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Abstract

In the paper, we study the value distribution of the differential polynomial ϕfnf (k)−1, where f(z) is a transcendental
meromorphic function, ϕ(z)( ̸≡ 0) is a small function of f(z) and n(> 2), k(≥ 1) are integers. We prove an inequality
which will give an upper bound for the characteristic function T (r, f) in terms of reduced counting function only.
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1 Introduction

In this paper by meromorphic function we shall always mean meromorphic function in the complex plane C.
We shall use standard notations of the Nevanlinna theory of meromorphic functions as explained in [3, 7, 13, 14].
We denote by T (r, f) the Nevanlinna characteristic function of a nonconstant meromorphic function f(z) and by
S(r, f) any quantity satisfying S(r, f) = o{T (r, f)} for all r possibly outside a set of finite logarithmic measure. A
meromorphic function ϕ(z) is said to be a small function of f(z), if T (r, ϕ) = S(r, f).

In this research work the following definitions will be needed.

Definition 1.1. [14] Let f(z) be a nonconstant meromorphic function and p be a positive integer or infinity. For
a ∈ C ∪ {∞}, we denote by Np)(r,

1
f−a ) the counting function of those zeros of f(z) − a whose multiplicities are

not greater than p and by Np)(r,
1

f−a ) the corresponding reduced counting function. We denote by N(p+1(r,
1

f−a )

the counting function of those zeros of f(z) − a whose multiplicities are greater than p and by N (p+1(r,
1

f−a ) the

corresponding reduced counting function. We denote by Np(r,
1

f−a ) the counting function of those zeros of f(z) − a
whose multiplicities are exactly p.

Definition 1.2. [14] Suppose that f(z) is a nonconstant meromorphic function in the complex plane C, and α(z) is a
small function of f(z). Let n0, n1, · · · , nk be nonnegative integers. We denote by M(f) = αfn0(f ′)n1 · · · (f (k))nk the

differential monomial in f and by n =
∑k
j=0 nj the degree of M(f). Also let M1(f),M2(f), · · · ,Mk(f) be differential
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monomials in f of degree m1,m2, · · · ,mk respectively. The summation P (f) =
∑k
j=1Mj(f) is said to be differential

polynomial in f and m = max{m1,m2, · · · ,mk}, the degree of P (f).

2 Preliminaries

A lot of research works have been done in the field of value distribution of differential polynomials of meromorphic
functions by many mathematicians from different part of the world (See [4, 5, 9, 11, 12, 15, 16]). In 1979, E. Mues [8]
first proved a qualitative result in this topic. The result is as follows:

Theorem 2.1. Let f(z) be a transcendental meromorphic function in the complex plane. Then f2f ′−1 has infinitely
many zeros.

In 1992, Q.D. Zhang [15] proved a quantitative result of Theorem 2.1, which is as follows:

Theorem 2.2. Let f(z) be a transcendental meromorphic function in the complex plane. Then

T (r, f) ≤ 6N

(
r,

1

f2f ′ − 1

)
+ S(r, f).

In 2011, J.F. Xu, H.X. Yi and Z.L. Zhang [12] improved Theorem 2.2 by estimating the reduced counting function.
Their result is as follows:

Theorem 2.3. Let f(z) be a transcendental meromorphic function in the complex plane. Then

T (r, f) ≤MN

(
r,

1

f2f (k) − 1

)
+ S(r, f),

where M is 6 if k = 1 or k ≥ 3 and M is 10 if k = 2.

In 1992, Q.D. Zhang [16] also studied the value distribution in case of small functions involved in differential
equation and got the following result:

Theorem 2.4. Let f(z) be a transcendental meromorphic function in the complex plane and ϕ(z)(̸≡ 0) be a small
function of f(z). Then

T (r, f) ≤ 6N

(
r,

1

ϕf2f ′ − 1

)
+ S(r, f).

In 2016, J.F. Xu and H.X. Yi [10] improved Theorem 2.4 by considering reduced counting function and proved the
following result:

Theorem 2.5. Let f(z) be a transcendental meromorphic function in the complex plane and ϕ(z)(̸≡ 0) be a small
function of f(z). Then

T (r, f) ≤ 6N

(
r,

1

ϕf2f ′ − 1

)
+ S(r, f).

In 2018, H. Karmakar and P. Sahoo [6] proved following result which certainly improves Theorem 2.3.

Theorem 2.6. Let f(z) be a transcendental meromorphic function and n(≥ 2), k(≥ 1) be integers. Then

T (r, f) ≤ 6

2n− 3
N

(
r,

1

fnf (k) − 1

)
+ S(r, f).

Now it is natural to ask the following question:
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Question 2.1. What will be the result if we replace fnf (k) − 1 by ϕfnf (k) − 1 in Theorem 2.6 where ϕ(z)( ̸≡ 0) is a
small function of f(z) ?

Recently, G. Biswas and P. Sahoo [1] gave answer to the above question for n = 2. They proved the following result:

Theorem 2.7. Let f(z) be a transcendental meromorphic function in the complex plane, k(≥ 2) be an integer and
ϕ(z)(̸≡ 0) be a small function of f(z) such that the set of zeros and poles of f(z) and that of ϕ(z) are disjoint and
ϕ(z) has no zero of multiplicity 2. Then

T (r, f) ≤ 6N

(
r,

1

ϕf2f (k) − 1

)
+ S(r, f).

