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Abstract

In this paper, we present a new generalization of Nadler’s fixed point theorem for multivalued relation-theoretic graph
contractions on relational metric spaces. Our results extend and generalize the result of Shukla and Rodŕıguez-López
(Questiones Mathematiae, (2019) 1-16), Nadler (Pacific J. Math. 30 (1969), 475-488), Alam and Imdad (J. Fixed
Point Theory and Appl., 17(4) (2015), 693-702) and many others in the existing literature of fixed point theory. Some
good examples are also included to illustrate the usefulness of our main results. Moreover, we have an application to
generalized coupled fixed point problems.
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1 Introduction

The first generalization of the classical Banach contraction principle (Bcp) [4] for multivalued mappings was given
by S. B. Nadler Jr. [7] in 1969. After that, several authors have obtained the extension and generalization of this
principle to different kinds of multivalued contraction conditions and various spaces. Petruşel et al. [9] generalized
Nadler’s fixed point principle by introducing the concept of multivalued graph contraction in metric spaces. They
showed the connection of their results in some variational analysis problems and gave an application to generalized
coupled fixed point theorems.

In 2015, Alam and Imdad introduced a relation-theoretic contraction principle, and generalized the Bcp [4] to an
amorphous binary relation. This principle weakened and generalized various fixed point results in the literature, which
attracts various authors to work along this line. As a result, several extension of this principle has been obtained by
many mathematicians (see [2], [3], [6], [10], [13] and [14]). Recently, Shukla and Rodŕıguez-López [13] generalized the

∗Corresponding author
Email addresses: deepakkhantwal15@gmail.com (Deepak Khantwal), surbhianejajgd@gmail.com (Surbhi Aneja),

gopiprasad127@gmail.com (Gopi Prasad), bhuwanjoshi007@gmail.com (B. C. Joshi), ucgairola@rediffmail.com (U. C. Gairola)

Received: February 2021 Accepted: July 2022

http://dx.doi.org/10.22075/ijnaa.2022.22536.2381


2962 Khantwal, Aneja, Prasad, Joshi, Gairola

relation-theoretic contraction principle for multivalued mappings on complete metric spaces and obtained a relation-
theoretic version of the fixed point result of Nadler [7]. They also have shown that under universal relation, their
result reduces to Nadler’s fixed point theorem.

In this paper, we present a new variant of Nadler’s fixed point theorem for multivalued mappings in the setting
of metric spaces equipped with an amorphous binary relation. We do this, by introducing the notion of multivalued
relation-theoretic graph contraction and establish some fixed point results for such mappings in relational metric
spaces. Our results generalize the result of Nadler [7], Shukla, and Rodŕıguez-López [13], Alam and Imdad [1] and
many others in the existing literature. We also present some examples in which all the classical fixed point theorems in
metric spaces do not work, but our results remain valid. Moreover, we also gave an application to generalized coupled
fixed point problems.

2 Preliminaries

Firstly, we adopt some notations which are very useful to prove our main results. Let P (M) be the family of all
nonempty subset of M and (M, d) be a metric space. Here, by N, N0, CL(M), C(M), and CB(M) means the set of
positive integers, the set of nonnegative integers, the set of all nonempty closed subsets of M, the set of all nonempty
compact subset of M, and the set of all nonempty, closed and bounded subsets of M, respectively. For any nonempty
subsets U ,V of M and ξ ∈ M, we also follow the following notations:

Dd(ξ,U) = inf {d(ξ, u) : u ∈ U} ,
Dd(U ,V) = inf{d(u, v) : u ∈ U , v ∈ V},
δd(U ,V) = sup {Dd(u,V) : u ∈ U} ,
H(U ,V) = max [δd(U ,V), δd(V,U)] ,

where H is Hausdorff-Pompeiu functional on P (M) generated by metric d.

Definition 2.1. [1]. Let M be a nonempty set. A binary relation R on a nonempty set M is a subset of M×M.
We say that ξ relates to η under R if and only if (ξ, η) ∈ R and ξ does not relate to η under R if and only if (ξ, η) /∈ R

Definition 2.2. [1]. Let R be a binary relation defined on a nonempty set M. We say ξ and η are R-comparable
if either (ξ, η) ∈ R or (η, ξ) ∈ R. We denote it by [ξ, η] ∈ R.

Definition 2.3. [1]. Let M be a nonempty set and R a binary relation on M. A sequence {ξn} ∈ M is called
R-preserving if

(ξn, ξn+1) ∈ R, for all n ∈ N0.

