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Abstract

In this paper, a non-linear mathematical model is proposed and analyzed to study the role of vaccination and control
measures on the spread of vector-borne diseases. It is assumed that susceptible hosts can be infected either directly or
indirectly. In the modelling process, it is considered that only a susceptible person can be vaccinated. The existence
of the control problem is proved and later used to investigate effective control efforts for the prevention of direct and
indirect transmission of disease. The model is analyzed using Hurwitz and Sylvester’s criterion. The analysis of the
model reveals that, if the vaccination reproduction number Rv is less than one, the disease can be eradicated provided,
and the vaccine is highly efficient.

Keywords: Vector-borne diseases, Control, Vaccination, Reproduction number, Stability
2020 MSC: 34D23, 34D35, 93D05

1 Introduction

Vector-borne diseases are human illnesses that are transmitted by vectors, such as: mosquitoes, ticks, sand flies,
fleas etc. These vectors are capable of carrying infective pathogens like bacteria, protozoa and viruses, which they can
transfer from one host to another. The significant vector-borne diseases account for around 17% of all infectious diseases
[24]. The burden of vector-borne diseases is highest in tropical and subtropical areas. These diseases disproportionately
affect the poorest population.

Various studies have been carried out to study the host-vector transmission dynamics of vector borne disease. The
researchers mainly focused on the spread of disease in community with the help of vectors rather than by direct contact.
Blayneh and Jag [4] proposed an SIS model for vector transmitted diseases by considering factors like transmission of
disease from vector to vector and then to host via surrounding media. Cosner et al. [7] suggested that disease persists
even in zero transmission when there is movement of humans between patches within heterogeneous environment.
Tumwiine et al. [25] studied the effect of Infective human immigrants on the transmission dynamics of vector borne
diseases. Vargas et al. [27] analysed two age structured model by assuming that host’s physical age and susceptibility
depends on this age. Further, Xu and Zhou [30] studied the behaviour of delayed epidemic model with partial immunity
of reinfection on vector borne diseases model. Musso et al. [22] identified some additional features for the transmission
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of Zika virus (the transmission of infection may be direct (blood transfer, sexual contact) as well as through vectors.
Fitzgibbon et al. [13] described infectious age structured model with incubation periods for population dynamics
using reaction diffusion equation. Enduri et al. [11] studied the transmission of spatial and temporal dynamics (using
reaction diffusion equation) by considering the mobility of both humans and environmental factors. Feng et al. [12]
formulated a model by incorporating the impact of free pathogen and the effect of environment on the transmission
of vector borne diseases.

Among all infectious diseases, vector borne diseases are the most complex to prevent and control. One of the
effective methods in disease prevention is vaccination [16, 19, 9, 23]. However, for the major vector borne diseases
the design of effective vaccine presents a great challenge. The difficulty with development of the malaria vaccine, for
example, is the genetic complexity of the parasite and there are four distinct stereotypes in case of dengue [18]. The
design of the vaccine, therefore, focuses on the development of a tetravalent vaccine for all stereotypes of the virus.
Despite the above-mentioned challenges in developing effective vaccines for vector transmitted diseases, significant
steps have been taken like; in recent years, international organisations have promoted increased vaccination programs
to tackle the vector borne diseases like cholera and typhoid. Mathematical models have been used significantly to assess
the efficacy of vaccination strategies. Various studies have been carried out, particularly for the direct transmitted
diseases, for effective vaccination strategies [2, 10, 17, 14]. Since, there is no effective vaccine as yet for some common
vector borne diseases, few models have specifically considered the possible impact of vaccination on such diseases.
Billings et al. [3] analysed an ODE model to determine the impact of single-strain vaccine campaigns on the epidemic
multistrain model dynamics. Coudeville and Garnett [8] studied the effect of vaccination on the age-structured,
serotype-specific compartment model for dengue disease. Kar and Jana [20] analysed the combined control strategies
on both host (treatment and vaccination controls) and vector (insecticide control). Recently, Abidemi et al. [1]
proposed a two strain compartment model for the dengue transmission by considering the variable human and vector
populations.

