Maclaurin coefficient estimates of te-univalent functions connected with the (p, q)-derivative

Ahmed M. Abd-Eltawab ${ }^{\text {a,* }}$, Abbas Kareem Wanas ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Science, Fayoum University, Fayoum 63514, Egypt
${ }^{b}$ Department of Mathematics, College of Science, University of Al-Qadisiyah, Al Diwaniyah, Al-Qadisiyah, Iraq

(Communicated by Mugur Alexandru Acu)

Abstract

In this paper, we introduce a new subclass of analytic and te-univalent functions in the open unit disc associated with the operator $\mathcal{T}_{\zeta}^{\lambda, p, q}$, which is defined by using the (p, q)-derivative. We obtain the coefficient estimates and FeketeSzegő inequalities for the functions belonging to this class. The various results presented in this paper would generalize and improve those in related works of several earlier authors.

Keywords: bi-univalent functions, coefficient bounds, Fekete-Szegő inequality, Hadamard product, (p,q)-derivative operator, te-univalent function
2020 MSC: 30C45, 30C50, 05A30

1 Introduction

Let A denote the class of all functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit $\operatorname{disc} U=\{z \in \mathbb{C}:|z|<1\}$. Further, by S we shall denote the class of all functions in A which are univalent in U.

For the function f given by (1.1) and $\zeta \in A$ given by

$$
\begin{equation*}
\zeta(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \tag{1.2}
\end{equation*}
$$

the Hadamard product (or convolution) of f and ζ is defined by

$$
(f * \zeta)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=(\zeta * f)(z)
$$

[^0]For $b_{n}=1, n \geq 2$, let $\zeta(z)=I(z)$, then $(f * I)(z)=f(z)$.
The theory of q-calculus plays an important role in many fields of mathematical, physical, and engineering sciences. The first application of the q-calculus was introduced by Jackson in [17, 18]. Recently, there is an extension of q-calculus, denoted by (p, q)-calculus which is obtained by substituting q by q / p in q-calculus. The (p, q)-integer was introduced by Chakrabarti and Jagannathan in 10. For definitions and properties of the (p, q)-calculus, one may refer to [8, 27].

For $0<q<p \leq 1$, the $(p ; q)$-derivative operator for $f * \zeta$ is defined as in [2]:

$$
D_{p q}(f * \zeta)(z)=\left\{\begin{array}{ccc}
\frac{(f * \zeta)(p z)-(f * \zeta)(q z)}{(p-q) z}, & \text { if } & z \in U^{*}:=U-\{0\} \tag{1.3}\\
f^{\prime}(0), & \text { if } & z=0
\end{array} .\right.
$$

From (1.3) we deduce that

$$
D_{p q}(f * \zeta)(z)=1+\sum_{n=2}^{\infty}[n, p, q] a_{n} b_{n} z^{n-1} \quad(z \in U)
$$

where the (p, q)-bracket number is given by

$$
\begin{align*}
{[n, p, q] } & =\frac{p^{n}-q^{n}}{p-q}=\sum_{j=0}^{n-1} p^{n-(j+1)} q^{j} \tag{1.4}\\
& =p^{n-1}+p^{n-2} q+p^{n-3} q^{2}+\ldots+q^{n-1} \quad(0<q<p \leq 1)
\end{align*}
$$

which is a natural generalization of the q-number. Clearly, we note that $[n, 1, q]=[n]_{q}=\frac{1-q^{n}}{1-q}$, and $\lim _{q \longrightarrow 1^{-}}[n, 1, q]=$ n.

By using (1.4) the (p, q)-shifted factorial is given by

$$
[n, p, q]!=\left\{\begin{array}{ccc}
1, & \text { if } & n=0 \\
\prod_{i=1}^{n}[i, p, q], & \text { if } & n \in \mathbb{N}:=\{1,2,3, \ldots\}
\end{array},\right.
$$

and for any positive number δ, the (p, q)-generalized Pochhammer symbol is defined by

For the functions f and ζ are given by (1.1) and (1.2), respectively, we define the linear operator $\mathcal{T}_{\zeta}^{\lambda, p, q}: A \rightarrow A$ by

$$
\mathcal{T}_{\zeta}^{\lambda, p, q} f(z) * \mathcal{M}_{p, q, \lambda+1}=z D_{p q}(f * \zeta)(z) \quad(\lambda>-1,0<q<p \leq 1, z \in U)
$$

where the function $\mathcal{M}_{p, q, \lambda+1}$ is given by

$$
\mathcal{M}_{p, q, \lambda+1}=z+\sum_{n=2}^{\infty} \frac{[\lambda+1, p, q]_{n-1}}{[n-1, p, q]!} z^{n} \quad(\lambda>-1,0<q<p \leq 1, z \in U)
$$

It is easy to find that

$$
\begin{equation*}
\mathcal{T}_{\zeta}^{\lambda, p, q} f(z)=z+\sum_{n=2}^{\infty} \Psi_{n-1} a_{n} z^{n} \quad(\lambda>-1,0<q<p \leq 1, z \in U) \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi_{n-1}:=\frac{[n, p, q]!}{[\lambda+1, p, q]_{n-1}} b_{n}, \quad n \geq 2 \tag{1.6}
\end{equation*}
$$

We note that $\mathcal{T}_{\zeta}^{0,1, q} f(z) \longrightarrow z(f * \zeta)^{\prime}(z)$ as $\lambda=0, p=1$, and $q \longrightarrow 1^{-}$, where $(f * \zeta)^{\prime}$ is the ordinary derivative of the function $f * \zeta$. Also, for $\lambda=b_{n}=1$, we have $\mathcal{T}_{I}^{1, p, q} f(z)=f(z)$.