Definition 2.4. [1]. Let (M, d) be a metric space. A binary relation R defined on M is called d-self-closed if
whenever {ξn} is R-preserving sequence on M and

ξn
d−→ ξ

then the sequence {ξn} has a subsequence {ξnk
} with [ξnk

, ξ] ∈ R for all k ∈ N0.

Definition 2.5. [1, 12]. Let R be a binary relation on a nonempty set M and f be a selfmapping on M. If for all
ξ, η ∈ M with

(ξ, η) ∈ R =⇒ (fξ, fη) ∈ R

then the relation R is called f -closed and the mapping f is called comparative mapping on M under the binary
relation R.

Definition 2.6. [2]. Let (M, d) be a metric space, R be a binary relation on M. If every R-preserving Cauchy
sequence in M is convergent and converges to some point in M, then say that (M, d) is R-complete.

Remark 2.7. Every complete metric space is R−complete, for any binary relation R on M and both definitions
coincide under the universal relation.

Definition 2.8. [13]. Let R be a binary relation on a nonempty set M and k ∈ N. Then, an element η ∈ M is
called k-connected to ξ ∈ M, if there exists a path of length k from ξ to η, that is there exist zi ∈ M, i = 0, 1, . . . , k
such that z0 = ξ, zk = η and (zi, zi+1) ∈ R, i = 0, 1, . . . , k − 1.
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Let F : M → P (M) be a multivalued mapping and f : M → M be a singlevalued mapping. A sequence
{ξn} ⊂ M is said to be a trajectory of F , starting at ξ1, if ξn+1 ∈ Fξn, for all n ∈ N. By P (ξ, k) = {η ∈ M :
there exists a path of length k from ξ to η}, we denote the set of all η ∈ M such that there exists a path of length k
from ξ to η, by G(F) = {(ξ, η) : ξ ∈ M, η ∈ Fξ} the graph of F and by G(f) = {(ξ, fξ) : ξ ∈ M} we denote the
graph of f . If G(F) is a closed subset of M×M, then we say F is closed or F has closed graph.

Lemma 2.9. [9]. If (M, d) be a metric space then we have:

(a) H is generalized metric on CL(M).

(b) Let U ∈ CL(M) and ξ ∈ M. Then Dd(ξ, U) = 0 if and only if ξ ∈ U .

(c) If U ,V ∈ P (M) and λ > 1, then for every u ∈ U there exists v ∈ V such that d(u, v) ≤ λ δd(U ,V).

(d) If there ϵ > 0 such that, for each u ∈ U there exists v ∈ V with d(u, v) ≤ ϵ, then δd(U ,V) ≤ ϵ.

Definition 2.10. [13]. Let (M, d) be a metric space and F : M → CB(M) be a multivalued mapping. Then, a
binary relation R on M is called F-d-closed if,

(ξ, η) ∈ R, µ ∈ Fξ, ν ∈ Fη, d(µ, ν) ≤ d(ξ, η) =⇒ (µ, ν) ∈ R. (2.1)

If we consider F = f as a singlevalued selfmapping on M in the Definition 2.10 then R is called f -d-closed and
condition (2.1) reduces to the following condition

(ξ, η) ∈ R, d(fξ, fη) ≤ d(ξ, η) =⇒ (fξ, fη) ∈ R. (2.2)

It is shown in [13] that the f -d-closedness assumption is weaker than the f -closedness assumption.

Definition 2.11. [13]. Let (M, d) be a metric space endowed with a binary relation R. A mapping F : M → CB(M)
is called multivalued relation-theoretic contraction if,

H(Fξ,Fη) ≤ αd(ξ, η), for all (ξ, η) ∈ R and some α ∈ [0, 1). (2.3)

3 Fixed point results for multivalued relation-theoretic graph contraction mappings

In this section, we begin with some new notions and definitions, which are essential to prove our main results.

Definition 3.1. Let R be a binary relation on M and F : M → P (M) be a mapping. A relational graph of F
under the relation R on M is denoted by G(F ;R) and defined as:

G(F ;R) := {(ξ, η) ∈ R : ξ ∈ M, η ∈ Fξ}.

Further, we say that F has a closed relational graph or F is R-closed when G(F ;R) is a closed subset of M×M.
Moreover, when R is universal relation then the definition of the relational graph of F coincides with the definition of
the graph of F .