In this paper, we have formulated a mathematical model for vector born diseases with vaccination. Our aim is to
explore the effect of vaccine and control measures on the spread of vector born diseases.

2 Mathematical Model

The total human host population at time t is denoted by N1 (t) and total vector size at time t be denoted by N2 (t).
The human host population of size N1 (t) is divided into five distinct classes: the susceptible population of size Sh (t),
the vaccinated population of size Vh (t), the exposed population of size Eh (t), the infectious population of size Ih (t),
and the recovered population of size Rh (t). Thus N1 (t)=Sh (t)+Vh (t)+Eh (t)+Ih (t)+Rh (t). The model is based on
the following assumptions:

i) the susceptible host can be infected either directly (contact with infected person, possibly through blood trans-
fusion) or through biting of an infectious vector [22].

ii) the vertical transmission in host as well as vector population is assumed to be negligible. Thus, all newly
recureted hosts and vectors are susceptible host and susceptible vectors [28].

iii) the vaccination is assumed to be imperfect, vaccinated individuals can obtain breakthrough infection at a reduced
rate (1− σ)λVhIh [15] .

iv) the recovered host acquire permanent immunity so as recovered host can not become susceptible again [21].

v) the infected vectors never recover from the infection and carry the pathogen until their death and hence there is
no recovered class for the vectors [27].

The mathematical model can be represented by the following non-linear differential equations.

dSh
dt

= b1 − λShIh − βShIv − (ψ + µ1)Sh,

dVh
dt

= ψSh − (1− σ)λVhIh − µ1Vh,

dEh
dt

= λShIh + (1− σ)λVhIh + βShIv − (k + µ1)Eh,

dIh
dt

= kEh − dIh − δIh − µ1Ih,

dRh
dt

= δIh − µ1R,
dSv
dt

= b2 − γSvIh − µ2Sv,
dIv
dt

= γSvIh − µ2Iv,

(2.1)
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with initial conditions Sh ⩾ 0, Vh ⩾ 0, Eh ⩾ 0,Ih ⩾ 0,Rh ⩾ 0,Sv ⩾ 0,Iv ⩾ 0. Where b1 and b2 are the birth or
immigrant rate for host and vector population respectively. λ is the rate of direct transmission. β is the rate of
Infection spread by the pathogen-carrier vectors. ψ the vaccination rate of susceptible individuals. σ is the factor by
which the vaccine reduces infection. k is transfer rate between the exposed and the infectious class. γ is the rate of
incidence of newly infected vectors (after biting an infected host). δ is the per capita recovery of host population.
d is disease induced death rate of host population. µ1 and µ2 natural death rates of host and vector population
respectively.

Since the recovered population Rh appears only in fifth equation of system (2.1), therefore, the system (2.1) can
be reduced as:

dSh
dt

= b1 − λShIh − βShIv − (ψ + µ1)Sh,

dVh
dt

= ψSh − (1− σ)λVhIh − µ1Vh,

dEh
dt

= λShIh + (1− σ)λVhIh + βShIv − (k + µ1)Eh,

dIh
dt

= kEh − dIh − δIh − µ1Ih,

dSv
dt

= b2 − γSvIh − µ2Sv,

dIv
dt

= γSvIh − µ2Iv.

(2.2)

The above system is equipped with initial conditions for host and vector population as : Sh(0) = Sh0, Vh(0) = Vh0,
Eh(0) = Eh0, Ih(0) = Ih0, Sv(0) = Sv0, Iv(0) = Iv0.

It is worth to mention here that once the vector become carrier of micro-parasite, they carry it for life. The total
population size can be determined by N(t) = Nh(t) +Nv(t), where Nh(t) = Sh(t) + Vh(t) +Eh(t) + Ih(t) is the total
host population size and Nv(t) = Sv(t) + Iv(t) is the total vector population.

