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Abstract

The main object of this manuscript is to achieve the solutions of a time-fractional nonlinear system of equations
describing the unsteady flow of a polytropic gas using two different approaches based on the combination of new general
integral transform in the sense of Caputo fractional derivative and homotopy perturbation method and variational
iteration method, respectively. The solutions are obtained in the form of rapidly convergent infinite series with easily
computable terms. Numerical results reveal that the proposed approaches are very effective and simple to obtain
approximate and analytical solutions for nonlinear systems of fractional partial differential equations.
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1 Introduction

Recently, the theory and applications of fractional calculus have expanded greatly during the 19th and 20th centuries,
and many researchers have given definitions for fractional derivatives and integrals to formulate many nonlinear
problems that occur in engineering and applied sciences. However, mathematical modeling of real-world problems
often leads to systems of nonlinear fractional partial differential equations, including acoustics and thermal systems,
rheology and mechanical systems, signal processing and systems identification, control and robotics systems, nonlinear
biology systems and other areas of applications. In order to develop engineering and applied sciences, it is necessary
to study analytical and numerical methods to solve all available problems. Most systems of nonlinear fractional
partial differential equations do not have explicit solutions expressible in finite terms; even if a solution can be
found, it is often too complicated to clearly display the main characteristics of the solution. Due to these difficulties,
one of the most time-consuming and difficult tasks appear among the researchers of nonlinear fractional problems
[1, 2, 3, 8, 12, 14, 16, 17, 18, 19, 21].

Several mathematical methods have been developed to obtain exact and approximate analytical solutions. Among
these methods, the homotopy perturbation method [7] and the variational iteration method [22] are the most clear

Email address: nadjibkh@yahoo.fr, ali.khalouta@univ-setif.dz (Ali Khalouta)

Received: April 2022 Accepted: July 2022

http://dx.doi.org/10.22075/ijnaa.2022.26839.3422


34

methods of solution of systems of nonlinear fractional partial differential equations, because they provide immediate
and visible symbolic terms of analytical solutions, as well as numerical approximate solutions to both linear and
nonlinear differential equations without linearization or discretization.

The polytropic gas in astrophysics is defined by [4]

w = kρ1+
1
n , (1.1)

where

ρ =
θ

κ
, (1.2)

is the energy density, κ is the container volume, θ is the total energy of the gas, n is the polytropic index, and k is
a constant. Degenerate adiabatic gas and electron gas are two instances of such gases. The study of polytropic gases
plays a vital role in cosmology and astrophysics [11] and these gases can behave like dark energy [15].

This manuscript aims to apply two advanced approaches, called homotopy perturbation transform method (HPTM)
and variational iteration transform method (VITM), for solving time-fractional system of nonlinear equations of
unsteady flow of a polytropic gas in two dimensions of the following form

Dα
t u+ uxu+ vuy +

wx

ρ
= 0,

Dα
t v + uvx + vvy +

wy

ρ
= 0, (1.3)

Dα
t ρ+ uρx + vρy + ρux + ρvy = 0,

Dα
t w + uwx + vwy + τux + τvy = 0,

under the initial conditions

u(x, y, 0) = a(x, y),

v(x, y, 0) = b(x, y), (1.4)

ρ(x, y, 0) = c(x, y),

w(x, y, 0) = d(x, y),

where Dα
t is the Caputo time-fractional derivative operator of order α with 0 < α ≤ 1, u = u(x, y, t) and v = v(x, y, t)

are the velocity components, ρ = ρ(x, y, t) is the density, w = w(x, y, t) is the pressure and τ is the ratio of the specific
heat and it represents the adiabatic index.

Both approaches are new numerical-analytical techniques for dealing with both linear and non-linear problems,
which enables us to obtain analytical and approximate solutions in convergent series by combining the new general
integral transform in the sense of the Caputo fractional derivative and homotopy perturbation method and variational
iteration method, respectively, without requiring constrained assumptions.

This manuscript is structured in the following way. In section 2, we present some basic definitions and mathematical
preliminaries of the fractional calculus and the new general integral transform, helping us to understand the main
results of this manuscript. Section 3 is devoted to the analysis of two numerical schemes which are the HPTM and the
VITM to solve the nonlinear system (1.3) under the initial conditions (1.4) and we also demonstrate the applicability
of the proposed numerical schemes by considering a numerical example in section 4. Finally we conclude our work in
section 5.

