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Abstract

Let G be a finite group and ψ(G) =
∑
g∈G o(g), where o(g) denotes the order of g ∈ G. We give a criterion for

nilpotency of finite groups G based on the sum of element orders of G. We prove that if ψ(G) > 13
21ψ(Cn) then G is a

nilpotent group.
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1 Introduction

In this article, all groups are finite. If G is a group of order n, then ψ(G) denotes the sum of orders of all elements
of G. More generally, if X is a subset of G, then ψ(X) denotes the sum of the orders of all elements of X. Moreover,
the cyclic group of order n is denoted by Cn.

In 2009, Amiri, Jafarian and Isaacs proved that, If G is a non-cylcic group of order n, then ψ(G) < ψ(Cn) (see
[3]). Thus Cn can be characterized by the order n and the value ψ. Following this publication, in several paper it is
proved that certain classes of finite groups G can be characterized using the ψ(G) (see [1, 2, 7, 8, 9, 12, 13, 14, 15]).

Second maximum value of ψ for groups of order n was discussed in several papers, for example [10, 11] and [16].
In [5], an exact upper bound for the ψ value in non-cyclic finite groups is given.

Theorem 1.1. [5] If G is a non-cyclic group of order n, then

ψ(G) ≤ 7

11
ψ(Cn).

Moreover, the equality holds if n = 4k and (k, 2) = 1, and G = (C2 × C2)× C2.

In [6], the authors give two new criteria for solvability of finite groups and put forward a conjecture.
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Theorem 1.2. [6] If G is a finite group of order n and

ψ(G) >
1

6.68
ψ(Cn),

then G is solvable.

Conjecture 1.3. [6] If G is a group of order n, and

ψ(G) >
211

1617
ψ(Cn),

then G is solvable.

In [4], the authors proved this conjecture. The aim of this paper is to prove the following criteria for nilpotency of
finite groups.

Theorem 1.4. If G is a finite group of order n and

ψ(G) >
13

21
ψ(Cn),

then G is a nilpotent group.

2 Basic preliminary results

Lemma 2.1. [3] Let P ∈ Sylp(G) and assume that P ⊴G also P is cyclic. Then

ψ(G) ≤ ψ(P )ψ(G/P ).

Moreover, ψ(G) = ψ(G/P )ψ(P ) if and only if P is central in G.

Proposition 2.2. [1] If G and H are finite groups. then

ψ(G×H) ≤ ψ(G)ψ(H),

with equality if and only if gcd(|H|, |G|) = 1.

Lemma 2.3. [4] Let G be a finite group of order n =
∏k
i=1 p

αi
i , where p1, p2, . . . , pk are distinct primes. Let rsψ(Cn) <

ψ(G), for some integers r, s. Then there exists a cyclic subgroup ⟨x⟩ such that:

[G : ⟨x⟩] < s

r
.
p1 + 1

p1
. . .

pk + 1

pk

Proposition 2.4. [5] Let p1 < p2 < . . . < pt = p be prime divisors of n and denote the corresponding Sylow subgroups
of Cn by P1, P2, . . . , Pt. Then

ψ(Cn) =

t∏
i=1

ψ(Pi) ≥
2

p+ 1
n2.

Proposition 2.5. Let G be a finite group and suppose that there exists x ∈ G such that [G : ⟨x⟩] < p, where p is the
largest prime divisor of |G|. Then G has a normal cyclic Sylow p-subgroup.

Proof . Since [G : ⟨x⟩] < p, thus ⟨x⟩ contains a cyclic Sylow p-subgroup P of G. Since ⟨x⟩ ≤ NG(P ), we have
|G : NG(P )| < p. It follows that NG(P ) = G. □

Lemma 2.6. [5] Let G be a finite group of order n satisfying G = P ⋊F , where P is a cyclic p-group for some prime
p, |F | > 1 and gcd(p, |F |) = 1. Then the following statements hold:
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1. Each element of F acts on P trivially or fixed-point-freely.

2. If x ∈ F , o(x) = m and u ∈ P , then m is the least positive integer satisfying (ux)m ∈ P .

3. If u ∈ P and x ∈ CF (P ), then o(ux) = o(u)o(x).

4. If u ∈ P and x ∈ F \ CF (P ), then o(ux) = o(x).

5. Let Z = CF (P ). Then

ψ(G) = ψ(P )ψ(Z) + |P |ψ(F \ Z) < ψ(P )ψ(Z) + |P |ψ(F ).