Adding host population of model (2.2) gives that

dNh
dt

= b1 − µ1Nh − dIh − δIh. (2.3)

It follows from equation (2.3) that if Nh >
b1
µ1
, then dNh

dt < 0. Clearly, 0 < Ih(t) < Nh(t), it follows that

b1 − (µ1 + δ + 2d)Nh(t) ≤
dNh(t)

dt
≤ b1 − µ1Nh(t).

Thus,
b1

µ1 + 2d+ δ
≤ lim inf

t→∞
Nh(t) ≤ lim sup

t→∞
Nh(t),

So that

lim
t→∞

Nh(t) =
b1
µ1
.

Similarly, for vector population we have

lim
t→∞

Nv(t) =
b2
µ2
.

From the first equation of model system (2.2), it follows that

0 < lim sup
t→∞

Sh ≤ b1
µ1 + ψ

(2.4)

and then from the second equation of model system (2.2),

0 < lim sup
t→∞

Vh ≤ b1ψ

µ1(µ1 + ψ)
. (2.5)
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It can be shown that Sh > 0, Vh > 0, Eh > 0, Ih > 0, Sv > 0 and Iv > 0 for all t > 0. Thus, all solutions of the model
system (2.2), with non-negative initial data, remain non-negative for all t > 0. The system (2.2) will be analyzed in
biologically feasible region Ω given as follows:

Ω =

{
(Sh, Vh, Eh, Ih, Sv, Iv) ∈ R6

+ : 0 ⩽ Sh + Vh + Eh + Ih ⩽
b1
µ1
, 0 ⩽ Sv + Iv ⩽

b2
µ2
, Sh ⩽

b1
µ1 + ψ

,

Vh =
b1ψ

µ1(µ1 + ψ)

}
.

(2.6)

3 Disease Free Equilibrium and Reproduction number

The equilibria for the model (2.2), can be obtained by setting right hand side of model (2.2) equal to zero. The
model clearly has a unique disease free equilibrium point E0 in the region (2.6) given by E0 = (S0

h, V
0
h , 0, 0, S

0
v , 0),

where S0
h = b1

µ1+ψ
, V 0
h = ψb1

µ1(µ1+ψ)
, S0

v = b2
µ2
. We will discuss in detail the existence of endemic equilibrium E∗, before

that we will obtain the expression of reproduction number. The reproduction number denoted by Rv and defined
by the number of secondary infection produced when a single infectious host is introduced into a totally susceptible
population. We use the next generation matrix method described in [26] to define the reproduction number Rv as:

Let x = (Sh, Vh, Eh, Ih, Sv, Iv)
T. Then the model (2.2) can be written in the matrix form as:

dx

dt
= F(x)− V(x),

where

F(x) =

λShIh + (1− σ)λVhIh + βShIv
0
0

 ,

V(x) =

 (k + µ1)Eh
(d+ δ + µ1)Ih − kEh

µ2Iv − γSvIv

 .

Now, we can get

F =

0 λS0
h + (1− σ)λS0

v βS0
h

0 0 0
0 0 0

 , V =

k + µ1 0 0
−k d+ δ + µ1 0
0 −γS0

v µ2

 ,

we have

V−1 =


1

k+µ1
0 0

k
(k+µ1)(d+δ+µ1)

1
d+δ+µ1

0
kγS0

v

µ2(k+µ1)(d+δ+µ1)
γS0

v

µ2(d+δ+µ1)
1
µ2

 .

The reproduction number Rv, defined as the spatial radius FV−1 is given as: ρ
(
FV−1

)
=

kλ(S0
h+(1−σ)V 0

h )
(k+µ1)(d+δ+µ1)

+
βkγS0

hS
0
v

µ2(k+µ1)(d+δ+µ1)
. According to [26] the vaccine reproduction number is given by:

Rv =
kλ

(
S0
h + (1− σ)V 0

h

)
(k + µ1) (d+ δ + µ1)

+
βkγS0

hS
0
v

µ2 (k + µ1) (d+ δ + µ1)

=
µ2
2b1kλ (µ1 + (1− σ)ψ) + βkγb1b2µ1

µ1µ2
2 (µ1 + ψ) (k + µ1) (d+ δ + µ1)

.