2 Definition and preliminaries

This section presents the basic definitions and properties of fractional calculus theory and the new general integral
transform, which are used further in this manuscript.

Definition 2.1. [10] Let u ∈ L1(0, T ), T > 0. The Riemann-Liouville fractional integral of order α > 0, is defined by

Iαu(t) =
1

Γ(α)

t∫
0

(t− τ)
α−1

u(τ)dτ, t > 0, (2.1)

I0u(t) = u(t), (2.2)
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where Γ(.) is the Euler gamma function, defined as follows

Γ(z) =

∫ +∞

0

tz−1e−tdt, z ∈ C with Re(z) > 0. (2.3)

Definition 2.2. [10] Let u(m) ∈ L1(0, T ), T > 0. The Caputo fractional derivative of order α, is defined by

Dαu(t) =
1

Γ(m− α)

∫ t

0

(t− τ)
m−α−1

u(m)(τ)dτ, t > 0, (2.4)

for m− 1 < α ≤ m, m ∈ N.

Definition 2.3. [10] For n to be the smallest integer that exceed α, the Caputo time-fractional derivative of order
α, is defined as

Dα
t u(x, t) =

1

Γ(m− α)

∫ t

0

(t− τ)
m−α−1

u(m)(x, τ)dτ, t > 0, (2.5)

for m− 1 < α ≤ m, m ∈ N.

Definition 2.4. [10] The two-parameter Mittag-Leffler function is defined by

Eα,β(z) =

∞∑
n=0

zi

Γ(iα+ β)
, α, β > 0, z ∈ C. (2.6)

If β = 1, this function is denoted by Eα(.) and if α = β = 1 this function represents ez.

Definition 2.5. [6] Let u(t) be a integrable function defined for t ≥ 0, p(s) ̸= 0 and q(s) are positive real functions,
we define the general integral transform T (s) of u(t) by the formula

T [u(t)] = T (s) = p(s)

∫ +∞

0

u(t) exp [−q(s)t] dt, (2.7)

provided the integral exists for some q(s).

Some basic properties of the new general integral transform are given as follows.
Property 2.1. The new general integral transform is also a linear operator

T [au1(t) + bu2(t)] = aT [u1(t)] + bT [u2(t)] , a, b ∈ R. (2.8)

Property 2.2. If u(t) is nth differentiable and p(s) and q(s) are positive real functions, then

T
[
u(n)(t)

]
= qn(s)T (s)− p(s)

n−1∑
k=0

qn−1−k(s)u(k)(0). (2.9)

Property 2.3. (Convolution) Let u1(t) and u2(t) have new general integral transform T1(s) and T2(s). Then the new
general integral transform of the convolution of u1 and u2 is

T [(u1 ∗ u2) (t)] = T

[∫ +∞

0

u1(t)u2(t− τ)dτ

]
=

1

p(s)
T1(s)T2(s). (2.10)

Property 2.4. Some special new general integral transform

T (1) =
p(s)

q(s)
,

T (t) =
p(s)

q2(s)
,

T

[
tn

n!

]
=

p(s)

qn+1(s)
, n = 0, 1, 2, ... (2.11)

T [tα] =
p(s)

qα+1(s)
Γ (α+ 1) , α > 0.
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Theorem 2.6. [9, Theorem 4.2] If n ∈ Z+ where m− 1 < α ≤ m and T (s) be the new general integral transform of
the function u(t), then, the new general integral transform of the Caputo fractional derivative of order α > 0, is

T [Dαu(t)] = qα(s)T (s)− p(s)

m−1∑
k=0

qα−1−k(s)u(k)(0). (2.12)

3 Main result

This section gives our main result related to the HPTM and VITM to solve the nonlinear Caputo time-fractional
partial differential equations.

3.1 Analysis of the HPTM

Theorem 3.1. Consider the nonlinear time-fractional partial differential equation in two dimensions

Dα
t u(x, y, t) + Lu(x, y, t) +Nu(x, y, t) = f(x, y, t), (3.1)

under the initial conditions
u(k)(x, y, 0) = uk(x, y), k = 0, 1, ...,m− 1, (3.2)

where Dα is the Caputo fractional derivative operator of order α with m − 1 < α ≤ m, L and N are a linear and
nonlinear operators, respectively, and f is the source term.