Definition 3.2. Let R be a binary relation on M and F : M → P (M) be a mapping. By M(F ;R) means the set
of all points ξ ∈ M for which (ξ, η) ∈ G(F ;R), that is

M(F ;R) = {ξ ∈ M : (ξ, η) ∈ G(F ;R)}.

Definition 3.3. Let (M, d) be a metric space and F : M → P (M) be a multivalued mapping. A binary relation R
on M is said to be FG-d-closed if the following condition satisfies:

(ξ, η) ∈ G(F ;R), z ∈ Fη, d(η, z) ≤ d(ξ, η) =⇒ (η, z) ∈ G(F ;R).

It is obvious by the Definition 3.3 that if a relation R is F-d-closed on a space M then it is FG-d-closed in the same
space. However, the following example illustrates that the converse is not true.
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Example 3.4. Assume that M = [0, 1] and d(η, ξ) = |η − ξ|, for all η, ξ ∈ M. Then (M, d) form a complete metric
space. We define F : M → P (M) by F(ξ) = [0, ξ/2], for ξ ∈ M and a binary relation R = {(0, 0), (0, 1), (1, 1),
(1/2, 1)} on M. Then, we observe G(F ;R) = {(0, 0)} and the relation R is FG-d-closed on M. Indeed, for (ξ, η) =
(0, 0) ∈ G(F ;R), z ∈ F (0), we have d(η, z) = d(ξ, η) and (η, z) ∈ G(F ;R). However, R is not F-d-closed on M, as
for (ξ, η) = (1/2, 1) ∈ R, there exist µ = 1/4 ∈ Fξ and ν = 1/4 ∈ Fη such that d(µ, ν) < d(Fξ,Fη) but (µ, ν) /∈ R.

Definition 3.5. Let F : M → P (M) be a mapping on a metric space (M, d) and R be a binary relation on M.
Then, the mapping F is called a multivalued relation-theoretic graph contraction if,

H(Fξ,Fη) ≤ αd(ξ, η), for some α ∈ [0, 1) and all (ξ, η) ∈ G(F ;R). (3.1)

From the Definition 3.5, it is easy to conclude that the multivalued relation-theoretic graph contraction generalizes the
multivalued relation-theoretic contraction due to Shukla and Rodŕıguez-López [13] and under the universal relation,
we get the definition of the multivalued α-graph contraction due to Petrusel et al. [9].

Definition 3.6. [9]. Let F : M → P (M) be a mapping on a metric space (M, d). Then, the mapping F is called a
multivalued α-graph contraction if,

H(Fξ,Fη) ≤ αd(ξ, η), for some α ∈ [0, 1) and all (ξ, η) ∈ G(F). (3.2)

Now, we state and prove our main results for the existence of fixed points in relational metric spaces.

Theorem 3.7. Let (M, d) be a metric space, R be a binary relation on M, and F : M → P (M) be a multivalued
relation-theoretic graph contraction. Assume that the relation R is FG-d-closed and F has a nonempty closed relational
graph under the relation R. Then, for each ξ ∈ M(F ;R), there exists a trajectory {ξn} of F , starting from ξ1 = ξ,
which converges to fixed point of F .

Proof . Let (ξ0, ξ1) is an arbitrary element in G(F ;R) and 1 < q < 1/α. Then, in view of Lemma 2.9, there exits
ξ2 ∈ Fξ1 such that

d(ξ1, ξ2) ≤ qH(Fξ0,Fξ1). (3.3)

As (ξ0, ξ1) ∈ G(F ;R) so from (3.1), we have

H(Fξ0,Fξ1) ≤ αd(ξ0, ξ1). (3.4)

From inequality (3.3) and (3.4), it follows that

d(ξ1, ξ2) ≤ αqd(ξ0, ξ1) ≤ d(ξ0, ξ1).

By assumption of FG-d-closedness of R, we obtain that (ξ1, ξ2) ∈ G(F ;R). Continuing this process, we get {ξn} is a
R-preserving sequence in M(F ;R) and

d(ξn, ξn+1) ≤ (αq)n d(ξ0, ξ1), for n ∈ N.