Remark 1.1. The linear operator $\mathcal{T}_{\zeta}^{\lambda, p, q}$ is a generalization of many other linear operators considered earlier, we obtain the next special cases:
(i) For $p=1$, we obtain the operators

$$
\mathcal{H}_{\zeta}^{\lambda, q} f(z):=z+\sum_{n=2}^{\infty} \Phi_{n-1} a_{n} z^{n} \quad(\lambda>-1,0<q<1, z \in U)
$$

where

$$
\Phi_{n-1}=\frac{[n, q]!}{[\lambda+1, q]_{n-1}} b_{n}
$$

and

$$
\mathcal{T}_{\zeta}^{\lambda} f(z):=\lim _{q \longrightarrow 1^{-}} \mathcal{T}_{\zeta}^{\lambda, 1, q} f(z)=z+\sum_{n=2}^{\infty} \frac{n!}{(\lambda+1)_{n-1}} a_{n} b_{n} z^{n} \quad(\lambda>-1, z \in U)
$$

where the operators $\mathcal{H}_{\zeta}^{\lambda, q}$ and $\mathcal{T}_{\zeta}^{\lambda}$ were introduced and studied by El-Deeb et al. [15];
(ii) For $p=1$ and $b_{n}=\frac{(-1)^{n-1} \Gamma(\nu+1)}{4^{n-1}(n-1)!\Gamma(n+\nu)}, \nu>0, \lambda>-1$, we obtain the operator

$$
\mathcal{N}_{v, q}^{\lambda} f(z):=z+\sum_{n=2}^{\infty} \frac{[n, q]!}{[\lambda+1, q]_{n-1}} \frac{(-1)^{n-1} \Gamma(\nu+1)}{4^{n-1}(n-1)!\Gamma(n+\nu)} a_{n} z^{n} \quad(z \in U)
$$

where the operator $\mathcal{N}_{v, q}^{\lambda}$ was studied by El-Deeb and Bulboacă [14:
(iii) For $p=1$ and $b_{n}=\left(\frac{k+1}{k+n}\right)^{\alpha}, \alpha>0, k \geq 0$, we obtain the operator

$$
\mathcal{M}_{k, q}^{\lambda, \alpha} f(z):=z+\sum_{n=2}^{\infty}\left(\frac{k+1}{k+n}\right)^{\alpha} \frac{[n, q]!}{[\lambda+1, q]_{n-1}} a_{n} z^{n}(z \in U),
$$

where the operator $\mathcal{M}_{k, q}^{\lambda, \alpha}$ was studied by El-Deeb and Bulboacă [13;
(iv) For $p=1$ and $b_{n}=1$, we obtain the the operator

$$
\mathcal{J}_{q}^{\lambda} f(z):=z+\sum_{n=2}^{\infty} \frac{[n, q]!}{[\lambda+1, q]_{n-1}} a_{n} z^{n} \quad(z \in U),
$$

where the operator $\mathcal{J}_{q}^{\lambda}$ was studied by Arif et al. [5];
(v) For $p=1$ and $b_{n}=\frac{m^{n-1}}{(n-1)!} e^{-m}, m>0$, we obtain the q-analogue of Poisson operator:

$$
\mathcal{I}_{q}^{\lambda, m} f(z):=z+\sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-1)!} e^{-m} \cdot \frac{[n, q]!}{[\lambda+1, q]_{n-1}} a_{n} z^{n} \quad(z \in U)
$$

where the operator $\mathcal{I}_{q}^{\lambda, m}$ was studied by Porwal [25];
(vi) For $p=1$ and $b_{n}=\left[\frac{1+\ell+\mu(k-1)}{1+\ell}\right]^{m}, m \in \mathbb{Z}, \ell>0, \mu \geq 0$, we obtain the q-analogue of Prajapat operator [26], defined by:

$$
\mathcal{J}_{q, \ell, \mu}^{\lambda, m} f(z):=z+\sum_{n=2}^{\infty}\left[\frac{1+\ell+\mu(n-1)}{1+\ell}\right]^{m} \cdot \frac{[n, q]!}{[\lambda+1, q]_{n-1}} a_{n} z^{n} \quad(z \in U) .
$$

According to the Koebe one-quarter theorem Duren [12], it ensures that the images of U under every univalent functions $f \in S$ contains a disc of radius $\frac{1}{4}$. Thus, every univalent function f on U has an inverse f^{-1}, defined by

$$
f^{-1}(f(z))=z \quad(z \in U),
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{1.7}
\end{equation*}
$$

A function $f \in A$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. Let Σ denote the class of all bi-univalent functions in U given by (1.1). Some examples of functions in the class Σ are $\frac{z}{1-z},-\log (1-z)$, and $\frac{1}{2} \log \left(\frac{1+z}{1-z}\right)$.

Abd-Eltawab [1 introduced the concept of te-univalency associated with an operator, which is a generalization and extension of the concept of bi-univalency. Let $\mathcal{S}_{\zeta}^{\lambda, p, q}$ denote the class of all functions given by 1.5), which are univalent in U. It is well known that every function $\mathcal{T}_{\zeta}^{\lambda, p, q} f \in \mathcal{S}_{\zeta}^{\lambda, p, q}$ has an inverse $\left(\mathcal{T}_{\zeta}^{\lambda, p, q} f\right)^{-1}$, defined by

$$
h\left(\mathcal{T}_{\zeta}^{\lambda, p, q} f(z)\right)=z \quad(z \in U)
$$

and

$$
\mathcal{T}_{\zeta}^{\lambda, p, q} f(h(w))=w \quad\left(|w|<r_{0}\left(\mathcal{T}_{\zeta}^{\lambda, p, q} f\right) ; r_{0}\left(\mathcal{T}_{\zeta}^{\lambda, p, q} f\right) \geq \frac{1}{4}\right),
$$