Theorem 2.7. [5] If H ≤ Cn, then ψ(H) ≤ ψ(Cn)
3 , if n is odd, then ψ(H) ≤ ψ(Cn)

7 .

Lemma 2.8. Let G be a group of order n satisfying G = P ⋊ F , where P is a cyclic p-group, p > 3 is the largest
prime divisor of |G|, and F is a nilpotent subgroup of G. If G is not nilpotent, then

ψ(G) ≤ 13

21
ψ(Cn).

Proof . Notice that n = |P ||F | and gcd(|P |, |F |) = 1. Hence ψ(Cn) = ψ(P )ψ(C|F |). If F is a cyclic subgroup of G

then ψ(P )ψ(F ) = ψ(Cn), otherwise ψ(P )ψ(F ) ≤ ψ(P )
(

7
11ψ(C|F |)

)
≤ 7

11ψ(Cn), by Theorem 1.1. We suppose that
CF (P ) = Z. We have Z < F . First suppose that F is a cyclic subgroup of G, then by Lemma 2.6(5), we have

ψ(G) = ψ(P )ψ(Z) + |P |ψ(F \ Z) < ψ(P )ψ(Z) + |P |ψ(F ) = ψ(P )ψ(F )

(
ψ(Z)

ψ(F )
+

|P |
ψ(P )

)
= ψ(Cn)

(
ψ(Z)

ψ(F )
+

|P |
ψ(P )

)
.

Notice that P is a cyclic p-subgroup and p ≥ 5, hence

|P |
ψ(P )

=
|P |(p+ 1)

p|P |2 + 1
≤ p+ 1

p2
=

1

p
+

1

p2
≤ 6

25
≤ 1

4
.

If F is cyclic, then ψ(Z)
ψ(F ) ≤

1
3 , by Theorem 2.7. Therefore

ψ(G) ≤ ψ(Cn)

(
1

3
+

1

4

)
≤ 7

12
ψ(Cn) <

13

21
ψ(Cn).

Now, we assume that F is not cyclic. Then Lemma 2.6(5) implies that

ψ(G) = ψ(P )ψ(Z) + |P |ψ(F \ Z) < ψ(P )ψ(Z) + |P |ψ(F )

≤ ψ(P )ψ(C|Z|) + |P |
(

7

11
ψ(C|F |)

)
ψ(P )ψ(C|F |)

(
ψ(C|Z|)

ψ(C|F |)
+

7

11

|P |
ψ(P )

)
= ψ(Cn)

(
ψ(C|Z|)

ψ(C|F |)
+

7

11

|P |
ψ(P )

)
.

Similarly,
ψ(C|Z|)

ψ(C|F |)
≤ 1

3
and

|P |
ψ(P )

≤ 1

4
,

which implies that

ψ(G) ≤
(
1

3
+

1

4
· 7

11

)
ψ(Cn) <

13

21
ψ(Cn).

□

Theorem 2.9. [7] Let G be a finite group and p be the largest prime divisor of |G|. Suppose that G contains a cyclic
subgroup X of index p. Then G = P ⋊K, where P is the Sylow p-subgroup of G and K ≤ X. Moreover, one of the
following holds:
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1. G is nilpotent,

2. P is cyclic,

3. G = (⟨a⟩ × ⟨b⟩)⋊ ⟨y⟩, where |a| = pn−1 for some integer n ≥ 2, |b| = p, (|y|, p) = 1, ay = a and by = br for some
integer which is not congruent to 1 modulo p.

Theorem 2.10. [7] Let G be a non-cyclic group of order n = 2m, with m odd integer. Then

ψ(G) ≤ 13

21
ψ(Cn)

with equality if and only if G = S3 × Cn
6
, where n = 6m1, with (m1, 6) = 1 and S3 is the symmetric group on three

letters.