Using classical approach, we get the sequence {ξn} is a R-Cauchy and also

d(ξn, ξn+p) ≤
(
1− (αq)p

1− αq

)
(αq)nd(ξ0, ξ1),

for every n, p ∈ N. Since the sequence {ξn} is a Cauchy in M(F ;R) so (ξn, ξn+1) is a Cauchy sequence in G(F ;R)
and by the condition of the closed relational graph of F , there exists a pair (ξ∗, ξ∗) ∈ G(F ;R) such that the sequence
(ξn, ξn+1) → (ξ∗, ξ∗). Thus ξ∗ ∈ Fξ∗ means ξ∗ is a fixed point of F . □

Theorem 3.8. Let R be a binary relation on M and (M, d) be a metric space. Assume that F : M → P (M) be a
multivalued relation-theoretic graph contraction and the following assertions are hold:

(a) M(F ;R) be a nonempty set,

(b) R is FG-d-closed,
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(c) one of the following condition is true:

(i) F has a closed graph on M or

(ii) for any sequence {ξn} in M(F ;R), if ξn → ξ and ξn+1 ∈ Fξn, for all n ∈ N, then there exists a subsequence
{ξnk

} of {ξn} such that [ξnk
, ξ] ∈ G(F ;R), for all k ∈ N,

(d) M is R-complete.

Then, for each ξ ∈ M(F ;R), there exists a trajectory {ξn} of F , starting with ξ1 = ξ and converges to a fixed point
of F .

Proof . Since M(F ;R) is nonempty set, we suppose that ξ0 be an arbitrary point in M(F ;R). Then, there is a
point ξ1 in Fξ0 such that (ξ0, ξ1) ∈ G(F ;R). Now, proceeding the proof of Theorem 3.7, we get the sequence {ξn} is
Cauchy in M(F ;R), so in M. And by condition (d), the sequence {ξn} converges to some point (say) ξ∗ in M.

Next, we assume that assumption (c) holds and F has a closed graph on M. Since {ξn} is a trajectory of F and
ξn → ξ∗ as n → ∞. Therefore, by closedness of G(F), we have (ξn, ξn+1) → (ξ∗, ξ∗) ∈ G(F) and ξ∗ ∈ Fξ∗ means ξ∗

is a fixed point of F .

Alternatively, let assertion (ii) of (c) is true. Then, the sequence {ξn} has a subsequence {ξnk
} such that [ξnk

, ξ∗] ∈
R for all k ∈ N0. As ξnk+1 ∈ Fξnk

, k ∈ N. Then, for each sequence {ϵk}, where ϵk > 0, there always exists a sequence
{ηk} such that ηk ∈ Fξ∗ and

d(ξnk+1, ηk) ≤ H(Fξnk
,Fξ∗) + ϵk, k ∈ N.

Since [ξnk
, ξ∗] ∈ R, for all k ∈ N then by (3.1) and the above inequality, it follows that

d(ξnk+1, ηk) ≤ αd(ξnk
, ξ∗) + ϵk, k ∈ N. (3.5)

Using triangle inequality and from (3.5), we get

d(ηk, ξ
∗) ≤ d(ηk, ξnk+1) + d(ξnk+1, ξ

∗)

≤ d(ξnk+1, ξ
∗) + αd(ξnk

, ξ∗) + ϵk, k ∈ N.

For particular choice of the sequence {ϵk} as ϵk → 0 when k → ∞, the above inequality gives,

lim
k→∞

d(ηk, ξ
∗) = 0.

Since ηk ∈ Fξ∗, for all k ∈ N and Fξ∗ is a closed subset of M, we must have ξ∗ ∈ Fξ∗. Thus ξ∗ is a fixed point of F .
□
The following theorem is a special case of Theorem 3.7:

Theorem 3.9. Let (M, d) be a metric space, R a binary relation on M and the mapping F : M → P (M) has a
nonempty relational graph under the binary relation R. Supposed that R is FG-d-closed and

δd(Fξ,Fη) ≤ αd(ξ, η), for some α ∈ [0, 1) and all (ξ, η) ∈ G(F ;R). (3.6)

Then, for each ξ ∈ M(F ;R), there exists a trajectory {ξn} of F , starting from ξ1 = ξ and converges to fixed point of
F .

Proof . Since the multivalued relation-theoretic graph contraction condition (3.1) implies condition (3.6), the con-
clusion follows by Theorem 3.7. □
Similarly, we can obtain the following theorem as a direct consequence of Theorem 3.8.

Theorem 3.10. Let (M, d) be a metric space and R be binary relation on M. Suppose F : M → P (M) be a
multivalued mapping and the following conditions are true:

(a) M(F ;R) ̸= ∅,

(b) R is FG-d-closed,

(c) at least one of the following assertion is true:
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(i) F has a closed graph on M,

(ii) for any sequence {ξn} in M(F ;R), if ξn → ξ and ξn+1 ∈ Fξn, n ∈ N, then the sequence {ξn} has a
subsequence {ξnk

} such that [ξnk
, ξ] ∈ R, for all k ∈ N,

(d) F satisfies the following condition:

δd(Fξ,Fη) ≤ αd(ξ, η), for some α ∈ [0, 1) and all (ξ, η) ∈ G(F ;R),

(e) M is R-complete.