Then, the exact solution of equations (3.1)-(3.2) using the HPTM, can be defined as follows

u(x, y, t) = lim
φ→1

+∞∑
n=0

φnun(x, y, t) =

+∞∑
n=0

un(x, y, t), (3.3)

where
+∞∑
n=0

φnun(x, y, t) = G(x, y, t)− T−1

(
1

qα(s)
T

[
L

+∞∑
n=0

φnun +

+∞∑
n=0

φnHn(u)

])
, (3.4)

T [.] is the new general integral transform and Hn(u) is He’s polynomials.

Proof . Taking the new general integral transform on both sides of equation (3.1) and using the Theorem 2.6, we
obtain

T [u(x, y, t)] =

n−1∑
k=0

p(s)

qk+1(s)
u(k)(x, y, 0)− 1

qα(s)
T [Lu(x, y, t) +Nu(x, y, t)] + T [f(x, y, t)] . (3.5)

Implementing the inverse new general integral transform on both sides of equation (3.4), we obtain

u(x, y, t) = G(x, y, t)− T−1

(
1

qα(s)
T [Lu(x, y, t) +Nu(x, y, t)]

)
, (3.6)

where G(x, t) represents the term arising from the source term and the prescribed initial conditions. Now, we use the
homotopy perturbation method

u(x, y, t) =

+∞∑
n=0

φnun(x, y, t), (3.7)

and the nonlinear term can be decomposed as

Nu(x, y, t) =

+∞∑
n=0

φnHn(u), (3.8)

where Hn(u) shows He’s polynomials [5] and is determined with the help of the formula

Hn(u0, u1, ..., un) =
1

n!

∂n

∂φn
N

[
+∞∑
i=0

φiui

]
φ=0

, n ≥ 0. (3.9)
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Substituting equations (3.7) and (3.8) in equation (3.6), we obtain

+∞∑
n=0

φnun(x, y, t) = G(x, y, t)− T−1

(
1

qα(s)
T

[
L

+∞∑
n=0

φnun(x, y, t) +

+∞∑
n=0

φnHn(u)

])
. (3.10)

Comparing the coefficient of like powers of φ, the following approximations are obtained

φ0 : u0(x, y, t) = G(x, y, t),

φ1 : u1(x, y, t) = −T−1

(
1

qα(s)
T [Lu0(x, y, t) +H0(u)]

)
,

φ2 : u2(x, y, t) = −T−1

(
1

qα(s)
T [Lu1(x, y, t) +H1(u)]

)
, (3.11)

...

φn : un(x, y, t) = −T−1

(
1

qα(s)
T [Lun−1(x, y, t) +Hn−1(u)]

)
.

Then, the exact solution of equations (3.1)-(3.2) can be defined as follows

u(x, y, t) = lim
φ→1

+∞∑
n=0

φnun(x, y, t) =

+∞∑
n=0

un(x, y, t). (3.12)

The proof is complete. □

3.2 Analysis of the convergence

Theorem 3.2. Let H be the Hilbert space. Then, the obtained solution
+∞∑
n=0

un(x, y, t) will be convergent to the exact

solution u(x, y, t) of equation (3.1), if there exists µ, 0 < µ < 1 such that

∥un(x, y, t)∥ ≤ µ ∥un−1(x, y, t)∥ ,∀n ∈ N. (3.13)

Proof . We make a sequence of
+∞∑
n=0

un(x, y, t)

S0(x, y, t) = u0(x, y, t),

S1(x, y, t) = u0(x, y, t) + u1(x, y, t),

S2(x, y, t) = u0(x, y, t) + u1(x, y, t) + u2(x, y, t), (3.14)

...

Sn(x, y, t) = u0(x, y, t) + u1(x, y, t) + u2(x, y, t) + ...+ un(x, y, t).

Now, we must show that Sn(x, y, t) forms a Cauchy sequence. Consider the following

∥Sn+1(x, y, t)− Sn(x, y, t)∥ ≤ ∥un+1(x, y, t)∥ ≤ µ ∥un(x, y, t)∥
≤ µ2 ∥un−1(x, y, t)∥ ≤ ... ≤ µn+1 ∥u(x, y, t)∥ . (3.15)

For every n,m ∈ N, n ≥ m, we obtain

∥Sn(x, y, t)− Sm(x, y, t)∥ = ∥Sm+1(x, y, t)− Sm(x, y, t) + Sm+2(x, y, t)− Sm+1(x, y, t)

+...+ Sn(x, y, t)− Sn−1(x, y, t)∥
≤ ∥m+1(x, y, t)− Sm(x, y, t)∥+ ∥Sm+2(x, y, t)− Sm+1(x, y, t)∥