Theorem 2.11. [7] Let G = (⟨x⟩ × ⟨b⟩) ⋊ ⟨y⟩, where p is an odd prime number, K = ⟨y⟩, P = ⟨x⟩ × ⟨b⟩, |x| = pn−1

for some integer n ≥ 2, |b| = p, (|y|, p) = 1, xy = x and by = br for some integer which is not congruent to 1 modulo
p. Then

ψ(G) = (p− 1)2ψ(Z) + pψ(⟨x⟩)ψ(⟨y⟩),

where Z = C⟨y⟩(b). In particular,

ψ(⟨x⟩ × ⟨b⟩) = p2n + p3 − p2 + 1

p+ 1
.

3 Proof of the main Theorem

Proof of the Theorem 1.4. We know that G is a solvable group, by Theorem 1.3. We prove by induction on |π(G)|
that if G is a group of order n = pα1

1 pα2
2 . . . pαk

k where pi are primes, p1 < p2 < . . . < pk = p such that αi > 0, for each
1 ≤ i ≤ k, and also ψ(G) > 13

21ψ(Cn), then G is nilpotent group. If |π(G)| = 1, then G is a p-group, therefore G is
nilpotent. Assume that |π(G)| ≥ 2 and the theorem holds for each group H such that |π(H)| < |π(G)|. Let p be the
largest divisor of |G|, now we consider the two following cases:

Case 1. p ≥ 5. By proposition 2.4, we have

ψ(Cn) ≥
2

p+ 1
n2

and our assumption ψ(G) > 13
21ψ(Cn), implies that

ψ(G) >
13

21
· 2

p+ 1
n2.

Hence there exists x ∈ G such that

o(x) >
26

21
· n

p+ 1

and

[G : ⟨x⟩] < 21

26
(p+ 1) ≤ 21

26
· 6
5
p.

So that

[G : ⟨x⟩] < 63

65
p.

Thus [G : ⟨x⟩] < p and ⟨x⟩ contains a normal cyclic Sylow p-subgroup P of G, by Proposition 2.5. By Lemma 2.1,
we have:

13

21
, ψ(Cn) < ψ(G) ≤ ψ(P )ψ(G/P ).

On the other hand ψ(Cn) = ψ(C|P |)ψ(C|G/P |). Since ψ(C|P |) = ψ(P ) it follows that:

13

21
ψ(C|G/P |) < ψ(G/P )
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Now inductive hypotheses implies that G/P is a nilpotent group and G = P ⋊ F , where F ∼= G/P also P is a
cyclic normal Sylow p−group for some prime p, F is a nilpotent subgroup, |F | > 1 and gcd(p, |F |) = 1.

Suppose that CF (P ) = Z. If Z < F , then by Lemma 2.8, ψ(G) ≤ 13
21ψ(Cn), which is a contradiction. Hence

CF (P ) = F and G = P × F so that G is nilpotent as required.

Case 2. p ≤ 3. If p = 2, then G is a 2-group and nilpotent. Hence we assume that p = 3. If G is a 3-group, then
G is nilpotent. So we may assume that n = 2a3b for some positive integers a and b. If a = 1 then n = 2m with m
odd, thus by Theorem 2.10, ψ(G) ≤ 13

21ψ(Cn), contrary to our assumption.

We assume that a ≥ 2. Since ψ(G) > 13
21ψ(Cn), there exists a cyclic subgroup ⟨x⟩ such that [G : ⟨x⟩] < 42

13 , by
Lemma 2.3. It follows that [G : ⟨x⟩] ≤ 3, which implies that [G : ⟨x⟩] = 2 or [G : ⟨x⟩] = 3.

Suppose that [G : ⟨x⟩] = 2. Then ⟨x⟩ contains a normal cyclic Sylow 3-subgroup P of G, by Proposition 2.5. If
there exists y ∈ G \ ⟨x⟩ with [G : ⟨y⟩] = 2, then y ∈ CG(P ) and hence P ≤ Z(G), Thus G = P × F , where F is a
non-cyclic Sylow 2-subgroup of G and it follows that G is nilpotent. If o(y) ≤ n

3 for all y ∈ G \ ⟨x⟩, we have

ψ(G) ≤ ψ(Cn
2
) +

n

2
· n
3
.