Then, for each ξ ∈ M(F ;R), there exists a trajectory {ξn} of F , starting from ξ1 = ξ and converges to fixed point of
F .

If we take R as a complete relation (that is R = M×M or M = M(F ;R)) in Theorem 3.7 and Theorem 3.8, we
obtain the following result of Nadler.

Corollary 3.11. (Nadler’s fixed point theorem): Let (M, d) be a complete metric space. Suppose a mapping
F : M → CB(M) satisfies the following condition:

H(Fξ,Fη) ≤ αd(ξ, η), (3.7)

for some α ∈ [0, 1) and all ξ, η ∈ M. Then F has a fixed point in M.

4 Examples and Discussion

The following examples show that the multivalued relation-theoretic graph contraction is indeed more useful than
the multivalued graph contraction and multivalued relation-theoretic contraction.

Example 4.1. Let M = [0, 1] be a metric space equipped with usual metric d, that is d(ξ, η) = |ξ−η|, for ξ, η ∈ M.
Consider a binary relation R on M as

R = {(1/2, 1/2), (1/2, 1), (1, 1/2), (1, 1/3)}

and the mapping F : M → P (M) such that

F(ξ) =

{
[1/2, 1− ξ], if ξ ∈ [0, 1/2],

{1/2}, otherwise.

Then, clearly G(F ;R) = {(1/2, 1/2), (1, 1/2)} ≠ ∅ is a closed subset of M × M and F satisfies the contraction
condition (3.1) for each (ξ, η) ∈ G(F ;R). Also, for (ξ, η) ∈ G(F ;R) and z ∈ Fη, we see that d(η, z) ≤ d(ξ, η)
and (η, z) ∈ G(F ;R). Hence, R is FG-d-closed on M. On the other hand, R is not F-d-closed on M, as for
(ξ, η) = (1, 1/3) ∈ R, there exists z = 7/12 ∈ Fy such that d(η, z) ≤ d(ξ, η) but (η, z) /∈ R. Thus, all the assumptions
of Theorem 3.7 are verified and point ξ = 1/2 is a fixed point of F in M.

Example 4.2. Let M = [0, 3] and d(ξ, η) = |ξ − η|, for all ξ, η ∈ M. Define a set S =

{(
1

5n
, 0

)
: n ∈ N

}
and a

binary relation

R = {(0, 0), (0, 1), (1, 2), (2, 1)} ∪ S ∪
{(

n+ 1

n
,
n+ 2

n+ 1

)
: n ∈ N

}
on M. Suppose that F : M → P (M) be a mapping defined by

F(ξ) =

{
{0, ξ/5}, if ξ ∈ [0, 1],
{2}, if ξ ∈ (1, 3].

Then, there are the following observations:
(a) M(F ;R) is a nonempty set.
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As 0 ∈ F0 and (0, 0) ∈ R implies 0 ∈ M(F ;R). Hence M(F ;R) is a nonempty set. Similarly, one can easily

verify that ξ =
1

5n
∈ M(F ;R), for all n ∈ N and M(F ;R) =

{
1
5n : n ∈ N

}
∪ {0}.

(b) R is FG-d-closed.

Clearly, here G(F ;R) = {(0, 0) ∪ S}. For each (ξ, η) ∈ G(F ;R) and z ∈ Fη, we see that d(η, z) ≤ d(ξ, η) and
(η, z) ∈ G(F ;R). Hence R is F-d-closed on M. However, R is not F-d-closed on M as for (ξ, η) = (2, 3/2) ∈ R,
there exist µ = 2 ∈ Fξ and ν = 2 ∈ Fη such that d(µ, ν) ≤ d(ξ, η) but (µ, ν) /∈ R.
(c) The condition (c)-(ii) of Theorem 3.8 is satisfied.

Since M(F ;R) = { 1
5n : n ∈ N} ∪ {0} then for {ξn} = { 1

5n } ∈ M(F ;R), we have {ξn} → 0 and each subsequence
{ξnk

} of {ξn} is such that (ξnk
, 0) ∈ R, that is [ξnk

, 0] ∈ R, for each n ∈ N0.
(d) F is a multivalued relation-theoretic graph contraction for α = 1/5.