3 Main Result

In this paper we investigate to find out possible answer for the question 2.1 for n > 2 and obtain the following
result:

Theorem 3.1. Let f(z) be a transcendental meromorphic function in the complex plane, n(> 2), k(≥ 1) be any
integers and ϕ(z)(̸≡ 0) be a small function of f(z). If the sets A = {z : f(z) = 0 or ∞} and B = {z : ϕ(z) = 0 or ∞}
are disjoint and ϕ(z) has no zero of order n then

T (r, f) ≤ 6

2n− 3
N

(
r,

1

ϕfnf (k) − 1

)
+ S(r, f).

Remark 3.1. Theorem 3.1 is a direct extension of Theorem 2.6 for (n > 2) as it proves that the result remains
unaffected if we involve a small function as coefficient.

4 Lemmas

Suppose that f(z) is a transcendental meromorphic function and ϕ(z)( ̸≡ 0) is a small function of f(z). Let us

define g(z) = ϕ(z)fn(z)f (k)(z)− 1 and h(z) = g′(z)
fn−1(z) where n ≥ 2, k ≥ 1 are integers. Also let

F (z) = a1

(
g′(z)

g(z)

)2

+ a2

(
g′(z)

g(z)

)′

+ a3
g′(z)

g(z)
· h

′(z)

h(z)
+ a4

(
h′(z)

h(z)

)2

+ a5

(
h′(z)

h(z)

)′

+a6
g′(z)

g(z)
· ϕ

′(z)

ϕ(z)
+ a7

h′(z)

h(z)
· ϕ

′(z)

ϕ(z)
+ a8

(
ϕ′(z)

ϕ(z)

)2

+ a9

(
ϕ′(z)

ϕ(z)

)′

, (4.1)

where for k = 1,
a1 = 2(4n2 + 8n+ 7), a2 = 2(n+ 2)(4n2 − 1),
a3 = −2(n+ 2)(2n2 + 3n+ 4), a4 = (n+ 1)(n+ 2)2,
a5 = −(n+ 2)2(2n− 1), a6 = 2(n+ 1)(n+ 2)(2n− 5),
a7 = 3(n+ 2)2, a8 = −(n+ 2)2(4n2 − 5n− 12),
a9 = −(n+ 2)2(4n2 − 4n− 11)
and for k ≥ 2,
a1 = {(n− 1)k + (3n− 1)}{(n− 1)k3 − 3(n3 − 2n+ 1)k2 − 3(6n3 − 3n+ 1)k − (27n3 − 4n+ 1)},
a2 = (n+ k + 1){(n− 1)k + (3n− 1)}2{(n− 1)k2 − (3n2 − 5n+ 2)k − (9n2 − 4n+ 1)},
a3 = −2n(n+ k + 1){(n− 1)k + (3n− 1)}{(n− 1)k2 − (3n2 − 5n+ 2)k − (9n2 − 4n+ 1)},
a4 = n2(n− 1)(k + 1)(n+ k + 1)2{(n− 1)k + (3n− 1)},
a5 = −n(n− 1)(k + 1)(n+ k + 1)2{(n− 1)k + (3n− 1)}2,
a6 = 2(n− 1){(n− 1)k2 − (3n2 − 5n+ 2)k − (9n2 − 4n+ 1)}{(n− 1)k2 + (n2 + 3n− 2)k + (3n2 + 2n− 1)},
a7 = −2n(n− 1)2(k + 1)(n+ k + 1)2{(n− 1)k + (3n− 1)},
a8 = (n− 1)3(k + 1)(n+ k + 1)2{(n− 1)k + (3n− 1)},
a9 = (n− 1)2(k + 1){(n− 1)k2 + (n2 + 3n− 2)k + (3n2 + 2n− 1)}2.



2912 Sarkar, Sahoo

Lemma 4.1. [2] Suppose that f(z) is a transcendental meromorphic function and fnP (f) = Q(f), where P (f) and
Q(f) are differential polynomials in f(z) with functions of small proximity related to f(z) as the coefficient and the
degree of Q(z) is at most n. Then m(r, P (f)) = S(r, f).

Lemma 4.2. [6] For two integers n(> 2), k(> 2), if

f(x) = (n− 1)
[{

(k + 1)n4 + 2(k2 + 5k + 10)n3 + (k + 1)2(k + 2)n2 − (k + 1)2(2k + 5)n

+ (k + 1)3
}
x2 + (n+ k + 1)(k + 1)

{
(k + 1)n3 + (k2 + 4k + 9)n2 − (2k2 + 7k + 5)n

+ (k + 1)2
}
x− n(n+ k + 1)2(k + 1)

{
(n− 1)k + (2n− 1)

}]
,

then f(x) = 0 has no solution in Z+.

Lemma 4.3. Let f(z), ϕ(z)( ̸≡ 0) and g(z) be defined as in the beginning of the section. Then g(z) is not equivalently
constant.

Proof . Suppose ϕ(z)fn(z)f (k)(z) ≡ C(a constant). Obviously C ̸= 0. Hence we have

1

fn+1
=
ϕ

C
· f

(k)

f
and

1

fnf (k)
=
ϕ

C
.

Therefore

m

(
r,

1

fn+1

)
= m

(
r,
ϕ

C
· f

(k)

f

)
.

i.e.,

(n+ 1)m

(
r,

1

f

)
≤ m

(
r,
ϕ

C

)
+m

(
r,
f (k)

f

)
+O(1) = S(r, f).

Also

N

(
r,

1

f

)
≤ N

(
r,

1

fnf (k)

)
= N

(
r,
ϕ

C

)
= S(r, f).