where

$$
\begin{align*}
h(w)=\left(\mathcal{T}_{\zeta}^{\lambda, p, q} f\right)^{-1}(w) & =w-\Psi_{1} a_{2} w^{2}+\left[2 \Psi_{1}^{2} a_{2}^{2}-\Psi_{2} a_{3}\right] w^{3} \tag{1.8}\\
& -\left[5 \Psi_{1}^{3} a_{2}^{3}-5 \Psi_{1} \Psi_{2} a_{2} a_{3}+\Psi_{3} a_{4}\right] w^{4}+\cdots
\end{align*}
$$

and Ψ_{n-1} is given by (1.6). We note that $h(w)=g(w)$ as $\lambda=b_{n}=1$, where g is given by 1.7)
A function f given by (1.1) is said to be te-univalent in U associated with the operator $\mathcal{T}_{\zeta}^{\lambda, p, q}$, if both $\mathcal{T}_{\zeta}^{\lambda, p, q} f$ and $\left(\mathcal{T}_{\zeta}^{\lambda, p, q} f\right)^{-1}$ are univalent in U. Let $\Sigma_{\zeta}^{\lambda, p, q}$ denote the class of all functions given by 1.1), which are te-univalent in U associated with $\mathcal{T}_{\zeta}^{\lambda, p, q}$.

For two functions f and ζ, which are analytic in U, we say that f is subordinate to ζ, written $f(z) \prec \zeta(z)$ if there exists a Schwarz function s, which (by definition) is analytic in U with $s(0)=0$ and $|s(z)|<1$ for all $z \in U$, such that $f(z)=\zeta(s(z)), z \in U$. Furthermore, if the function ζ is univalent in U, then we have the following equivalence, (cf., e.g., [9] , and [21]):

$$
f(z) \prec \zeta(z) \Leftrightarrow f(0)=\zeta(0) \text { and } f(U) \subset \zeta(U) .
$$

Ma and Minda [20] unified various subclasses of starlike and convex functions consist of functions $f \in A$ satisfying the subordination $\frac{z f^{\prime}(z)}{f(z)} \prec \varphi(z)$ and $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \varphi(z)$ respectively. A function f is bi-starlike of Ma-Minda type or bi-convex of Ma-Minda type if both f and f^{-1} are respectively Ma-Minda starlike or convex (see [3]). Many interesting examples of the functions of the class Σ, together with various other properties and characteristics associated with bi-univalent functions can be found in the earlier works (see [6, 19, 22] and others). Brannan and Taha [7] introduced certain subclasses of bi-univalent functions similar to the familiar subclasses of univalent functions consisting of starlike, convex and strongly starlike functions. They investigated the bound on the initial coefficients of the classes bi-starlike and bi-convex functions. Recently, many researchers (see [4, 11, 15, 23, 30, 32]) introduced and investigated some new subclasses of Σ and obtained bounds for the initial coefficients of the function given by 1.1). For a brief history and interesting examples in the class Σ (see [29]).

Earlier in 1933, Fekete and Szegö [16] made use of Lowner's parametric method in order to prove that, if $f \in S$ and is given by (1.1),

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq 1+2 \exp \left(-\frac{2 \xi}{1-\xi}\right) \quad(0 \leq \xi \leq 1, \mu \in \mathbb{C}) .
$$

For some history of Feketo-Szegő problem for class of starlike, convex and close-to-convex functions, refer to work produced by by Srivastava et al. 28]. Besides that, some authors [1, 15, 31] have studied the Feketo-Szegő inequalities for certain subclasses of bi-univalent functions.

The object of the present paper is to introduce a new subclass of analytic and te-univalent functions in the open unit disc associated with the operator $\mathcal{T}_{\zeta}^{\lambda, p, q}$, and the bound for second and third coefficients of functions in this class are obtained. Also the Fekete-Szegő inequality is determined for this function class. The results presented in this paper would generalize and improve some recent works of [3, 7, 11, 15].

In order to derive our main results we need to use the following lemma:
Lemma 1.2 ([24]). If $p \in \mathcal{P}$ then $\left|c_{n}\right| \leq 2$ for each n, where \mathcal{P} is the family of all functions p, analytic in U, for which

$$
\operatorname{Re}\{p(z)\}>0 \quad(z \in U)
$$

where

$$
p(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots \quad(z \in U)
$$

2 Coefficient Estimates for the Function Class $\mathfrak{T}_{\Sigma}^{\lambda, p, q}(\eta, \zeta, \varphi)$

We begin this section by assuming that φ is an analytic function with positive real part in U, with $\varphi(0)=1$, $\varphi^{\prime}(0)>0$ and $\varphi(U)$ maps the unit disc U onto a region starlike with respect to 1 , and symmetric with respect to the real axis. Such a function has a series expansion of the form:

$$
\begin{equation*}
\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\ldots \quad \text { with } \quad B_{1}>0 \tag{2.1}
\end{equation*}
$$

Unless otherwise mentioned, we assume throughout this paper that, the function φ satisfies the above conditions, $\lambda>-1,0<q<p \leq 1, \eta \in \mathbb{C}-\{0\}$ and $z \in U$.

Definition 2.1. A function f given by (1.1) is said to be in the class $\mathfrak{T}_{\Sigma}^{\lambda, p, q}(\eta, \zeta, \varphi)$, if the following subordination conditions hold true:

$$
\begin{equation*}
f \in \Sigma_{\zeta}^{\lambda, p, q}, \text { with } 1+\frac{1}{\eta}\left(\frac{z D_{p q}\left(\mathcal{T}_{\zeta}^{\lambda, p, q} f(z)\right)}{\mathcal{T}_{\zeta}^{\lambda, p, q} f(z)}-1\right) \prec \varphi(z), \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\eta}\left(\frac{z D_{p q}(h(w))}{h(w)}-1\right) \prec \varphi(z) \tag{2.3}
\end{equation*}
$$

where the functions ζ and h are given by 1.2 and 1.8 , respectively.