Let η, ξ ∈ M(F ;R) =
{

1
5n : n ∈ N

}
∪ {0} with (η, ξ) ∈ R, then

H(Fη,Fξ) = H

(
{0, η

5
}, {0, ξ

5
}
)

= max

[
min

{
η

5
,
1

5
|η − ξ|

}
,min

{
ξ

5
,
1

5
|η − ξ|

}]
≤ 1

5
|η − ξ| = 1

5
d(η, ξ).

Hence, all the hypothesis of Theorem 3.8 are verified and F has fixed points at ξ = 0 and ξ = 2.

We notice that F does not satisfy the contraction conditions (2.3), (3.2) and (3.7) on M as for (ξ, η) = (1, 2) ∈ R,
H(F0, F1) > d(0, 1). Thus, the fixed point results contain in [7, 9, 13, 14] do not work in this example, however our
Theorem 3.8 remains valid in this case.

5 Fixed point results for relation-theoretic graph contraction mappings

Now, we drive some fixed point results for relation-theoretic graph contraction mappings on relational metric space.
In this sequel, we define some essential notations and definitions which are very useful to present our results.

Definition 5.1. Let R be a binary relation and f be a self mapping on M. We denote by G(f ;R) the relational
graph of f and defined as:

G(f ;R) = {(ξ, fξ) ∈ R : ξ ∈ M}.

We say f has a closed relational graph or f is R-closed if G(f ;R) is a closed subset of M×M.

Definition 5.2. Let (M, d) be a metric space, R be a binary relation on M and f : M → M be a mapping. By
M(f ;R), we denotes the set of all points ξ ∈ M, for which (ξ, fξ) ∈ G(f ;R), that is

M(f ;R) = {ξ ∈ M : (ξ, fξ) ∈ G(f ;R)}.

The Definition 5.2 is equivalent to the Definition 2.12 of Shukla and Rodŕıguez-López [13], which states that M(f ;R)
is the set of all points ξ ∈ M for which (ξ, fξ) ∈ R, that is

M(f ;R) = {ξ ∈ M : (ξ, fξ) ∈ R}.

Definition 5.3. Let (M, d) be a metric space, R be a binary relation on M and f : M → M be a mapping. A
binary relation R is called fG-d-closed, if the following condition holds:

(ξ, η) ∈ G(f ;R), d(fξ, fη) ≤ d(ξ, η) =⇒ (fξ, fη) ∈ G(f ;R).

Remark 5.4. We can see that fG-d-closedness assumption is a weaker than f -d-closedness assumption and f -
closedness. The following example, however, demonstrates that the conditions of f -d-closedness and f -closedness
do not imply the condition of fG-d-closedness.
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Example 5.5. Let M = [0, 1] and d(ξ, η) = |ξ − η|, for all ξ, η ∈ M. Then, (M, d) forms a complete metric space.
We define by R = {(0, 0), (1, 0), (1, 1), (1/2, 1)} a binary relation on M and a mapping f : M → M by

f(ξ) =

{
ξ/3, if ξ ∈ [0, 1/2],
1, if ξ ∈ (1/2, 1].

Then G(f ;R) = {(0, 0), (1, 1)} and for each (ξ, η) ∈ G(f ;R), we have d(fξ, fη) = d(ξ, η) and (fξ, fη) ∈ G(f ;R).
Thus, the binary relation R is fG-d-closed on M. However, R is neither f -closed nor f -d-closed on M, as (1/2, 1) ∈ R
and d(f1/2, f1) < d(1/2, 1) but (f1/2, f1) = (1/6, 1) /∈ R.

Definition 5.6. Let (M, d) be a metric space, R be a binary relation on M and f : M → M be a mapping. We
say the mapping f is a relation-theoretic graph contraction, if

d(fξ, fη) ≤ αd(ξ, η), for all (ξ, η) ∈ G(f ;R) and some α ∈ [0, 1). (5.1)

We can consider a singlevalued mapping f as a particular case of a multivalued mapping F in sense that Fξ = {fξ},
for all ξ ∈ M. Let us consider F = f (as a singlevalued mapping) in Theorem 3.7. Then, we find the following result
for relation-theoretic graph contractions as a direct consequence of Theorem 3.7.