Therefore
T (r, f) = S(r, f),

a contradiction. Thus ϕ(z)fn(z)f (k)(z) is not equivalently constant and hence g(z) is not equivalently constant. This
completes the proof of Lemma 4.3. □

Lemma 4.4. Let f(z), ϕ(z)( ̸≡ 0) and g(z) be defined as in the beginning of the section. Then

(n+ 1)T (r, f) ≤ N(r, f) +N

(
r,

1

f

)
+Nk)

(
r,

1

f

)
+ kN (k+1

(
r,

1

f

)
+N

(
r,
1

g

)
−N0

(
r,

1

g′

)
+ S(r, f) (4.2)

and {
N(r, f)−N(r, f)

}
+

{
N

(
r,

1

f

)
−N

(
r,

1

f

)}
+

{
N(k+1

(
r,

1

f

)
− kN (k+1

(
r,

1

f

)}
+ (n− 2)N

(
r,

1

f

)
+m(r, f) + n m

(
r,

1

f

)
≤ N

(
r,
1

g

)
−N0

(
r,

1

g′

)
+ S(r, f), (4.3)

where N0

(
r, 1
g′

)
denotes the counting function of those zeros of g′ which are not zero of f or g.
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Proof .

By Lemma 4.3, we have g is not equivalently constant. Therefore we can write

1

fn+1
=
ϕfnf (k)

fn+1
− g′

fn+1
· g
g′
.

Then

(n+ 1)m

(
r,

1

f

)
≤ m

(
r,
ϕf (k)

f

)
+m

(
r,

g′

fn+1

)
+m

(
r,
g

g′

)
+O(1)

≤ m

(
r,
g

g′

)
+ S(r, f)

≤ T

(
r,
g

g′

)
−N

(
r,
g

g′

)
+ S(r, f)

= N

(
r,
g′

g

)
−N

(
r,
g

g′

)
+ S(r, f)

≤ N(r, g) +N

(
r,
1

g

)
−N

(
r,

1

g′

)
+ S(r, f)

≤ N(r, f) +N

(
r,
1

g

)
−N

(
r,

1

g′

)
+ S(r, f).

Therefore

(n+ 1)T (r, f) = (n+ 1)m

(
r,

1

f

)
+ (n+ 1)N

(
r,

1

f

)
+O(1)

≤ (n+ 1)N

(
r,

1

f

)
+N(r, f) +N

(
r,
1

g

)
−N

(
r,

1

g′

)
+ S(r, f). (4.4)

Let

N

(
r,

1

g′

)
= N000

(
r,

1

g′

)
+N00

(
r,

1

g′

)
+N0

(
r,

1

g′

)
+ S(r, f),

where N000

(
r, 1
g′

)
denotes the counting function of those zeros of g′ which comes from the zeros of g and N00

(
r, 1
g′

)
denotes the counting function of those zeros of g′ which comes from the zeros of f . Therefore

N

(
r,
1

g

)
−N000

(
r,

1

g′

)
= N

(
r,
1

g

)
.

Let z0 be a zero of f(z) with multiplicity p and pole of ϕ(z) with multiplicity q. Let us observe the following cases:
Case 1: Let p ≤ k. If q < np, then z0 is a zero of g′(z) with multiplicity at least (np− q− 1). If q ≥ np, then z0 is not
a zero of g′(z). Hence the zeros of g′(z) come from those zeros of f(z) with multiplicities not greater than k which are
poles of ϕ(z) with multiplicities less than np.
Case 2: Let p ≥ k + 1. If q < (n+ 1)p− k, then z0 is zero of g′(z) with multiplicity at least (n+ 1)p− k − q − 1. If
q ≥ (n + 1)p, then z0 is not a zero of g′(z). Hence the zeros of g′(z) come from the zeros of f(z) with multiplicities
greater than k and which are poles of ϕ(z) with multiplicities less than (n+ 1)p− k.
Therefore

N00

(
r,

1

g′

)
≥ nNk)

(
r,

1

f

)
−Nk)

(
r,

1

f

)
+ (n+ 1)N(k+1

(
r,

1

f

)
− (k + 1)N (k+1

(
r,

1

f

)
−
(
(n+ 1)p− k − 1

)
N(r, ϕ)

= nN

(
r,

1

f

)
+N(k+1

(
r,

1

f

)
− kN (k+1

(
r,

1

f

)
−N

(
r,

1

f

)
+ S(r, f).
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Therefore from (4.4) we get

(n+ 1)T (r, f) ≤ (n+ 1)N

(
r,

1

f

)
+N(r, f) +N

(
r,
1

g

)
− nN

(
r,

1

f

)
− N(k+1

(
r,

1

f

)
+ kN (k+1

(
r,

1

f

)
+N

(
r,

1

f

)
−N0

(
r,

1

g′

)
+ S(r, f)

= N(r, f) +N

(
r,

1

f

)
+Nk)

(
r,

1

f

)
+ kN (k+1

(
r,

1

f

)
+N

(
r,
1

g

)
− N0

(
r,

1

g′

)
+ S(r, f),

which is (4.2). Also

(n+ 1)T (r, f) = T (r, f) + n T

(
r,

1

f

)
+O(1)

= N(r, f) +m(r, f) + (n− 2)N

(
r,

1

f

)
+N

(
r,

1

f

)
+Nk)

(
r,

1

f

)
+ N(k+1

(
r,

1

f

)
+ n m

(
r,

1

f

)
+ S(r, f).