+...+ ∥Sn(x, y, t)− Sn−1(x, y, t)∥
≤ µm+1 ∥u0(x, y, t)∥+ µm+2 ∥u0(x, y, t)∥+ ...+ µn ∥u0(x, y, t)∥
= µm+1

(
1 + µ+ ...+ µn−m−1

)
∥u0(x, y, t)∥

≤ µm+1

(
1− µn−m

1− µ

)
∥u0(x, y, t)∥ . (3.16)
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Since 0 < µ < 1 and ∥u0(x, y, t)∥ is bounded, we obtain

lim
n,m−→∞

∥Sn(x, y, t)− Sm(x, y, t)∥ = 0. (3.17)

Thus, the sequences Sn(x, y, t) forms a Cauchy sequence in H. That is, the following sequence
+∞∑
n=0

un(x, y, t) is a

convergent sequences with the limits

lim
m→∞

m∑
n=0

un(x, y, t) = u(x, y, t). (3.18)

for un(x, y, t) ∈ H.

The proof is complete. □

Theorem 3.3. Let
m∑

k=0

uk(x, y, t) be finite and u(x, y, t) be the obtained series result. Therefore, the maximum

absolute truncation error is estimated to be∥∥∥∥∥u(x, y, t)−
m∑

k=0

uk(x, y, t)

∥∥∥∥∥ ≤ µm+1

1− µ
∥u0(x, y, t)∥ . (3.19)

Proof . Since
m∑

k=0

uk(x, y, t) is finite, this implies that
m∑

k=0

uk(x, y, t) < ∞.

Consider∥∥∥∥∥u(x, y, t)−
m∑

k=0

uk(x, y, t)

∥∥∥∥∥ =

∥∥∥∥∥
∞∑

k=m+1

uk(x, y, t)

∥∥∥∥∥
=

∞∑
k=m+1

∥uk(x, y, t)∥

≤
∞∑

k=m+1

µk ∥u0(x, y, t)∥

≤ µm+1(1 + µ+ µ2 + ...) ∥u0(x, y, t)∥

≤ µm+1

1− µ
∥u0(x, y, t)∥ . (3.20)

The proof is complete. □

3.3 Analysis of the VITM

Theorem 3.4. Consider the nonlinear time-fractional partial differential equation (3.1) under the initial conditions
(3.2). Then, the exact solution of equations (3.1)-(3.2) using the VITM, is given as a limit of the successive approxi-
mations un(x, y, t), n = 0, 1, 2, ..., in other words

u(x, y, t) = lim
n→∞

un(x, y, t), (3.21)

where

un(x, y, t) =

n−1∑
k=0

uk(x, y)
tk

k!
− T−1

(
1

qα(s)
T [Lun−1(x, y, t) +Nun−1(x, y, t)− f(x, y, t)]

)
, (3.22)

and T [.] is the new general integral transform.

Proof . According to the variational iteration transform [23], the correction functional of equation (3.1), is given as

un+1(x, y, t) = un(x, y, t) +

t∫
0

λ(t− τ)

[
Dα

t un(x, y, τ) + Lun(x, y, τ)
+Nun(x, y, τ)− f(x, y, τ)

]
dτ, (3.23)
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where λ(t− τ) is a general lagrange multiplier, the subscript n ≥ 0 denotes the nth approximation.

Taking the new general integral transform and using convolution property in equation (3.4), we have

T [un+1(x, y, t)] = T [un(x, y, t)] + T

[∫ t

0

λ(t− τ)

[
Dα

t un(x, y, τ) + Lun(x, y, τ)
+Nun(x, y, τ)− f(x, y, τ)

]
dτ

]
= T [un(x, y, t)] +

1

p(s)
T [λ(t)]T

[
Dα

t un(x, y, t) + Lun(x, y, t)
+Nun(x, y, t)− f(x, y, t)

]
. (3.24)

Using the Theorem 2.6 and initial conditions (3.3), equation (3.5), becomes

T [un+1(x, y, t)] = T [un(x, y, t)] +
1

p(s)
T [λ(t)]

(
qα(s)T [un(x, y, t)]− p(s)

m−1∑
k=0

qα−1−k(s)uk(x, y)

+T [Lun(x, y, t) +Nun(x, y, t)− f(x, y, t)]) . (3.25)