It is interesting to note that the special values of parameters $\lambda, p, q, \eta, \varphi$ and $b_{n}, n \geq 2$, the class $\mathfrak{T}_{\Sigma}^{\lambda, p, q}(\eta, \zeta, \varphi)$ unifies the following known and new classes:
(i) $\mathfrak{T}_{\Sigma}^{\lambda, 1, q}[\eta, \zeta, \varphi]=\mathfrak{T}_{\Sigma}^{\lambda, q}[\eta, \zeta, \varphi]$ improves the class $\mathcal{L}_{\Sigma}^{\lambda, q}[\eta, \zeta, \varphi]$, which was introduced and studied by El-Deeb et al. 15];
(ii) $\lim _{q \longrightarrow 1^{-}} \mathfrak{T}_{\Sigma}^{\lambda, 1, q}[\eta, \zeta, \varphi]=\mathfrak{T}_{\Sigma}^{\lambda}[\eta, \zeta, \varphi]$ improves the class $\mathcal{G}_{\Sigma}^{\lambda}[\eta, \zeta, \varphi]$, which was introduced and studied by ElDeeb et al. 15];
(iii) $\mathfrak{T}_{\Sigma}^{\lambda, p, q}\left(\eta, \zeta,\left(\frac{1+z}{1-z}\right)^{\alpha}\right)=\mathcal{S}_{\Sigma}^{* \lambda, p, q}(\eta, \zeta, \alpha) \quad(0<\alpha \leq 1)$;
(iv) $\mathfrak{T}_{\Sigma}^{\lambda, p, q}\left(\eta, \zeta, \frac{1+(1-2 \beta) z}{1-z}\right)=\mathcal{S}_{\Sigma}^{* \lambda, p, q}(\eta, \zeta, \beta) \quad(0 \leq \beta<1)$;
(v) $\lim _{q \longrightarrow 1^{-}} \mathfrak{T}_{\Sigma}^{1,1, q}(\eta, I, \varphi)=\mathcal{S}_{\Sigma}^{*}(\eta, \varphi)$, where the class $\mathcal{S}_{\Sigma}^{*}(\eta, \varphi)$ was introduced and studied by Deniz [11;
(vi) $\lim _{q \longrightarrow 1^{-}} \mathfrak{T}_{\Sigma}^{1,1, q}(1, I, \varphi)=\mathcal{S}_{\Sigma}^{*}(\varphi)$, where the class $\mathcal{S}_{\Sigma}^{*}(\varphi)$ was introduced and studied by Ali et al. 3];
(vii) $\lim _{q \longrightarrow 1^{-}} \mathfrak{T}_{\Sigma}^{1,1, q}\left(1, I,\left(\frac{1+z}{1-z}\right)^{\alpha}\right)=\mathcal{S}_{\Sigma}^{*}(\alpha)(0<\alpha \leq 1)$, where the class $\mathcal{S}_{\Sigma}^{*}(\alpha)$ was introduced and studied by Brannan and Taha [7;
(viii) $\lim _{q \longrightarrow 1^{-}-\mathfrak{T}_{\Sigma}^{1,1, q}}\left(1, I, \frac{1+(1-2 \beta) z}{1-z}\right)=\mathcal{S}_{\Sigma}^{*}(\beta)(0 \leq \beta<1)$, where the class $\mathcal{S}_{\Sigma}^{*}(\beta)$ was introduced and studied by Brannan and Taha [7].

Theorem 2.2. If the function f given by (1.1) belongs to the class $\mathfrak{T}_{\Sigma}^{\lambda, p, q}(\eta, \zeta, \varphi)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|\eta| B_{1} \sqrt{B_{1}}}{\Psi_{1} \sqrt{\left|\eta\left[(q-1)(p+q)+p^{2}\right] B_{1}^{2}+(p+q-1)^{2}\left(B_{1}-B_{2}\right)\right|}} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|\eta|}{\Psi_{2}}\left[\frac{B_{1}+\left|B_{2}-B_{1}\right|}{\left|(q-1)(p+q)+p^{2}\right|}\right] \tag{2.5}
\end{equation*}
$$

where $\Psi_{n-1}, n \in\{2,3\}$ is given by 1.6 .
Proof. If $f \in \mathfrak{T}_{\Sigma}^{\lambda, p, q}(\eta, \zeta, \varphi)$, from (2.2), (2.3), and the definition of subordination it follows that there exist two analytic functions $u, v: U \longrightarrow U$ with $u(0)=v(0)=0$, such that

$$
\begin{equation*}
\frac{z D_{p q}\left(\mathcal{T}_{\zeta}^{\lambda, p, q} f(z)\right)}{\mathcal{T}_{\zeta}^{\lambda, p, q} f(z)}-1=\eta[\varphi(u(z))-1] \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{z D_{p q}(h(w))}{h(w)}-1=\eta[\varphi(v(w))-1] . \tag{2.7}
\end{equation*}
$$

We define the functions r and s in \mathcal{P} given by

$$
\begin{equation*}
r(z)=\frac{1+u(z)}{1-u(z)}=1+u_{1} z+u_{2} z^{2}+u_{3} z^{3}+\ldots \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
s(z)=\frac{1+v(z)}{1-v(z)}=1+v_{1} z+v_{2} z^{2}+v_{3} z^{3}+\ldots \tag{2.9}
\end{equation*}
$$