Therefore{
N(r, f)−N(r, f)

}
+

{
N

(
r,

1

f

)
−N

(
r,

1

f

)}
+

{
N(k+1

(
r,

1

f

)
− kN (k+1

(
r,

1

f

)}
+ (n− 2)N

(
r,

1

f

)
+m(r, f) + n m

(
r,

1

f

)
≤ N

(
r,
1

g

)
−N0

(
r,

1

g′

)
+ S(r, f),

which is (4.3). This completes the proof of Lemma 4.4. □

Lemma 4.5. Let f(z), ϕ(z)(̸≡ 0), g(z), h(z), F (z), ai
,s(i = 1, 2, · · · , 9), n and k be defined as in the beginning of

the section. If the sets A = {z : f(z) = 0 or ∞} and B = {z : ϕ(z) = 0 or ∞} are disjoint, then the simple poles of
f(z) are zeros of F (z).

Proof .

Let z0 be a simple pole of f . Since ϕ(z0) ̸= 0,∞, in some neighbourhood of z0, we write

f(z) =
a

z − z0

[
1 + b0(z − z0) + b1(z − z0)

2 + b2(z − z0)
3 +O

(
(z − z0)

4
)]

(4.5)

and

ϕ(z) = b
[
1 + c1(z − z0) + c2(z − z0)

2 + c3(z − z0)
3 +O

(
(z − z0)

4
)]
, (4.6)

where a( ̸= 0), b(̸= 0), b0, b1, b2, c1, c2 and c3 are constants. From (4.5) and (4.6) we get

f ′(z) =
a

(z − z0)2

[
− 1 + b1(z − z0)

2 + 2b2(z − z0)
3 +O

(
(z − z0)

4
)]
;

f (k)(z) =
(−1)kak!

(z − z0)k+1

[
1 + (−1)kbk(z − z0)

k+1 +O
(
(z − z0)

k+2
)]
;
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fn(z) =
an

(z − z0)n

[
1 + nb0(z − z0) +

1

2

{
n(n− 1)b20 + 2nb1

}
(z − z0)

2

+ O
(
(z − z0)

3
)]
;

ϕ′(z)

ϕ(z)
=

[
c1 +

(
2c2 − c21

)
(z − z0) +O

(
(z − z0)

2
)]
; (4.7)

(
ϕ′(z)

ϕ(z)

)2

=
[
c21 +

(
4c1c2 − 2c31

)
(z − z0) +O

(
(z − z0)

2
)]

(4.8)

and (
ϕ′(z)

ϕ(z)

)′

=
[(
2c2 − c21

)
+O

(
(z − z0)

)]
. (4.9)

Now we discuss the following two cases.
Case 1: Let k = 1. Then

g(z) = ϕ(z)fn(z)f ′(z)− 1 =
−an+1b

(z − z0)n+2

[
1 +

(
nb0 + c1

)
(z − z0)

+
1

2

{
n(n− 1)b20 + 2(n− 1)b1 + 2nb0c1 + 2c2

}
(z − z0)

2 +O
(
(z − z0)

3
)]

and

h(z) =
g′(z)

fn−1(z)
=

a2b

(z − z0)4

[
(n+ 2) +

{
2b0 + (n+ 1)c1

}
(z − z0)

+
{
b0c1 − 2(n− 1)b1 + nc2

}
(z − z0)

2 +O
(
(z − z0)

3
)]
.

Therefore we obtain

g′(z)

g(z)
=

−1

z − z0

[
(n+ 2)−

(
nb0 + c1

)
(z − z0) +

{
nb20 − 2(n− 1)b1

+ c21 − 2c2
}
(z − z0)

2 +O
(
(z − z0)

3
)]
; (4.10)

(
g′(z)

g(z)

)2

=
1

(z − z0)2

[
(n+ 2)2 − 2(n+ 2)

(
nb0 + c1

)
(z − z0)

+
{
n(3n+ 4)b20 − 4(n− 1)(n+ 2))b1 + 2nb0c1 + (2n+ 5)c21

− 4(n+ 2)c2
}
(z − z0)

2 +O
(
(z − z0)

3
)]
; (4.11)

(
g′(z)

g(z)

)′

=
1

(z − z0)2

[
(n+ 2)−

{
nb20 − 2(n− 1)b1 + c21 − 2c2

}
(z − z0)

2

+ O
(
(z − z0)

3
)]
; (4.12)

h′(z)

h(z)
=

−1

z − z0

[
4− 2b0 + (n+ 1)c1

n+ 2
(z − z0) +

{
4b20 + 2nb0c1 + (n+ 1)2c21

(n+ 2)2

+ 2
2(n− 1)b1 − nc2

n+ 2

}
(z − z0)

2 +O
(
(z − z0)

3
)]
; (4.13)



2916 Sarkar, Sahoo

(
h′(z)

h(z)

)2

=
1

(z − z0)2

[
16− 8

2b0 + (n+ 1)c1
n+ 2

(z − z0) +

{
16

2(n− 1)b1 − nc2
n+ 2

+
36b20 + 4(5n+ 1)b0c1 + 9(n+ 1)2c21

(n+ 2)2

}
(z − z0)

2 +O
(
(z − z0)

3
)]

(4.14)

and (
h′(z)

h(z)

)′

=
1

(z − z0)2

[
4−

{
4b20 + 2nb0c1 + (n+ 1)2c21

(n+ 2)2
+ 2

2(n− 1)b1 − nc2
n+ 2

}
(z − z0)