3.1 Stability of Disease free equilibrium with vaccination

The variational matrix at the disease free equilibrium point with vaccination E0
v of the model (2.2) is given as:

J1 =


−(µ1 + ψ) 0 0 −λS0

h 0 −βS0
h

ψ −µ1 0 −(1− σ)λV 0
h 0 0

0 0 −(µ1 + k) λS0
h + (1− σ)λV 0

h 0 βS0
h

0 0 k −(d+ δ + µ1) 0 0
0 0 0 −γS0

v −µ2 0
0 0 0 γS0

v 0 −µ2

 .
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From the characteristic equation, we obtain three eigen values as −(µ1 + ψ), −µ1, −µ2 and the remaining three
eigenvalue can be obtained from the following cubic equation

ζ3 + a2ζ
2 + a1ζ + a0 = 0,

where

a2 = [µ2 + (k + µ1) + (d+ δ + µ1)] ,

a1 = [µ+ µ2 (d+ δ + µ1) + βkγC + (k + µ1) (d+ δ + µ1) (1−Rv)] ,

a0 =µ2(k + µ1) (d+ δ + µ1) (1−Rv) .

Here µ = µ2

µ1
and C = b1

µ2(µ1+ψ)
. Since, a2 > 0, and we can easily see that a0 > 0 if Rv < 1, a2a1 > a0 if Rv < 1.

Hence, by using Hurwitz’s criteria, we can state the following theorem.

Theorem 3.1. The Disease free equilibrium with vaccination is linearly asymptotically stable if Rv < 1 and unstable
if Rv > 1.

4 Existence of Endemic equilibrium with vaccination

The endemic equilibrium of the model system (2.2) denoted by E∗ is given by E∗ = (S∗
h, V

∗
h , E

∗
h, I

∗
h, S

∗
v , I

∗
v ). where

S∗
h =

b1µ2(γI
∗
h+µ2)

µ2(γI∗h+µ2)(λI∗h+µ1+ψ)+βγb2I∗h
, E∗

h = 1
k (d+ δ + µ1) I

∗
h, V

∗
h = ψ

(1−σ)λI∗h+µ1
S∗
h, S

∗
v = b2

γI∗h+µ2
, I∗v = γb2

µ2(γI∗h+µ2)
I∗h

and the value of I∗h can be obtained from the following cubic equation

P (I∗h) = b0I
∗3
h + b1I

∗2
h + b2I

∗
h + b3 = 0, (4.1)

where,

b0 =(k + µ1)(d+ δ + µ1)(1− σ)γµ2λ
2,

b1 =(k + µ1) (d+ δ + µ1) (1− σ)λµ2

[
λµ2

2 + γβb2 + µ1µ2γ + γµ2 (µ1 + ψ) (1−Rv)
]

+
(1− σ)λγ

µ1µ2

[
kb1λµ

2
2 (1− σ)ψ + βkγb1b2µ1

]
,

b2 =(k + µ1) (d+ δ + µ1)
[
λµ1µ

2
2 + µ1βγb2 +

(
γµ1µ2 + (1− σ)λµ2

2

)
(1−Rv)

]
+

kb1
µ1µ2

(
γβb2µ

2
1 + (1− σ)

2
λ2µ3

2ψ
)
,

b3 =(k + µ1) (d+ δ + µ1) (µ1 + ψ)µ1µ
2
2 −

[
kb1µ

2
2λψ (1− σ) + kb1b2µ1βγ + kλ1b1µ1µ

2
2

]
=µ1µ

2
2 (k + µ1) (d+ δ + µ1) (1−Rv) .

