sm + sm−1 = 0, m ∈ N0, (3.4)

tm+1 − 2tm − tm−1 = 0, m ∈ N0. (3.5)

It can be clearly obtained from the roots λ1 and λ2 of characteristic equation of (3.3) as the form λ2 − λ − 1 = 0,

where λ1 = 1+
√
5

2 = α and λ2 = 1−
√
5

2 = β. On the other hand, taking into account αβ = −1 and the Binet Formula

for Fibonacci numbers, which is defined by Fm = αm−βm

α−β , F0 = 0, F1 = 1, then we can rewrite the equation (2.117)

u2(m−1)+i =
−xi−2α

m − zi−3α
m+1 + zi−3β

m+1 + xi−2β
m

−xi−2αm−1 − zi−3αm + zi−3βm + xi−2βm−1

=
xi−2Fm + zi−3Fm+1

xi−2Fm−1 + zi−3Fm
, (3.6)

where m ∈ N0, i ∈ {0, 1} and Fm is mth Fibonacci number.
It can be clearly obtained from the roots λ3 and λ4 of characteristic equation of (3.4) as the form λ2 − 3λ + 1 = 0,

where λ3 = 3+
√
5

2 =
(

1+
√
5

2

)2

= α2 and λ2 = 3−
√
5

2 =
(

1−
√
5

2

)2

= β2. On the other hand, taking into account

αβ = −1, α2β2 = 1 and the Binet Formula for Fibonacci numbers, then we can rewrite the equation (2.118)

v2(m−1)+i =
yi−2α

2m − xi−3α
2m+2 + xi−3β

2m+2 − yi−2β
2m

yi−2α2m−2 − xi−3α2m + xi−3β2m − yi−2β2m−2

=
yi−2F2m − xi−3F2m+2

yi−2F2m−2 − xi−3F2m
. (3.7)

where m ∈ N0, i ∈ {0, 1} and Fm is mth Fibonacci number.
It can be clearly obtained from the roots λ5 and λ6 of characteristic equation of (3.5) as the form λ2 − 2λ − 1 = 0,
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where λ5 = 1+
√
2 = γ and λ6 = 1−

√
2 = δ. On the other hand, taking into account γδ = −1 and the Binet Formula

for Pell numbers, which is defined by Pm = γm−δm

γ−δ , P0 = 0, P1 = 1, then we can rewrite the equation (2.119)

w2(m−1)+i =
−zi−2γ

m − yi−3γ
m+1 + yi−3δ

m+1 + zi−2δ
m

−zi−2γm−1 − yi−3γm + yi−3δm + zi−2δm−1

=
zi−2Pm + yi−3Pm+1

zi−2Pm−1 + yi−3Pm
. (3.8)

where m ∈ N0, i ∈ {0, 1} and Pm is mth Pell number.
By substituting the formulas in (3.6)-(3.8) into (2.126)-(2.128) and changing indices, we have the following results.

Theorem 3.1. Assume that (xn, yn, zn)n≥−3 is a well-defined solution of system (3.1). Then the following results are
true.