We show that ψ(G) ≤ 13
21ψ(Cn) as follows:

ψ(Cn
2
) +

n

2
· n
3
≤ 13

21
ψ(Cn)

⇔ ψ(C2a−1)ψ(C3b) +
22a33b

6
≤ 13

21
ψ(C2a)ψ(C3b)

⇔
(
22a−1 + 1

3

)(
32b+1 + 1

4

)
+ 22a−132b−1 <

13

21

(
22a+1 + 1

3

)(
32b+1 + 1

4

)
⇔ 21

(
22a−1 + 1

) (
32b+1 + 1

)
+ 7.22a+132b+1 < 13

(
22a+1 + 1

) (
32b+1 + 1

)
⇔ 21.22a−132b+1 + 8.32b+1 + 8 < 6.22a+132b+1 + 31.22a−1 + 96.32b+1

⇔ 8.32b+1 + 8 < 3.22a−132b+1 + 31.22a−1

⇔ 1 < 22a−432b+2 + 31.22a−4 − 32b+1

⇔ 1 < 32b+1
(
22a−4.3− 1

)
+ 31.22a−4.

For a ≥ 2 is true which contradicts our assumption.

Finally, we suppose that [G : ⟨x⟩] = 3. By Theorem 2.9, G = P ⋊ F where P is Sylow 3-subgroup of G and
F ≤ ⟨x⟩. Since |G| = 2a3b, |P | = 3b and F ≤ ⟨x⟩, we have F ∼= C2a , and one of the following holds:

1. G is nilpotent,

2. G ∼= C3b ⋊ C2a ,

3. G ∼= (C3b−1 × C3)⋊ C2a .

We show that, if G ∼= C3b ⋊C2a or G ∼= (C3b−1 ×C3)⋊C2a , then ψ(G) ≤ 13
21ψ(Cn). First, Suppose that G

∼= P ⋊F
where P = C3b , F = C2a . Let Z = CF (P ). Then Z < F and Lemma 2.6(5) implies that

ψ(G) = ψ(P )ψ(Z) + |P |ψ(F \ Z).

If b = 1, then G ∼= C3 ⋊ F , |G| = 3.2a, and F = C2a . Let Z = CF (C3), then ψ(Z)
ψ(F ) ≤ 1

3 . Since ψ(Cn) =

ψ(C3)ψ(F ) = 7ψ(F ), we have

ψ(G) = ψ(C3)ψ(Z) + |C3|ψ(F \ Z)
= 7ψ(Z) + 3(ψ(F )− ψ(Z))

= 4ψ(Z) + 3ψ(F )

≤ 13

3
ψ(F )

=
13

21
ψ(Cn).
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Now, we suppose that b > 1. Then |P | ≥ p2. Hence

|P |
ψ(P )

=
|P |(p+ 1)

p|P |2 + 1
≤ |P |(p+ 1)

p|P |2
≤ p+ 1

p3
=

1

p2
+

1

p3
≤ 4

27
.

By Theorem 2.11, ψ(Z)
ψ(F ) ≤

1
3 . Therefore

ψ(G) < ψ(Cn)

(
ψ(Z)

ψ(F )
+

|P |
ψ(P )

)
<

(
1

3
+

4

27

)
ψ(Cn)

<
13

21
ψ(Cn).

Now, we assume that G = (⟨x⟩ × ⟨z⟩) ⋊ ⟨y⟩, where ⟨x⟩ = C3b−1 , ⟨z⟩ = C3, and ⟨y⟩ = C2a . Then Theorem 2.11
implies that

ψ(G) = (p− 1)2ψ(Z) + pψ(⟨x⟩)ψ(⟨y⟩),

where Z = C⟨y⟩(z). Since p = 3, b ≥ 1 and by Theorem 2.7, ψ(Z)
ψ(C2a )

≤ 1
3 , we have

ψ(G) =
4

3
ψ(C2a) + 3ψ(C3b−1)ψ(C2a)

=

(
4

3
+ 3ψ(C3b−1)

)
ψ(C2a)

=

(
4

3
+ 3

32b−1 + 1

4

)
ψ(C2a)

=

(
32b+1 + 25

12

)
ψ(C2a)

≤ 13

21

(
32b+1 + 1

4

)
ψ(C2a)

≤ 13

21
ψ(C3b)ψ(C2a) =

13

21
ψ(Cn).

It follows that G is a nilpotent group. Thus the proof is complete.

Remark 3.1. We note that if G = S3, then |G| = 6, and ψ(G) = 13. Since ψ(C6) = 21, therefore

13

21
ψ(C|G|) = ψ(G).
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