The optimal value of λ can be identified by making the equation (3.6) stationary with respect to un(x, y, t)

δ (T [un+1(x, y, t)]) = δ (T [un(x, y, t)])

+
1

p(s)
δ

(
T [λ(t)] (qα(s)T [un(x, y, t)] − p(s)

m−1∑
k=0

qα−1−k(s)uk(x, y)

+T [Lun(x, y, t) +Nun(x, y, t)− f(x, y, t)])) . (3.26)

Considering T [Lun(x, y, t) +Nun(x, y, t)] as restricted variation, i.e.,

δ (T [Lun(x, y, t) +Nun(x, y, t)]) = 0, (3.27)

we have

1 +
qα(s)

p(s)
T [λ(t)] = 0, (3.28)

which implies that

T [λ(t)] = − p(s)

qα(s)
. (3.29)

Using (3.9) in equation (3.6) and taking the inverse new general integral transform, we attain a new correction
functional

un+1(x, y, t) =

m−1∑
k=0

uk(x, y)
tk

k!
− T−1

(
1

qα(s)
T [Lun(x, y, t) +Nun(x, y, t)− f(x, y, t)]

)
. (3.30)

The initial value u0(x, y, t) can be find as

u0(x, y, t) =

m−1∑
k=0

uk(x, y)
tk

k!
. (3.31)

The successive approximations rapidly converge to the exact solution of equation (3.1) as n → ∞, that is

u(x, y, t) = lim
n→∞

un(x, y, t). (3.32)

The proof is complete. □

4 Application of methods and results

This section provides an application of Caputo time-fractional system of equations describing the unsteady flow of
a polytropic gas to assess the applicability, accuracy and efficiency of the HPTM and VITM.
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Example 4.1. Consider the Caputo time-fractional system of nonlinear equations of unsteady flow of a polytropic
gas in two dimensions [20]

Dα
t u+ uxu+ vuy +

wx

ρ
= 0,

Dα
t v + uvx + vvy +

wy

ρ
= 0, (4.1)

Dα
t ρ+ uρx + vρy + ρux + ρvy = 0,

Dα
t w + uwx + vwy + τux + τvy = 0,

under the initial conditions

u(x, y, 0) = ex+y,

v(x, y, 0) = −1− ex+y, (4.2)

ρ(x, y, 0) = ex+y,

w(x, y, 0) = c.

The exact solution, when α = 1, is [13]

u(x, y, t) = ex+y+t,

v(x, y, t) = −1− ex+y+t, (4.3)

ρ(x, y, t) = ex+y+t,

w(x, y, t) = c,

where c is a real constant.

Case 1. We solve the system (4.1) under the initial conditions (4.2) using the HPTM.

According to the HPTM algorithm proposed in Section 3, we get

+∞∑
n=0

φnun(x, y, t) = ex+y − T−1

(
1

qα(s)
T

[
+∞∑
n=0

φnAn +

+∞∑
n=0

φnBn +

+∞∑
n=0

φnCn

])
,

+∞∑
n=0

φnvn(x, y, t) = −1− ex+y − T−1

(
1

qα(s)
T

[
+∞∑
n=0

φnDn +

+∞∑
n=0

φnEn +

+∞∑
n=0

φnFn

])
, (4.4)

+∞∑
n=0

φnρn(x, y, t) = ex+y − T−1

(
1

qα(s)
T

[
+∞∑
n=0

φnGn +

+∞∑
n=0

φnHn +

+∞∑
n=0

φnIn +

+∞∑
n=0

φnJn

])
,

+∞∑
n=0

φnwn(x, y, t) = ex+y − T−1

(
1

qα(s)
T

[
+∞∑
n=0

φnKn +

+∞∑
n=0

φnMn + τ

+∞∑
n=0

φnunx + τ

+∞∑
n=0

φnvny

])
,

where

uxu =

+∞∑
n=0

φnAn, vuy =

+∞∑
n=0

φnBn,
wx

ρ
=

+∞∑
n=0

φnCn, uvx

+∞∑
n=0

φnDn,

vvy =

+∞∑
n=0

φnE,
wy

ρ
=

+∞∑
n=0

φnFn, uρx =

+∞∑
n=0

φnGn, vρy =

+∞∑
n=0

φnHn, (4.5)

ρux =

+∞∑
n=0

φnIn, ρvy =

+∞∑
n=0

φnJn, uwx =

+∞∑
n=0

φnKn, vwy =

+∞∑
n=0

φnMn,

are He’s polynomials and can be calculated using the formula (3.7). On comparing the coefficient of the like power of
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φ, on both sides in (4.4), we get