Theorem 5.7. Let (M, d) be a metric space, R be a binary relation on M and f : M → M be a relation-theoretic
graph contraction. Suppose R is fG-d-closed and f has a nonempty closed relational graph under binary relation R.
Then, for each ξ ∈ M(f ;R), there exists a trajectory {ξn} of f , starting from ξ1 = ξ, which converges to fixed point
of f .

Now, we present a generalized version of relation theoretic-contraction principle due to Alam and Imdad [1].

Theorem 5.8. Let (M, d) be a metric space and R be a binary relation on M. Assume that f be a self mapping on
M and the following assertions are true:

(i) M(f ;R) ̸= ∅,

(ii) R is fG-d-closed,

(iii) either f is continuous or R is d-self-closed,

(iv) f satisfies the following condition:

d(fξ, fη) ≤ αd(ξ, η), for all (ξ, η) ∈ G(f ;R) and some α ∈ [0, 1),

(v) M is R-complete.

Then f has a fixed point.

Proof . Since a singlevalued mapping is particular case of multivalued mapping in the sense that Fξ = {fξ}, for all
ξ ∈ M. Then, condition (iv) implies that, f is a multivalued relation-theoretic graph contraction and condition (i)
and (ii) implies the condition (a) and (b) of Theorem 3.8 respectively. If f is continuous then the graph of f is closed
and d-self-closedness of R reduced to condition (ii) of (c) in Theorem 3.8. Thus, all the assertions of Theorem 3.8 are
true and the conclusion follows from Theorem 3.8. □

6 Applications to generalized coupled fixed point problems

Let (M, d) and (N , ρ) be two metric spaces endowed with binary relations R1 and R2 respectively. Suppose
F1 : M×N → P (M), F2 : M×N → P (N ) be multivalued mappings. We denote the relational graph of F1 and F2

respectively by G(F1;R1) and G(F2;R2) and defined as:

G(F1;R1) = {(ξ, µ) ∈ R1 : µ ∈ F1(ξ, η), ξ ∈ M, η ∈ N}

and
G(F2;R2) = {(η, ν) ∈ R2 : ν ∈ F2(ξ, η), ξ ∈ M, η ∈ N}.
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Then, the generalized coupled fixed point problem means to find a pair (ξ∗, η∗) ∈ M×N such that

ξ∗ ∈ F1(ξ
∗, η∗),

η∗ ∈ F2(η
∗, ξ∗).

(6.1)

We have the following general results:

Theorem 6.1. Let (M, d) and (N , ρ) be two metric spaces endowed with binary relations R1 and R2 respectively.
Suppose F1 : M×N → P (M), F2 : M×N → P (N ) be two multivalued mappings and the following conditions hold:

(a) there exist k1, k2 ∈ [0, 1) such that

δd (F1(ξ, η),F1(µ, ν)) ≤ k1 [d(ξ, µ) + ρ(η, ν)] ,

δρ (F2(ξ, η),F2(µ, ν)) ≤ k2 [d(ξ, µ) + ρ(η, ν)] ,

for every (ξ, η), (µ, ν) ∈ M×N with (µ, ν) ∈ F1(ξ, η)×F2(ξ, η) and ((ξ, µ), (η, ν)) ∈ R1 × R2,

(b) R1 and R2 are F1G-d-closed and F2G-ρ-closed respectively.

(c) F1 and F2 have nonempty closed relational graph under binary relation R1 and R2 respectively.

Then, the generalized coupled fixed point theorem (6.1) has at least one solution.

Proof . Let ℜ := R1 × R2, M := M×N and d∗ be a metric on M defined as:

d∗ ((ξ, η), (µ, ν)) := d(ξ, µ) + ρ(η, ν).

Then (M,d) forms a complete metric space endowed with the binary relation ℜ. Consider F : M → P (M) be a
mapping, defined as

F (ξ, η) := F1(ξ, η)×F2(ξ, η).

We denote the relational graph of F by G(F ;ℜ) and

G(F ;ℜ) := G(F1;R1)×G(F2;R2).

We suppose that the assumption (b) is true. Then

(ξ, µ) ∈ G(F1;R1), r ∈ F1(µ, .), d(µ, r) ≤ d(ξ, µ) =⇒ (µ, r) ∈ G(F1;R1)

and
(η, ν) ∈ G(F2;R2), s ∈ F2(., ν), ρ(ν, s) ≤ ρ(η, ν) =⇒ (ν, s) ∈ G(F2;R2).