It follows from 2.8 and 2.9) that

$$
\begin{equation*}
u(z)=\frac{r(z)-1}{r(z)+1}=\frac{u_{1}}{2} z+\frac{1}{2}\left(u_{2}-\frac{u_{1}^{2}}{2}\right) z^{2}+\ldots \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
v(z)=\frac{s(z)-1}{s(z)+1}=\frac{v_{1}}{2} z+\frac{1}{2}\left(v_{2}-\frac{v_{1}^{2}}{2}\right) z^{2}+\ldots \tag{2.11}
\end{equation*}
$$

Using (2.10 and 2.11 with (2.1) lead us to

$$
\eta[\varphi(u(z))-1]=\frac{\eta B_{1} u_{1}}{2} z+\eta\left[\frac{1}{2}\left(u_{2}-\frac{u_{1}^{2}}{2}\right) B_{1}+\frac{1}{4} u_{1}^{2} B_{2}\right] z^{2}+\ldots
$$

and

$$
\eta[\varphi(v(z))-1]=\frac{\eta B_{1} v_{1}}{2} z+\eta\left[\frac{1}{2}\left(v_{2}-\frac{v_{1}^{2}}{2}\right) B_{1}+\frac{1}{4} v_{1}^{2} B_{2}\right] z^{2}+\ldots
$$

On the other hand,

$$
\begin{aligned}
& \frac{z D_{p q}\left(\mathcal{T}_{\zeta}^{\lambda, p, q} f(z)\right)}{\mathcal{T}_{\zeta}^{\lambda, p, q} f(z)}-1 \\
= & (p+q-1) \Psi_{1} a_{2} z+\left[\left(q(p+q)+p^{2}-1\right) \Psi_{2} a_{3}-(p+q-1) \Psi_{1}^{2} a_{2}^{2}\right] z^{2}+\ldots
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{z D_{p q}(h(w))}{h(w)}-1 & =-(p+q-1) \Psi_{1} a_{2} w \\
& +\left[\left((2 q-1)(p+q)+2 p^{2}-1\right) \Psi_{1}^{2} a_{2}^{2}-\left(q(p+q)+p^{2}-1\right) \Psi_{2} a_{3}\right] w^{2}+\ldots
\end{aligned}
$$

Now, equating the coefficients in (2.6) and (2.7), we get

$$
\begin{align*}
(p+q-1) \Psi_{1} a_{2} & =\frac{\eta B_{1} u_{1}}{2}, \tag{2.12}\\
\left(q(p+q)+p^{2}-1\right) \Psi_{2} a_{3}-(p+q-1) \Psi_{1}^{2} a_{2}^{2} & =\eta\left[\frac{1}{2}\left(u_{2}-\frac{u_{1}^{2}}{2}\right) B_{1}+\frac{1}{4} u_{1}^{2} B_{2}\right], \tag{2.13}\\
-(p+q-1) \Psi_{1} a_{2} w & =\frac{\eta B_{1} v_{1}}{2}, \tag{2.14}
\end{align*}
$$

and

$$
\begin{equation*}
\left((2 q-1)(p+q)+2 p^{2}-1\right) \Psi_{1}^{2} a_{2}^{2}-\left(q(p+q)+p^{2}-1\right) \Psi_{2} a_{3}=\eta\left[\frac{1}{2}\left(v_{2}-\frac{v_{1}^{2}}{2}\right) B_{1}+\frac{1}{4} v_{1}^{2} B_{2}\right] . \tag{2.15}
\end{equation*}
$$

From 2.12 and 2.14, we get

$$
\begin{equation*}
u_{1}=-v_{1} \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
2(p+q-1)^{2} \Psi_{1}^{2} a_{2}^{2}=\frac{\eta^{2} B_{1}^{2}}{4}\left(u_{1}^{2}+v_{1}^{2}\right) . \tag{2.17}
\end{equation*}
$$

Now from (2.13), 2.15 and (2.17), we obtain

$$
\begin{aligned}
2\left[(q-1)(p+q)+p^{2}\right] \Psi_{1}^{2} a_{2}^{2} & =\frac{\eta B_{1}}{2}\left(u_{2}+v_{2}\right)+\frac{\eta\left(B_{2}-B_{1}\right)}{4}\left(u_{1}^{2}+v_{1}^{2}\right) \\
& =\frac{\eta B_{1}}{2}\left(u_{2}+v_{2}\right)+\frac{2\left(B_{2}-B_{1}\right)(p+q-1)^{2} \Psi_{1}^{2} a_{2}^{2}}{\eta B_{1}^{2}} .
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
a_{2}^{2}=\frac{\eta^{2} B_{1}^{3}\left(u_{2}+v_{2}\right)}{4 \Psi_{1}^{2}\left[\eta\left[(q-1)(p+q)+p^{2}\right] B_{1}^{2}+(p+q-1)^{2}\left(B_{1}-B_{2}\right)\right]} . \tag{2.18}
\end{equation*}
$$

Using the Lemma 1.2 that $\left|u_{2}\right| \leq 2$ and $\left|v_{2}\right| \leq 2$, we immediately have the bound for $\left|a_{2}\right|$ as asserted in 2.4.
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting 2.15 from 2.13 and using 2.16, we get

$$
\begin{align*}
& 2\left(q(p+q)+p^{2}-1\right) \Psi_{2} a_{3}-2\left(q(p+q)+p^{2}-1\right) \Psi_{1}^{2} a_{2}^{2} \tag{2.19}\\
= & \eta\left[\frac{1}{2}\left(u_{2}-\frac{u_{1}^{2}}{2}\right) B_{1}+\frac{1}{4} u_{1}^{2} B_{2}\right]-\eta\left[\frac{1}{2}\left(v_{2}-\frac{v_{1}^{2}}{2}\right) B_{1}+\frac{1}{4} v_{1}^{2} B_{2}\right] \\
= & \frac{\eta}{2} B_{1}\left(u_{2}-v_{2}\right) .
\end{align*}
$$