φ0 : u0(x, y, t) = ex+y,

: v0(x, y, t) = −1− ex+y, (4.6)

: ρ0(x, y, t) = ex+y,

: w0(x, y, t) = ex+y,

φ1 : u1(x, y, t) = −T−1

(
1

qα(s)
T [A0 +B0 + C0]

)
= ex+y tα

Γ(α+ 1)
,

: v1(x, y, t) = −T−1

(
1

qα(s)
T [D0 + E0 + F0]

)
= −ex+y tα

Γ(α+ 1)
, (4.7)

: ρ1(x, y, t) = −T−1

(
1

qα(s)
T [G0 +H0 + I0 + J0]

)
= ex+y tα

Γ(α+ 1)
,

: w1(x, y, t) = −T−1

(
1

qα(s)
T [K0 +M0 + τu0x + τv0y]

)
= 0,

φ2 : u2(x, y, t) = −T−1

(
1

qα(s)
T [A1 +B1 + C1]

)
= ex+y t2α

Γ(2α+ 1)
,

: v2(x, y, t) = −T−1

(
1

qα(s)
T [D1 + E1 + F1]

)
= −ex+y t2α

Γ(2α+ 1)
, (4.8)

: ρ2(x, y, t) = −T−1

(
1

qα(s)
T [G1 +H1 + I1 + J1]

)
= ex+y t2α

Γ(2α+ 1)
,

: w2(x, y, t) = −T−1

(
1

qα(s)
T [K1 +M1 + τu1x + τv1y]

)
= 0,

φ3 : u3(x, y, t) = −T−1

(
1

qα(s)
T [A2 +B2 + C2]

)
= ex+y t3α

Γ(3α+ 1)
,

: v3(x, y, t) = −T−1

(
1

qα(s)
T [D2 + E2 + F2]

)
= −ex+y t3α

Γ(3α+ 1)
, (4.9)

: ρ3(x, y, t) = −T−1

(
1

qα(s)
T [G2 +H2 + I2 + J2]

)
= ex+y t3α

Γ(3α+ 1)
,

: w3(x, y, t) = −T−1

(
1

qα(s)
T [K2 +M2 + τu1x + τv1y]

)
= 0.

We continue to get

φn+1 : un+1(x, y, t) = −T−1

(
1

qα(s)
T [An +Bn + Cn]

)
= ex+y tnα

Γ(nα+ 1)
,

: vn+1(x, y, t) = −T−1

(
1

qα(s)
T [Dn + En + Fn]

)
= −ex+y tnα

Γ(nα+ 1)
, (4.10)

: ρn+1(x, y, t) = −T−1

(
1

qα(s)
T [Gn +Hn + In + Jn]

)
= ex+y tnα

Γ(nα+ 1)
,

: wn+1(x, y, t) = −T−1

(
1

qα(s)
T [Kn +Mn + τunx + τvny]

)
= 0,

where n ≥ 0. Finally, the series solution of the unknown functions u(x, y, t), v(x, y, t), ρ(x, y, t) and w(x, y, t) of system
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(4.1) under (4.2) are given by

u(x, y, t) =

+∞∑
n=0

un(x, y, t)

= ex+y

(
1 +

tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)
+ ...+

tnα

Γ(nα+ 1)
+ ...

)
= ex+y

+∞∑
n=0

tnα

Γ(nα+ 1)
= ex+yEα(t

α),

v(x, y, t) =

+∞∑
n=0

vn(x, y, t)

= −1− ex+y

(
1 +

tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)
+ ...+

tnα

Γ(nα+ 1)
+ ...

)
= −1− ex+y

+∞∑
n=0

tnβ

Γ(nβ + 1)
= −1− ex+yEα(t

α), (4.11)

φ(x, y, t) =

+∞∑
n=0

φn(x, y, t)

= ex+y

(
1 +

tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)
+ ...+

tnα

Γ(nα+ 1)
+ ...

)
= ex+y

+∞∑
n=0

tnγ

Γ(nγ + 1)
= ex+yEα(t

α),

w(x, y, t) =

+∞∑
n=0

wn(x, y, t)

= c+ 0 + 0 + 0 + ... = c,

where Eα(t
α) is the Mittag-Leffler functions and c is real constant. When α = 1, the solutions (4.11) become

u(x, y, t) = ex+y

(
1 + t+

t2

2!
+

t3

3!
+ ...+

tn

n!
+ ...