Now, we will show that ℜ is F -d∗-closed on M . For this, we assume that ((ξ, µ), (η, ν)) ∈ G(F ;ℜ) then for any
(r, s) ∈ F (µ, ν) such that

d∗ ((µ, ν), (r, s)) ≤ d∗ ((ξ, η), (µ, ν)) ,

d(µ, r) + ρ(ν, s) ≤ d(ξ, µ) + ρ(η, ν),

we have

d(µ, r) ≤ d(ξ, µ) and ρ(ν, s) ≤ ρ(η, ν).

By F1G-d-closedness of R1 and F2G-ρ-closedness of R2, we have (µ, r) ∈ G(F1;R1) and (ν, s) ∈ G(F2;R2) therefore
((µ, r), (ν, s)) ∈ ℜ. This proves that, the relation ℜ is FG-d

∗-closed on M . Since F1 and F2 have nonempty closed
relational graph under the binary relation R1 and R2 respectively. Therefore, F also have a nonempty closed relational
graph under the binary relation ℜ.

Let (ξ, η), (µ, ν) ∈ M with ((ξ, η), (µ, ν)) ∈ ℜ and (µ, ν) ∈ F (ξ, η). Take any z := (r, s) ∈ F (ξ, η), then

Dd∗(z, F (µ, ν)) = inf{d∗(z, t) : t = (p, q) ∈ F (µ, ν)}
= inf{d(r, p) + ρ(s, q) : p ∈ F1(µ, ν) and q ∈ F2(µ, ν)}
= inf{d(r, p) : p ∈ F1(µ, ν)}+ inf{ρ(s, q) : q ∈ F2(µ, ν)}
= Dd (r,F1(µ, ν)) +Dρ (s,F2(µ, ν)) . (6.2)
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On the other hand,
Dd(r,F1(µ, ν)) ≤ δd(F1(ξ, η),F1(µ, ν)) ≤ k1[d(ξ, µ) + ρ(η, ν)] (6.3)

and
Dρ(s,F2(µ, ν)) ≤ δρ(F2(ξ, η),F2(µ, ν)) ≤ k2[d(ξ, µ) + ρ(η, ν)]. (6.4)

Hence from (6.2), (6.3) and (6.4), we have

Dd∗(z, F (µ, ν)) ≤ (k1 + k2)[d(ξ, µ) + ρ(η, ν)].

Thus

δd∗ (F (ξ, η), F (µ, ν)) ≤ kd∗ ((ξ, η), (µ, ν)) ,

for every (ξ, η), (µ, ν) ∈ M with (µ, ν) ∈ F (ξ, η) and ((ξ, η), (µ, ν)) ∈ ℜ, where k = k1 + k2. Hence, F is a multivalued
relation graph contraction with respect to δd∗ . The conclusion follows by Theorem 3.9. □

If we consider F : M×M → P (M) be a multivalued mapping then pair (ξ, η) is called a solution of the classical
coupled fixed point problem if

ξ ∈ F(ξ, η),
η ∈ F(η, ξ).

(6.5)

We have the following existence theorem.

Theorem 6.2. Let (M, d) be a metric spaces endowed with binary relations R. Suppose F : M×M → P (M) be a
multivalued mappings and the following conditions are hold:

(a) there exists k ∈ [0, 1) such that

δd (F(ξ, η),F(µ, ν)) ≤ k [d(ξ, µ) + ρ(η, ν)] ,

for every (ξ, η), (µ, ν) ∈ M×M with (µ, ν) ∈ F(ξ, η)×F(ξ, η) and ((ξ, µ), (η, ν)) ∈ R × R,

(b) R is FG-d-closed,

(c) F has nonempty closed relational graph under the binary relation R.

Then, the coupled fixed point theorem (6.5) has at least one solution.

Proof . The proof is obtained by taking M = N , d = ρ, k = k1 = k2, R = R1 = R2 and F = F1 = F2 in the proof
of Theorem 6.1 □

7 Conclusion

In this paper, we introduced a multivalued relation-theoretic graph contraction mappings and generalized the
Nadler fixed point theorem in the setting of relational metric spaces. We also introduced notions of FG-d-closedness
and fG-d-closedness, which is weaker than the notion of F-d-closedness and f -closedness respectively. Using these
notions, we extended and generalized the results of Ran and Reurings [11], Shukla and Rodŕıguez-López [13], Alam
and Imdad [1] and many others in the existing literature. We provided a comprehensive proof of the relation-theoretic
version of Nadler’s fixed point theorem and gave some illustrative examples to demonstrate the significance of our
main results over all the corresponding theorems presented in [7, 9, 13, 14].
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