It follows from 2.15 and 2.19 that

$$
\left((q-1)(p+q)+p^{2}\right) \Psi_{2} a_{3}=\frac{\eta\left[(2 q-1)(p+q)+2 p^{2}-1\right] B_{1}\left(u_{2}-v_{2}\right)}{4\left(q(p+q)+p^{2}-1\right)}+\frac{\eta}{2} B_{1} v_{2}+\frac{\eta}{4}\left(B_{2}-B_{1}\right) v_{1}^{2}
$$

and then,

$$
\begin{equation*}
a_{3}=\frac{\eta}{\Psi_{2}}\left[\frac{\left[\left((2 q-1)(p+q)+2 p^{2}-1\right) u_{2}+(p+q-1) v_{2}\right] B_{1}+v_{1}^{2}\left(q(p+q)+p^{2}-1\right)\left(B_{2}-B_{1}\right)}{4\left(q(p+q)+p^{2}-1\right)\left((q-1)(p+q)+p^{2}\right)}\right] . \tag{2.20}
\end{equation*}
$$

Taking the absolute value of 2.20 , and applying Lemma 1.2 once again for the coefficients v_{1}, v_{2} and u_{2}, we readily get the inequality 2.5.

Taking $p=1$ in Theorem [2.2, we obtain the following corollary which improves the result of El-Deeb et al. [[15, Theorem 1].

Corollary 2.3. If the function f given by 1.1 belongs to the class $\mathfrak{T}_{\Sigma}^{\lambda, q}(\eta, \zeta, \varphi)$, then

$$
\left|a_{2}\right| \leq \frac{|\eta| B_{1} \sqrt{B_{1}}}{q \Psi_{1} \sqrt{\left|\eta B_{1}^{2}+B_{1}-B_{2}\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{|\eta|}{q^{2} \Psi_{2}}\left[B_{1}+\left|B_{2}-B_{1}\right|\right],
$$

where $\Psi_{n-1}, n \in\{2,3\}$ is given by 1.6 .

Taking $q \longrightarrow 1^{-}$in Corollary 2.3 , we obtain the following corollary which improves the result of El-Deeb et al. [15], Corollary 1].

Corollary 2.4. If the function f given by (1.1) belongs to the class $\mathfrak{T}_{\Sigma}^{\lambda}(\eta, \zeta, \varphi)$, then

$$
\left|a_{2}\right| \leq \frac{|\eta| B_{1} \sqrt{B_{1}}}{\Psi_{1} \sqrt{\left|\eta B_{1}^{2}+B_{1}-B_{2}\right|}},
$$

and

$$
\left|a_{3}\right| \leq \frac{|\eta|}{\Psi_{2}}\left[B_{1}+\left|B_{2}-B_{1}\right|\right]
$$

where $\Psi_{n-1}, n \in\{2,3\}$ is given by 1.6 .

Taking $\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}=1+2 \alpha z+2 \alpha^{2} z^{2}+\ldots(0<\alpha \leq 1)$ in Theorem 2.2, we obtain the following corollary
Corollary 2.5. If the function f given by 1.1 belongs to the class $\mathcal{S}_{\Sigma}^{* \lambda, p, q}(\eta, \zeta, \alpha)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2|\eta| \alpha}{\Psi_{1} \sqrt{\left|2 \eta\left[(q-1)(p+q)+p^{2}\right] \alpha+(p+q-1)^{2}(1-\alpha)\right|}} \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|\eta|}{\Psi_{2}}\left[\frac{2 \alpha(1+|\alpha-1|)}{\left|(q-1)(p+q)+p^{2}\right|}\right] \tag{2.22}
\end{equation*}
$$

where $\Psi_{n-1}, n \in\{2,3\}$ is given by 1.6 .

Taking $\varphi(z)=\frac{1+(1-2 \beta) z}{1-z}=1+2(1-\beta) z+2(1-\beta) z^{2}+\ldots(0 \leq \beta<1)$ in Theorem 2.2 we obtain the following corollary.

Corollary 2.6. If the function f given by (1.1) belongs to the class $\mathcal{S}_{\Sigma}^{* \lambda, p, q}(\eta, \zeta, \beta)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{1}{\Psi_{1}} \sqrt{\frac{2|\eta|(1-\beta)}{\left|(q-1)(p+q)+p^{2}\right|}} \tag{2.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{2|\eta|}{\Psi_{2}}\left[\frac{(1-\beta)}{\left|(q-1)(p+q)+p^{2}\right|}\right] \tag{2.24}
\end{equation*}
$$

where $\Psi_{n-1}, n \in\{2,3\}$ is given by 1.6 .

Remark 2.7. (i) Taking $q \longrightarrow 1^{-}$and $\lambda=b_{n}=1$ in Corollary 2.3, we obtain the result obtained by Deniz [11], Corollary 2.3];
(ii) Taking $q \longrightarrow 1^{-}$and $\eta=\lambda=b_{n}=1$ in Corollary 2.3, we obtain the result obtained by Ali et al. [3], Corollary 2.1];
(iii) Taking $q \longrightarrow 1^{-}$and $p=\eta=\lambda=b_{n}=1$ in Corollary 2.5, the inequality in 2.21 reduces to the estimates obtained by Brannan and Taha [[7],Theorem 2.1];
(iv) Taking $q \longrightarrow 1^{-}$and $p=\eta=\lambda=b_{n}=1$ in Corollary 2.6, we obtain the result obtained by Brannan and Taha [[7],Theorem 3.1];

3 Fekete-Szegő Proplem for the Function Class $\boldsymbol{T}_{\Sigma}^{\lambda, p, q}(\eta, \zeta, \varphi)$.

Theorem 3.1. If the function f given by (1.1) belongs to the class $\mathfrak{T}_{\Sigma}^{\lambda, p, q}(\eta, \zeta, \varphi)$, then