2

+ O
(
(z − z0)

3
)]
. (4.15)

From (4.7), (4.10) and (4.13) we get

g′(z)

g(z)
· h

′(z)

h(z)
=

1

(z − z0)2

[
4(n+ 2)−

{
2(2n+ 1)b0 + (n+ 5)c1

}
(z − z0)

+
{
2(2n+ 1)b20 − 4(n− 1)b1 + (n+ 5)c21 − 2(n+ 4)c2

+ (n+ 1)b0c1
}
(z − z0)

2 +O
(
(z − z0)

3
)]
; (4.16)

g′(z)

g(z)
· ϕ

′(z)

ϕ(z)
=

−1

z − z0

[
(n+ 2)c1 −

{
(n+ 3)c21 − 2(n+ 2)c2 + nb0c1

}
(z − z0)

+ O
(
(z − z0)

2
)]

(4.17)

and

h′(z)

h(z)
· ϕ

′(z)

ϕ(z)
=

−1

z − z0

[
4c1 −

{
2b0c1 + (5n+ 9)c21

n+ 2
− 8c2

}
(z − z0) +O

(
(z − z0)

2
)]
. (4.18)

Now substituting values from (4.8), (4.9), (4.11), (4.12) and (4.14) - (4.18) in the expression (4.1) we get F (z) =
O((z − z0)), which shows that z0 is a zero of F (z).

Case 2: Let k ≥ 2. Then

g(z) = ϕ(z)fn(z)f (k)(z)− 1 =
(−1)kk!an+1b

(z − z0)n+k+1

[
1 +

(
nb0 + c1

)
(z − z0)

+
1

2

{
n(n− 1)b20 + 2nb1 + 2nb0c1 + 2c2

}
(z − z0)

2 +O
(
(z − z0)

3
)]

and

h(z) =
g′(z)

fn−1(z)
=

(−1)k+1k!a2b

(z − z0)k+3

[
(n+ k + 1) +

{
(k + 1)b0 + (n+ k)c1

}
(z − z0)

+
{
kb0c1 − (n− k − 1)b1 + (n+ k − 1)c2

}
(z − z0)

2 +O
(
(z − z0)

3
)]
.

Therefore

g′(z)

g(z)
=

−1

z − z0

[
(n+ k + 1)−

(
nb0 + c1

)
(z − z0) +

{
nb20 − 2nb1

+ c21 − 2c2
}
(z − z0)

2 +O
(
(z − z0)

3
)]
; (4.19)
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(
g′(z)

g(z)

)2

=
1

(z − z0)2

[
(n+ k + 1)2 − 2(n+ k + 1)

(
nb0 + c1

)
(z − z0)

+
{
n(3n+ 2k + 2)b20 − 4n(n+ k + 1)b1 + 2nb0c1 + (2n+ 2k + 3)c21

− 4(n+ k + 1)c2
}
(z − z0)

2 +O
(
(z − z0)

3
)]
; (4.20)

(
g′(z)

g(z)

)′

=
1

(z − z0)2

[
(n+ k + 1)−

{
nb20 − 2nb1 + c21 − 2c2

}
(z − z0)

2

+ O
(
(z − z0)

3
)]
; (4.21)

h′(z)

h(z)
=

−1

z − z0

[
(k + 3)− (k + 1)b0 + (n+ k)c1

n+ k + 1
(z − z0)

+

{
(k + 1)2b20 + 2nb0c1 + (n+ k)2c21

(n+ k + 1)2
+ 2

(n− k − 1))b1 − (n+ k − 1)c2
n+ k + 1

}
(z − z0)

2

+ O
(
(z − z0)

3
)]
; (4.22)

(
h′(z)

h(z)

)2

=
1

(z − z0)2

[
(k + 3)2 − 2(k + 3)

(k + 1)b0 + (n+ k)c1
n+ k + 1

(z − z0)

+

{
(k + 1)2(2k + 7)b20 + (14n+ 6nk + 2k2 + 2k)b0c1 + (n+ k)2(2k + 7)c21

(n+ k + 1)2

+ 4(k + 3)
(n− k − 1)b1 − (n+ k − 1)c2

n+ k + 1

}
(z − z0)

2 +O
(
(z − z0)

3
)]

(4.23)

and (
h′(z)

h(z)

)′

=
1

(z − z0)2

[
(k + 3)−

{
(k + 1)2b20 + 2nb0c1 + (n+ k)2c21

(n+ k + 1)2

+ 2
(n− k − 1)b1 − (n+ k − 1)c2

n+ k + 1

}
(z − z0)

2 +O
(
(z − z0)

3
)]
. (4.24)

From (4.7), (4.19) and (4.22) we get

g′(z)

g(z)
· h

′(z)

h(z)
=

1

(z − z0)2

[
(n+ k + 1)(k + 3)−

{
(nk + k + 3n+ 1)b0

+ (n+ 2k + 3)c1
}
(z − z0) +

{
(nk + k + 3n+ 1)b20

− 2(nk + k + 2n+ 1)b1 + (n+ 2k + 3)c21 − 2(n+ 2k + 2)c2

+ (n+ 1)b0c1
}
(z − z0)

2 +O
(
(z − z0)

3
)]
; (4.25)

g′(z)

g(z)
· ϕ

′(z)

ϕ(z)
=

−1

z − z0

[
(n+ k + 1)c1 +

{
2(n+ k + 1)c2

− (n+ k + 2)c21 − nb0c1
}
(z − z0) +O

(
(z − z0)