)
= ex+y+t,

v(x, y, t) = −1− ex+y

(
1 + t+

t2

2!
+

t3

3!
+ ...+

tn

n!
+ ...

)
= −1− ex+y+t, (4.12)

φ(x, y, t) = ex+y

(
1 + t+

t2

2!
+

t3

3!
+ ...+

tn

n!
+ ...

)
= ex+y+t,

w(x, y, t) = c,

which is an exact solution of nonlinear system of equations of unsteady flow of a polytropic gas in two dimensions that
is given in (4.3).

Case 2. We solve the system (4.1) under the initial conditions (4.2) using the VITM. According to the VITM
algorithm proposed in Section 3, we get the following iteration formulas

un+1(x, y, t) = ex+y − T−1

(
1

qα(s)
T

[
unxun + vnuny +

wnx

ρn

])
,

vn+1(x, y, t) = −1− ex+y − T−1

(
1

qα(s)
T

[
unvnx + vnvny +

wny

ρn

])
, (4.13)

ρn+1(x, y, t) = ex+y − T−1

(
1

qα(s)
T [unρnx + vnρny + ρnunx + ρnvny]

)
,

wn+1(x, y, t) = c− T−1

(
1

qα(s)
T [unwnx + vnwny + τunx + τvny]

)
,
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where the initial iterations of u0(x, y, t), v0(x, y, t), ρ0(x, y, t) and w0(x, y, t) are given as

u0(x, y, t) = ex+y,

v0(x, y, t) = −1− ex+y, (4.14)

ρ0(x, y, t) = ex+y,

w0(x, y, t) = c.

Then, we have the following iterations by (4.13) and (4.14).

u1(x, y, t) = ex+y − T−1

(
1

qα(s)
T

[
u0xu0 + v0u0y +

w0x

ρ0

])
= ex+y + ex+y tα

Γ (α+ 1)
,

v1(x, y, t) = −1− ex+y − T−1

(
1

qβ(s)
T

[
u0v0x + v0v0y +

w0y

ρ0

])
= −1− ex+y − ex+y tα

Γ (α+ 1)
, (4.15)

ρ1(x, y, t) = ex+y − T−1

(
1

qγ(s)
T [u0ρ0x + v0ρ0y + ρ0u0x + ρ0v0y]

)
= ex+y + ex+y tα

Γ (α+ 1)
,

w1(x, y, t) = c− T−1

(
1

qη(s)
T [u0w0x + v0w0y + τu0x + τv0y]

)
= c,

u2(x, y, t) = ex+y − T−1

(
1

qα(s)
T

[
u1xu1 + v1u1y +

w1x

ρ1

])
= ex+y + ex+y tα

Γ (α+ 1)
+ ex+y t2α

Γ (2α+ 1)
,

v2(x, y, t) = −1− ex+y − T−1

(
1

qα(s)
T

[
u1v1x + v1v1y +

w1y

ρ1

])
= −1− ex+y − ex+y tα

Γ (α+ 1)
− ex+y t2α

Γ (2α+ 1)
, (4.16)

ρ2(x, y, t) = ex+y − T−1

(
1

qα(s)
T [u1ρ1x + v1ρ1y + ρ1u1x + ρ1v1y]

)
= ex+y + ex+y tα

Γ (α+ 1)
+ ex+y t2α

Γ (2α+ 1)
,

w2(x, y, t) = c− T−1

(
1

qα(s)
T [u1w1x + v1w1y + τu1x + τv1y]

)
= c,

u3(x, y, t) = ex+y − T−1

(
1

qα(s)
T

[
u2xu2 + v2u2y +

w2x

ρ2

])
= ex+y + ex+y tα

Γ (α+ 1)
+ ex+y t2α

Γ (2α+ 1)
+ ex+y t3α

Γ (3α+ 1)
,
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v3(x, y, t) = −1− ex+y − T−1

(
1

qα(s)
T

[
u2v2x + v2v2y +

w2y

ρ2

])
= −1− ex+y − ex+y tα

Γ (α+ 1)
− ex+y t2α

Γ (2α+ 1)
− ex+y t3α

Γ (3α+ 1)
, (4.17)

ρ3(x, y, t) = ex+y − T−1

(
1

qα(s)
T [u2ρ2x + v2ρ2y + ρ2u2x + ρ2v2y]

)
= ex+y + ex+y tα

Γ (α+ 1)
+ ex+y t2α

Γ (2α+ 1)
+ ex+y t3α

Γ (3α+ 1)
,

w3(x, y, t) = c− T−1

(
1

qα(s)
T [u2w2x + v2w2y + τu2x + τv2y]

)
= c.