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|\eta| B_{1}}{2 \Psi_{2}}\left(\left|L(\mu)+\frac{1}{q(p+q)+p^{2}-1}\right|+\left|L(\mu)-\frac{1}{q(p+q)+p^{2}-1}\right|\right) \tag{3.1}
\end{equation*}
$$

with

$$
\begin{equation*}
L(\mu)=\frac{\eta B_{1}^{2}\left(1-\frac{\Psi_{2}}{\Psi_{1}^{2}} \mu\right)}{\eta\left[(q-1)(p+q)+p^{2}\right] B_{1}^{2}+(p+q-1)^{2}\left(B_{1}-B_{2}\right)} \tag{3.2}
\end{equation*}
$$

where $\mu \in \mathbb{C}$ and $\Psi_{n-1}, n \in\{2,3\}$ is given by 1.6.
Proof. If $f \in \mathfrak{T}_{\Sigma}^{\lambda, p, q}(\eta, \zeta, \varphi)$ like in the proof of Theorem 2.2, from 2.19) we have,

$$
\begin{equation*}
a_{3}-\frac{\Psi_{1}^{2}}{\Psi_{2}} a_{2}^{2}=\frac{\eta B_{1}\left(u_{2}-v_{2}\right)}{4 \Psi_{2}\left(q(p+q)+p^{2}-1\right)} \tag{3.3}
\end{equation*}
$$

Multiplying (2.18) by $\left(\frac{\Psi_{1}^{2}}{\Psi_{2}}-\mu\right)$ we get:

$$
\begin{equation*}
\left(\frac{\Psi_{1}^{2}}{\Psi_{2}}-\mu\right) a_{2}^{2}=\frac{\eta^{2} B_{1}^{3}\left(\frac{\Psi_{1}^{2}}{\Psi_{2}}-\mu\right)\left(u_{2}+v_{2}\right)}{4 \Psi_{1}^{2}\left[\eta\left[(q-1)(p+q)+p^{2}\right] B_{1}^{2}+(p+q-1)^{2}\left(B_{1}-B_{2}\right)\right]} \tag{3.4}
\end{equation*}
$$

Adding (3.3) and (3.4), it follows that

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{\eta B_{1}}{4 \Psi_{2}}\left[\left(L(\mu)+\frac{1}{q(p+q)+p^{2}-1}\right) u_{2}+\left(L(\mu)-\frac{1}{q(p+q)+p^{2}-1}\right) v_{2}\right] \tag{3.5}
\end{equation*}
$$

where $L(\mu)$ is given by (3.2).
Taking the absolute value of (3.5), and applying Lemma 1.2 for the coefficients v_{2} and u_{2} we obtain the inequality (3.1).

Taking $p=1$ in Theoren 3.1, we obtain the following corollary which improves the result of El-Deeb et al. [[15], Theorem 2].

Corollary 3.2. If the function f given by (1.1) belongs to the class $\mathfrak{T}_{\Sigma}^{\lambda, q}(\eta, \zeta, \varphi)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|\eta| B_{1}}{2 \Psi_{2}}\left(\left|L(\mu)+\frac{1}{q(q+1)}\right|+\left|L(\mu)-\frac{1}{q(q+1)}\right|\right)
$$

with

$$
L(\mu)=\frac{\eta B_{1}^{2}\left(1-\frac{\Psi_{2}}{\Psi_{1}^{2}} \mu\right)}{q^{2}\left[\eta B_{1}^{2}+B_{1}-B_{2}\right]}
$$

where $\mu \in \mathbb{C}$ and $\Psi_{n-1}, n \in\{2,3\}$ is given by 1.6.

Taking $q \longrightarrow 1^{-}$in Corollary 3.2, we obtain the following corollary which improves the result of El-Deeb et al. [15], Corollary 5].

Corollary 3.3. If the function f given by (1.1) belongs to the class $\mathfrak{T}_{\Sigma}^{\lambda}(\eta, \zeta, \varphi)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|\eta| B_{1}}{2 \Psi_{2}}\left(\left|L(\mu)+\frac{1}{2}\right|+\left|L(\mu)-\frac{1}{2}\right|\right)
$$

with

$$
L(\mu)=\frac{\eta B_{1}^{2}\left(1-\frac{\Psi_{2}}{\Psi_{1}^{2}} \mu\right)}{\eta B_{1}^{2}+B_{1}-B_{2}}
$$

where $\mu \in \mathbb{C}$ and $\Psi_{n-1}, n \in\{2,3\}$ is given by 1.6.

Taking $\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}(0<\alpha \leq 1)$ in Corollary 3.2 , we obtain the following corollary which improves the result of El-Deeb et al. [[15], Example 3].

Corollary 3.4. If the function f given by (1.1) belongs to the class $\mathfrak{T}_{\Sigma}^{\lambda, q}\left(\eta, \zeta,\left(\frac{1+z}{1-z}\right)^{\alpha}\right)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|\eta| \alpha}{\Psi_{2}}\left(\left|L(\mu)+\frac{1}{q(q+1)}\right|+\left|L(\mu)-\frac{1}{q(q+1)}\right|\right)
$$

with

$$
L(\mu)=\frac{2 \eta \alpha\left(1-\frac{\Psi_{2}}{\Psi_{1}^{2}} \mu\right)}{q^{2}[(2 \eta-1) \alpha+1]}
$$

where $\mu \in \mathbb{C}$ and $\Psi_{n-1}, n \in\{2,3\}$ is given by 1.6.

Taking $\varphi(z)=\frac{1+(1-2 \beta) z}{1-z}(0 \leq \beta<1)$ in Corollary 3.2 , we obtain the following corollary which improves the result of El-Deeb et al.[[15], Remark 6].