2
)]

(4.26)

and

h′(z)

h(z)
· ϕ

′(z)

ϕ(z)
=

−1

z − z0

[
(k + 3)c1 +

{
2(k + 3)c2 −

(k + 1)b0c1
n+ k + 1

− ((n+ k + 1)(k + 3) + (n+ k)) c21
n+ k + 1

}
(z − z0) +O

(
(z − z0)

2
)]
. (4.27)
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Now substituting values from (4.8), (4.9), (4.20), (4.21) and (4.23) - (4.27) in the expression (4.1) we get F (z) =
O
(
(z − z0)

)
i.e., z0 is a zero of F (z). This proves that the simple poles of f(z) are zeros of F (z). This completes the

proof of Lemma 4.5. □

Lemma 4.6. Let f(z), ϕ(z)( ̸≡ 0), g(z), h(z), F (z), ai
,s (i = 1, 2, · · · , 9), n(> 2) and k be defined as in the beginning

of this section. If the sets A = {z : f(z) = 0 or ∞} and B = {z : ϕ(z) = 0 or ∞} are disjoint and ϕ(z) has no zero of
multiplicity n, then F (z) ̸≡ 0.

Proof . If possible, we assume that F (z) ≡ 0. Under this hypothesis we shall show that
i) g(z) has no zero,
ii) ϕ(z) has no zero and pole,
iii) h(z) has no zero,
iv) f(z) has no multiple zero.

Suppose that z1 is a zero of g(z) of multiplicity l1(≥ 1). Then it is clear that f(z1) ̸= 0,∞, ϕ(z1) ̸= 0,∞ and
z1 is a zero of h(z) with multiplicity (l1 − 1). Then from Laurent series expansion of F (z) we get the coefficient of
(z − z1)

−2 as
A(l1) = (a1 + a3 + a4)l

2
1 − (a2 + a3 + 2a4 + a5)l1 + (a4 + a5).

For k = 1, putting values of ai
,s (i = 1, 2, · · · , 9) we get

A(l1) = −
{
(n+ 1)(3n2 − 2n− 2)l21 + (n+ 2)(4n2 − 3n− 4)l1 + (n+ 2)2(n− 2)

}
.

Obviously A(l1) does not vanish for any positive integral values of l1. Thus z1 is a pole of F (z), which contradicts our
hypothesis.
For k ≥ 2, putting the values of ai

,s (i = 1, 2, · · · , 9) we get

A(l1) = (n− 1)
{
(n− 1)k + (3n− 1)

}[{
(k + 1)n4 + 2(k2 + 5k + 10)n3 + (k + 1)2(k + 2)n2

− (k + 1)2(2k + 5)n+ (k + 1)3
}
l21 + (n+ k + 1)(k + 1)

{
(k + 1)n3 + (k2 + 4k + 9)n2

− (2k2 + 7k + 5)n+ (k + 1)2
}
l1 − n(n+ k + 1)2(k + 1)

{
(n− 1)k + (2n− 1)

}]
.

By Lemma 4.2 we get that A(l1) does not vanish for any positive integral values of l1. Therefore z1 is a pole of F (z),
which is contradictory to our hypothesis. Thus z1 is not a zero of g(z). Therefore g(z) has no zero.

Now let z2 be a zero of ϕ(z) of multiplicity l2(≥ 1). Then it is a zero of h(z) of multiplicity (l2 − 1) but not a zero
of g(z). Therefore from Laurent series expansion of F (z) we get the coefficient of (z − z2)

−2 as

B(l2) = (a4 + a7 + a8)l
2
2 − (2a4 + a5 + a7 + a9)l2 + (a4 + a5).

For k = 1, putting values of ai
,s (i = 1, 2, · · · , 9) we get

B(l2) = −(n+ 2)2
{
2(2n2 − 3n− 8)l22 − (4n2 − 4n− 17)l2 + (n− 2)

}
.

B(l2) = 0 gives

l2 =
(4n2 − 4n− 17)±

√
16n4 − 48n3 − 64n2 + 152n+ 161

4(2n2 − 3n− 8)
.

Now let d = 16n4 − 48n3 − 64n2 + 152n+ 161 and M = (4n2 − 6n − 13). Then we see that M2 < d < (M + 1)2 for
n > 2. Thus d is not a perfect square for n > 2. Therefore B(l2) does not vanish for any positive integer value of l2.
Then z2 is pole of F (z), a contradiction.

For k ≥ 2, putting the values of ai
,s (i = 1, 2, · · · , 9) we get

B(l2) = (k + 1)(n− 1)(n+ k + 1)2
{
(n− 1)k + (3n− 1)

}[
l22 + (k + 1)(n− 1)l2 − n

{
(n− 1)k + (2n− 1)

}]
.

B(l2) = 0 gives l2 = n,−
{
(n − 1)k + (2n − 1)

}
. Since ϕ(z) has no zero of multiplicity n, B(l2) does not vanish

for any positive integral values of l2. Then z2 is a pole of F (z), a contradiction. Therefore z2 is not zero of ϕ(z) and
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hence ϕ(z) has no zero.

Let z3 be a pole of ϕ(z) of multiplicity l3(≥ 1). Then it is a pole of g(z) of multiplicity l3 and a pole of h(z) of
multiplicity (l3 + 1). Therefore from Laurent series expansion of F (z) we get the coefficient of (z − z3)

−2 as

C(l3) = (a1 + a3 + a4 + a6 + a7 + a8)l
2
3 + (a2 + a3 + 2a4 + a5 + a7 + a9)l3 + (a4 + a5).