We continue to get

un+1(x, y, t) = ex+y − T−1

(
1

qα(s)
T

[
unxun + vnuny +

wnx

ρn

])
= ex+y + ex+y tα

Γ (α+ 1)
+ ex+y t2α

Γ (2α+ 1)
+ ex+y t3α

Γ (3α+ 1)
+ ...+ ex+y tnα

Γ (nα+ 1)
,

vn+1(x, y, t) = −1− ex+y − T−1

(
1

qα(s)
T

[
unvnx + vnvny +

wny

ρn

])
= −1− ex+y − ex+y tα

Γ (α+ 1)
− ex+y t2α

Γ (2α+ 1)
− ex+y t3α

Γ (3α+ 1)
− ...− ex+y tnα

Γ (nα+ 1)
,(4.18)

ρn+1(x, y, t) = ex+y − T−1

(
1

qα(s)
T [unρnx + vnρny + ρnunx + ρnvny]

)
= ex+y + ex+y tα

Γ (α+ 1)
+ ex+y t2α

Γ (2α+ 1)
+ ex+y t3α

Γ (3α+ 1)
+ ...+ ex+y tnα

Γ (nα+ 1)
,

wn+1(x, y, t) = c− T−1

(
1

qα(s)
T [unwnx + vnwny + τunx + τvny]

)
= c.

Finally, the series solution of the unknown functions u(x, y, t), v(x, y, t), ρ(x, y, t) and w(x, y, t) of system (4.1)
under (4.2) are given by

u(x, y, t) = lim
n→∞

un(x, y, t)

= lim
n→∞

ex+y

(
1 +

tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)
+ ...+

tnα

Γ(nα+ 1)

)
= lim

n→∞
ex+y

n∑
n=0

tnα

Γ(nα+ 1)
= ex+yEα(t

α),

v(x, y, t) = lim
n→∞

vn(x, y, t)

= lim
n→∞

(
−1− ex+y

(
1 +

tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)
+ ...+

tnα

Γ(nα+ 1)

))
= lim

n→∞

(
−1− ex+y

n∑
n=0

tnβ

Γ(nβ + 1)

)
= −1− ex+yEα(t

α), (4.19)

φ(x, y, t) = lim
n→∞

φn(x, y, t)

= lim
n→∞

ex+y

(
1 +

tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)
+ ...+

tnα

Γ(nα+ 1)

)
= lim

n→∞
ex+y

+∞∑
n=0

tnγ

Γ(nγ + 1)
= ex+yEα(t

α),

w(x, y, t) = lim
n→∞

wn(x, y, t) = c+ 0 + 0 + 0 + ... = c,



New approaches for solving Caputo time-fractional nonlinear system ... 45

where Eα(t
α) is the Mittag-Leffler functions and c is real constant. When α = 1, the solutions (4.19) become

u(x, y, t) = ex+y

(
1 + t+

t2

2!
+

t3

3!
+ ...+

tn

n!
+ ...

)
= ex+y+t,

v(x, y, t) = −1− ex+y

(
1 + t+

t2

2!
+

t3

3!
+ ...+

tn

n!
+ ...

)
= −1− ex+y+t, (4.20)

φ(x, y, t) = ex+y

(
1 + t+

t2

2!
+

t3

3!
+ ...+

tn

n!
+ ...

)
= ex+y+t,

w(x, y, t) = c,

which is an exact solution of nonlinear system of equations of unsteady flow of a polytropic gas in two dimensions that
is given in (4.3).

5 Conclusion

In this manuscript, homotopy perturbation transform method and variational iteration transform method for
obtaining the solutions of Caputo time-fractional nonlinear system of equations describing the unsteady flow of a
polytropic gas are implemented. By using these approaches, solutions are calculated in form of a convergent series
with easily computable components since where we can arrive at the exact solution after few iterations. The advantage
of the proposed approaches is that these approaches avoid linearity and unrealistic assumptions, and provide an efficient
numerical solution. Hence, we can deduce that these approaches can be applied to a wide range of nonlinear systems
of fractional partial differential equations.
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