Corollary 3.5. If the function f given by (1.1) belongs to the class $\mathfrak{T}_{\Sigma}^{\lambda, q}\left(\eta, \zeta, \frac{1+(1-2 \beta) z}{1-z}\right)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|\eta|(1-\beta)}{\Psi_{2}}\left(\left|L(\mu)+\frac{1}{q(q+1)}\right|+\left|L(\mu)-\frac{1}{q(q+1)}\right|\right)
$$

with

$$
L(\mu)=\frac{1}{q^{2}}\left(1-\frac{\Psi_{2}}{\Psi_{1}^{2}} \mu\right)
$$

where $\mu \in \mathbb{C}$ and $\Psi_{n-1}, n \in\{2,3\}$ is given by (1.6).
Remark 3.6. We mention that all the above estimations for the first two Taylor-Maclaurin coefficients and FeketeSzegő problem for the function class $\mathfrak{T}_{\Sigma}^{\lambda, p, q}(\eta, \zeta, \varphi)$ are not sharp. To find the sharp upper bounds for the above function class, it still is an interesting open problem, as well as for $\left|a_{n}\right|, n \geq 4$.

References

[1] A.M. Abd-Eltawab, Coefficient estimates of te-univalent functions associated with the Dziok-Srivastava operator, Int. J. Open Prob. Complex Anal. 13 (2021), no. 2, 14-28.
[2] T. Acar, A. Aral and S.A. Mohiuddine, On Kantorovich modification of (p, q)-Baskakov operators, J. Inequal. Appl. 2016 (2016), 1-14.
[3] R.M. Ali, S. K. Lee, V. Ravichandran and S. Supramanian, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), no. 3, 344-351.
[4] Ş. Altınkaya, Inclusion properties of Lucas polynomials for bi-univalent functions introduced through the q-analogue of the Noor integral operator, Turk. J. Math. 43 (2019), 620-629.
[5] M. Arif, M.U. Haq and J.L. Liu, A subfamily of univalent functions associated with q-analogue of Noor integral operator, J. Funct. Spaces 2018 (2018), ID 3818915, 1-5.
[6] D.A. Brannan and J. Clunie, Aspects of Contemporary Complex Analysis, Academic Press, New-York and London, 1980.
[7] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math. 31 (1986), 70-77.
[8] J.D. Bukweli-Kyemba and M.N. Hounkonnou, Quantum deformed algebras: coherent states and special functions, arXiv preprint arXiv:1301.0116 (2013).
[9] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
[10] R. Chakrabarti and R. Jagannathan, A (p, q)-oscillator realization of two-parameter quantum, J. Phys. Math. Gen. 24 (1991), no. 13, L711-L718.
[11] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Classical Anal. 2 (2013), no. 1, 49-60.
[12] P.L. Duren, A Univalent functions, Springer-Verlag, Berlin-New York, 1983.
[13] S.M. El-Deeb and T. Bulboacă, Differential sandwich-type results for symmetric functions connected with a q analog integral operator, Math. 7 (2019), no. 12, 1185.
[14] S.M. El-Deeb and T. Bulboacă, Fekete-Szegő inequalities for certain class of analytic functions connected with q-anlogue of Bessel function, J. Egypt. Math. Soc. 27 (2019), 1-11.
[15] S. M. El-Deeb, T. Bulboacă and B. M. El-Matary, Maclaurin coefficient estimates of bi-univalent functions connected with the q-derivative, Math. 8 (2020), no. 3, 418.
[16] M. Fekete and G. Szegő, Eine Bemerkung über ungerade schlichte Funktionen, J. Lond. Math. Soc. 8 (1933), 85-89.
[17] F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193-203.
[18] F.H. Jackson, q-difference equations, Am. J. Math. 32 (1910), no. 4, 305-314.
[19] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68.
[20] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proc. Conf. Complex Anal. Z. Li, F. Ren, L. Yang, and S. Zhang (Eds), 1992, pp. 157-169.
[21] S.S. Miller and P.T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker Inc., New York and Basel, 2000.
[22] E. Netanyahu, The minimal distance of the image boundary from origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal. 32 (1969), 100-112.
[23] H. Orhan and H. Arikan, (P, Q)-Lucas polynomial coefficient inequalities of bi-univalent functions defined by the combination of both operators of Al-Aboudi and Ruscheweyh, Afr. Mat. 32 (2021), no. 3, 589-598.
[24] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Gttingen, 1975.
[25] S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal. 2014 (2014), 984135.
[26] J.K. Prajapat, Subordination and superordination preserving properties for generalized multiplier transformation operator, Math. Comput. Model. 55 (2012), 1456-1465.
[27] P.N. Sadjang, On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas, arXiv:1309.3934
[math.QA] (2013).
[28] H.M. Srivastava, A.K. Mishra and M.K. Das, The fekete-szegő problem for a subclass of close-to-convex functions, Complex Var. Elliptic Equ. 44 (2001), 145-163.
[29] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.
[30] H.M. Srivastava, A.K. Wanas and R. Srivastava, Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials, Symmetry 13 (2021), Article ID 1230, 1-14.
[31] H.M. Srivastava, N. Raza, E.S.A. AbuJarad and M.H. AbuJarad, Fekete-Szegö inequality for classes of (p, q)starlike and (p, q)-convex functions, RACSAM 113 (2019), 3563-3584.
[32] A.K. Wanas and L.-I. Cotîrlǎ, Initial coefficient estimates and Fekete-Szegö inequalities for new families of biunivalent functions governed by $(p-q)$-Wanas operator, Symmetry 13 (2021), Article ID 2118, 1-17.

[^0]: *Corresponding author
 Email addresses: ams03@fayoum.edu.eg (Ahmed M. Abd-Eltawab), abbas.kareem.w@qu.edu.iq (Abbas Kareem Wanas)