For k = 1, putting values of ai
,s (i = 1, 2, · · · , 9) we get

C(l3) = −
{
(4n4 + 10n3 − 20n2 − 62n− 42)l23 + (4n4 + 8n3 − 19n2 − 62n− 48)l3 + (n+ 2)2(n− 2)

}
.

Now (4n4+10n3− 20n2− 62n− 42), (4n4+8n3− 19n2− 62n− 48) and (n+2)2(n− 2) are positve for all values of
n(> 2). Therefore C(l3) does not vanish for any positive integral values of l3. Then z3 is a pole of F (z), a contradiction.
Therefore z3 is not a pole of ϕ(z).

For k(≥ 2), putting the values of ai
,s (i = 1, 2, · · · , 9) we get

C(l3) = −n(n− 1)(k + 1)
[{

3(n− 1)2k2 + (17n2 − 23n+ 6)k + (24n2 − 17n+ 3)
}
l23

+ 2
{
2(n− 1)2k3 + (2n3 + 9n2 − 17n+ 6)k2 + (11n3 + 11n2 − 22n+ 6)k

+ (15n3 + 4n2 − 9n+ 2)
}
l3 + (n+ k + 1)2

{
(n− 1)k + (3n− 1)

}{
(n− 1)k + (2n− 1)

}]
C(l3) = 0 gives l3 = −(n + k + 1) or − (n−1)k2+(n2+2n−2)k+(2n2+n−1)

3(n−1)k+8n−3 . Clearly C(l3) does not vanish for any positive

integral values of l3. Then z3 is a pole of F (z), a contradiction. Therefore ϕ(z) has no pole.

Let z4 be a zero of h(z) of multiplicity l4. Then z4 may be a zero of ϕ(z) of multiplicity (l4 + 1). But we already
have shown that ϕ(z) has no zero. Also z4 is not a zero or pole of g(z). Then from Laurent series expansion of F (z)
we get the coefficient of (z − z4)

−2 as
D(l4) = a4l

2
4 − a5l4.

Clearly D(l4) does not vanish for any positive values of l4. Then z4 is a pole of F (z), a contradiction. Hence h(z)
has no zero.

Now since multiple zeros of f(z) are also zero of h(z), f(z) has no multiple zero.

Set

ψ(z) =
h(z)

g(z)
=
g′(z)

g(z)
· 1

fn−1(z)

=
ϕ(z)

{
f(z)f (k+1)(z) + nf ′(z)f (k)(z)

}
+ ϕ′(z)f(z)f (k)(z)

ϕ(z)fn(z)f (k)(z)− 1
. (4.28)

Therefore

g′(z)

g(z)
= ψ(z)fn−1(z), h(z) = ψ(z)g(z)

and

h′(z)

h(z)
=
g′(z)

g(z)
+
ψ′(z)

ψ(z)
= ψ(z)fn−1(z) +

ψ′(z)

ψ(z)
.

Substituting these values in the expression (4.1) we get(
a1 + a3 + a4

)
ψ2f2n−2 +

{(
a2 + a3 + 2a4 + a5

)ψ′

ψ
+
(
a6 + a7

)ϕ′
ϕ

}
ψfn−1

+(n− 1)
(
a2 + a5

)
ψfn−2f ′ +

{
a4

(
ψ′

ψ

)2

+ a5

(
ψ′

ψ

)′

+a7
ψ′

ψ
· ϕ

′

ϕ
+ a8

(
ϕ′

ϕ

)2

+ a9

(
ϕ′

ϕ

)′ }
≡ 0. (4.29)
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From this we have

f ′ =
l1,1

ψfn−2
+ l1,2f + l1,3f

nψ, (4.30)

where l1,1, l1,2, l1,3 are differential polynomial of ψ
′

ψ and ϕ′

ϕ .

We observe that since g(z) has no zero, ϕ(z) has no pole and poles of f(z) can not be pole of ψ(z), it (i.e., ψ(z)) is an
entire function. Also since f(z) has no multiple zero, zeros of f(z) can not be a zero or a pole of ψ(z) and ϕ(z). Also
simple zeros of f(z) are not zero of l1,1.
Let z5 be a zero of f(z). Then for n > 2, from (4.30) we get z5 is pole of f ′(z), which is a contradiction. Therefore
f(z) has no zero. Thus

N

(
r,

1

f

)
= 0.

From (4.3) of Lemma 4.4 we get

m

(
r,

1

f

)
= S(r, f).

Therefore

T (r, f) = T

(
r,

1

f

)
+O(1) = N

(
r,

1

f

)
+m

(
r,

1

f

)
+O(1) = S(r, f).

This is a contradiction. Therefore F (z) ̸≡ 0 for n > 2. This completes the proof of the lemma.
□

5 Proof of the Theorem

Proof . By Lemma 4.5 and Lemma 4.6 we have seen that the simple poles of f(z) are zeros of F (z) and F (z) ̸≡ 0.
Now we have g(z) = ϕ(z)fn(z)f (k)(z)− 1 and

h(z) =
g′(z)

fn−1(z)
= ϕ(z)

{
f(z)f (k+1)(z) + nf ′(z)f (k)(z)

}
+ ϕ′(z)f(z)f (k)(z).