x6m+2j+i−1 = x2j+i−1

( m∏
k=1

xi2−2F3k+j+i + zi2−3F3k+j+i+1

xi2−2F3k+j+i−1 + zi2−3F3k+j+i

zi−2P3k+j + yi−3P3k+j+1

zi−2P3k+j−1 + yi−3P3k+j

× yi2−2F6k+2j+2i−2 − xi2−3F6k+2j+2i

yi2−2F6k+2j+2i−4 − xi2−3F6k+2j+2i−2

xi−2F3k+j−1 + zi−3F3k+j

xi−2F3k+j−2 + zi−3F3k+j−1

× zi2−2P3k+j+i−2 + yi2−3P3k+j+i−1

zi2−2P3k+j+i−3 + yi2−3P3k+j+i−2

yi−2F6k+2j−4 − xi−3F6k+2j−2

yi−2F6k+2j−6 − xi−3F6k+2j−4

)−1

,

y6m+2j+i−1 = y2j+i−1

( m∏
k=1

yi2−2F6k+2j+2i − xi2−3F6k+2j+2i+2

yi2−2F6k+2j+2i−2 − xi2−3F6k+2j+2i

xi−2F3k+j + zi−3F3k+j+1

xi−2F3k+j−1 + zi−3F3k+j

× zi2−2P3k+j+i−1 + yi2−3P3k+j+i

zi2−2P3k+j+i−2 + yi2−3P3k+j+i−1

yi−2F6k+2j−2 − xi−3F6k+2j

yi−2F6k+2j−4 − xi−3F6k+2j−2

× xi2−2F3k+j+i−2 + zi2−3F3k+j+i−1

xi2−2F3k+j+i−3 + zi2−3F3k+j+i−2

zi−2P3k+j−2 + yi−3P3k+j−1

zi−2P3k+j−3 + yi−3P3k+j−2

)−1

,

z6m+2j+i−1 = z2j+i−1

( m∏
k=1

zi2−2P3k+j+i + yi2−3P3k+j+i+1

zi2−2P3k+j+i−1 + yi2−3P3k+j+i

yi−2F6k+2j − xi−3F6k+2j+2

yi−2F6k+2j−2 − xi−3F6k+2j

× xi2−2F3k+j+i−1 + zi2−3F3k+j+i

xi2−2F3k+j+i−2 + zi2−3F3k+j+i−1

zi−2P3k+j−1 + yi−3P3k+j

zi−2P3k+j−2 + yi−3P3k+j−1

× yi2−2F6k+2j+2i−4 − xi2−3F6k+2j+2i−2

yi2−2F6k+2j+2i−6 − xi2−3F6k+2j+2i−4

xi−2F3k+j−2 + zi−3F3k+j−1

xi−2F3k+j−3 + zi−3F3k+j−2

)−1

,

for m ∈ N0, j ∈ {−1, 0, 1}, i ∈ {0, 1} and i2 :=

{
1, i+ 1 ≡ 1 (mod2)

0, i+ 1 ≡ 0 (mod2)
.

4 Numerical Examples

To support our theoretical results, we present numerical examples for the solutions of system (1.21) regard to the
different values of a, b, c, d, e and f .

Example 4.1. Consider system (1.21) with the initial values x−3 = 2.3, x−2 = 3.5, x−1 = 1.4, y−3 = 2.25, y−2 = 4.9,
y−1 = 12.9, z−3 = 5.2, z−2 = 8.6, z−1 = 22.7, and the parameters, a = 1.5, b = 0, c = 2, d = 0, e = 1

3 , f = 0 the
solutions are represented as in the following figures.



2634 Kara, Yazlik

0 20 40 60 80 100 120

0

5

10

15

20

n

x
Hn
L,
y
Hn
L,
z
Hn
L

xHnL yHnL zHnL

In this case equations in (2.5) are satisfied. Hence, the solutions of system (1.21) has a periodic solution with
period three.

Example 4.2. Consider system (1.21) with the initial values x−3 = 2, x−2 = 70.6, x−1 = 0.99, y−3 = 25, y−2 = 4,
y−1 = 1.9, z−3 = 0.23, z−2 = 5.3, z−1 = 2.74, and the parameters, a = 0, b = 4.8, c = 0, d = 2.5, e = 0, f = 1

12 the
solutions are represented as in the following figures.
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In this case equations in (2.19) are satisfied. Hence, the solutions of system (1.21) has a periodic solution with
period twelve.

5 Conclusion

In this study, we consider the following three-dimensional system of difference equations

xn =
zn−1zn−3

bxn−2 + azn−3
, yn =

xn−1xn−3

dyn−2 + cxn−3
, zn =

yn−1yn−3

fzn−2 + eyn−3
, n ∈ N0,

where the parameters a, b, c, d, e, f and the initial values x−i, y−i, z−i, i ∈ {1, 2, 3}, are real numbers. We have obtained
solutions of above system in closed form according to the special cases of the parameters. In addition, the forbidden
set of the initial values for aforementioned system is obtained. Finally, an application and numerical examples to
support our results are given.
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We will give the following important open problem for system of difference equations theory researchers.

Open Problem: System (1.21) can extend to the following p−dimensional system of difference equations

x(1)
n =

x
(3)
n−1x

(3)
n−3

b(1)x
(1)
n−2 + a(1)x

(3)
n−3

,

x(2)
n =

x
(4)
n−1x

(4)
n−3

b(2)x
(2)
n−2 + a(2)x

(4)
n−3

,

... (5.1)

x(p−1)
n =

x
(1)
n−1x

(1)
n−3

b(p−1)x
(p−1)
n−2 + a(p−1)x

(1)
n−3

,

x(p)
n =

x
(2)
n−1x

(2)
n−3

b(p)x
(p)
n−2 + a(p)x

(2)
n−3

,

for n ∈ N0, where the parameters a(j), b(j) for j = 1, p and the initial values x
(j)
−i , i ∈ {1, 2, 3}, j = 1, p, are real

numbers. Can system (5.1) be solved? If the p−dimensional system (5.1) can be solved, how will solutions obtain
according to the special cases of the parameters? How will the forbidden set of the initial values for system (5.1) get?
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