Let

β(z) = h(z)− ϕ(z)fn(z)f (k)(z)
h(z)

g(z)
. (5.1)

Therefore

βfn−1 = −g
′

g
or β = −g

′

g
· 1

fn−1
or β = −h

g
or h = −βg. (5.2)

Now we consider the poles of β2F . From Lemma 4.5 we observe that the poles of F (z) are of multiplicities at most
2 and come from the zeros and poles of g(z) or h(z) or ϕ(z) except the zeros of ϕ(z) with multiplicity n. From (5.2)
we can see that the poles of β(z) are zeros of g(z) or poles of h(z). Now poles of g(z) and h(z) come from the poles
of ϕ(z) and f(z). But we see that a pole of f(z) of order s(≥ 2) is a zero of β(z) of order (n− 1)s− 1 ≥ 1. Therefore
poles of f(z) can not be pole of β2F . Also from (5.2) we can see that zeros of h(z) comes from zeros of β(z) and g(z).
Now zeros of β(z) come from multiple zeros of f(z) and ϕ(z). But multiple zeros of f(z) and ϕ(z) are pole of F (z)
of order at most 2 and zero of β2(z) of order at least 2. Therefore multiple zeros of f(z) and ϕ(z) can not be pole of
β2F . Then poles of β2F comes only from zeros of g(z), poles of ϕ(z) and simple zeros of ϕ(z).

Let z7 be a zero of g(z) of multiplicity t. Then z7 is not a zero of f(z) or ϕ(z). Therefore z7 is a zero of g′(z) and
h(z) with multiplicity (t − 1) and hence a simple pole of β(z). Also we remember that the zeros of h(z) can be pole
of F (z) of order at most 2. Therefore z7 is a pole of β2F of order at most 4. Therefore

N(r, β2F ) ≤ 4N

(
r,
1

g

)
+N(r, ϕ) + 2N

(
r,

1

ϕ

)
= 4N

(
r,
1

g

)
+ S(r, f). (5.3)
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Now from the expression (4.1) of F (z) we get m(r, F ) = S(r, f). Also using Lemma 4.1 we get from (5.2) that
m(r, β2) = S(r, f). Thus m(r, β2F ) = S(r, f). Therefore

T (r, β2F ) ≤ 4N

(
r,
1

g

)
+ S(r, f). (5.4)

Now zeros of f(z) of order µ(≥ k + 1) are zero of β(z) of order at least (2µ − k − 1). Also zeros of f(z) are not
zero of g(z) but zero of h(z) of order (2µ − k − 1) and then pole of F (z) of order 2. Therefore zeros of β2F are of
multiplicity at least (4µ− 2k − 4). Also simple poles of f(z) are zero of β2F . Therefore

N1(r, f) + 4N(k+1

(
r,

1

f

)
− 2(k + 2)N (k+1

(
r,

1

f

)
≤ N

(
r,

1

β2F

)
≤ T

(
r,

1

β2F

)
≤ 4N

(
r,
1

g

)
+ S(r, f).

Combining this inequality with twice of (4.2) of Lemma 4.4 we get

2(n+ 1)T (r, f)− 2N(r, f)− 2N

(
r,

1

f

)
− 2Nk)

(
r,

1

f

)
− 2kN (k+1

(
r,

1

f

)
+N1(r, f) + 4N(k+1

(
r,

1

f

)
− 2(k + 2)N (k+1

(
r,

1

f

)
≤ 6N

(
r,
1

g

)
+ S(r, f). (5.5)

Now

(2n+ 2)T (r, f) = (2n− 3)T (r, f) + T (r, f) + 4T

(
r,

1

f

)
≥ (2n− 3)T (r, f) +N(r, f) + 4N

(
r,

1

f

)
. (5.6)

From (5.5) and (5.6) we get

(2n− 3)T (r, f) +
{
N(r, f) +N1(r, f)− 2N(r, f)

}
+

{
4N

(
r,

1

f

)
− 2N

(
r,

1

f

)
− 2Nk)

(
r,

1

f

)
+ 4N(k+1

(
r,

1

f

)
− 4(k + 1)N (k+1

(
r,

1

f

)}
≤ 6N

(
r,
1

g

)
+ S(r, f). (5.7)

Now

N(r, f) +N1(r, f)− 2N(r, f) ≥ N1(r, f) +N(2(r, f) +N1(r, f)− 2N1(r, f)− 2N (2(r, f)

= N(2(r, f)− 2N (2(r, f) ≥ 0

and

4N

(
r,

1

f

)
− 2N

(
r,

1

f

)
− 2Nk)

(
r,

1

f

)
+ 4N(k+1

(
r,

1

f

)
− 4(k + 1)N (k+1

(
r,

1

f

)
= 2

{
N

(
r,

1

f

)
−N

(
r,

1

f

)}
+ 2

{
N

(
r,

1

f

)
−Nk)

(
r,

1

f

)}
+ 4

{
N(k+1

(
r,

1

f

)
− (k + 1)N (k+1

(
r,

1

f

)}
≥ 0.

Therefore from (5.7) we have

T (r, f) ≤ 6

2n− 3
N

(
r,
1

g

)
+ S(r, f).

This completes the proof. □
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6 Open Problems

Question 6.1. Is it possible to remove the condition ‘ϕ(z) has no zero of multiplicity n’ in Theorem 3.1 ?

Question 6.2. Can the condition that ‘the set of zeros and poles of f(z) and that of ϕ(z) are disjoint’ in Theorem
3.1 be removed ?
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