We state the theorem given in [6] to determine the existence of endemic equilibrium.

Theorem 4.1. Every equation of an odd degree has at least one real root of a sign opposite to that of its last term.

Since 0 < σ < 1, therefore, b0 > 0.
Now, two cases arise:

Case 1. when Rv > 1, then using the theorem 4.1 equation (4.1) has atleast one positive root.

Again two cases arise:

Case 1a. when Rv > 1, and if b1 < 0, b2 < 0 then using Descarts rule of signs, equation(4.1) has exactly one Positive root.

Case 1b. when Rv > 1, and if b1 > 0, b2 > 0 then using Descarts rule of signs, equation(4.1) has atleast one Positive root.

Case 2. when Rv ⩽ 1 then using Discart’s rule of signs equation(4.1) has no positive root.

Thus, we summarize the result as:

Lemma 4.2. The system (2.2) has a unique endemic equilibrium point whenever Rv > 1 and no positive endemic
equilibrium when Rv ⩽ 1.
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4.1 Stability of endemic equilibrium with Vaccination

The endemic equilibrium E∗ = (S∗
h, V

∗
h , E

∗
h, I

∗
h, S

∗
v , I

∗
v ) is non-linearly asymptotically stable in the region Ω provided

the following conditions are satisfied:[
a1

(
(λI∗h + βI∗v ) + (µ1 + ψ)− λb1

2µ1
− βb1

2µ1

)
− a3

(
λb1
2µ1

)][
a2

(
(1− σ)λI∗h + µ1 − (1− σ)

λb1
2µ1

)
−a3

(
(1− σ)

λb1
2µ1

)]
>

1

2
a22ψ

2[
a1

(
(λI∗h + βI∗v ) + (µ1 + ψ)− λb1

2µ1
− βb1

2µ1

)
− a3

(
λb1
2µ1

)]
a3

(
(k + µ1)−

λb1
2µ1

− (1− σ)
λb1
2µ1

−βb1
2µ1

)
> β2I2v

a3

(
(k + µ1)−

λb1
2µ1

− βb1
2µ1

− (1− σ)
λb1
2µ1

)(
a4 (d+ δ + µ1)− a1

λb1
2µ1

− a2 (1− σ)
λb1
2µ1

)
>

3

2

(
a23 [(1− σ)λV ∗

h ]
2
+ a24k

2
)

(
a4 (d+ δ + µ1)− a1

λb1
2µ1

− a2 (1− σ)
λb1
2µ1

)[
a5

(
µ2 +

γb1
µ1

)
+ a6

(
− γb1
2µ1

)]
>

3

4
a25 (γS

∗
v )

2

(
a4 (d+ δ + µ1)− a1

λb1
2µ1

− a2 (1− σ)
λb1
2µ1

)[
a6

(
µ1 −

γb1
2µ1

)
− βb1

2µ1
(a1 + a3)

]
>

3

4
a26 (γS

∗
v )

2

(4.2)

(For proof see Appendix-A)

5 The effect of vaccination

5.1 Analysis of vaccination-free model

Consider the system (2.2) in the absence of vaccination, obtained by setting Vh = ψ = 0 in system (2.2), given by

dSh
dt

= b1 − λShIh − βShIv − µ1Sh,

dEh
dt

= λShIh + βShIv − (k + µ1)Eh,

dIh
dt

= kEh − dIh − δIh − µ1Ih,

dSv
dt

= b2 − γSvIh − µ2Sv,

dIv
dt

= γSvIv − µ2Iv.

(5.1)

We will consider the dynamic behaviour of system (5.1) on Ω0 as:

Ω0 =

{
(Sh, Eh, Ih, Sv, Iv) ∈ R6

+ : 0 ⩽ Sh + Eh + Ih ⩽
b1
µ1
, 0 ⩽ Sv + Iv ⩽

b2
µ2
, Sh ⩽

b1
µ1
,

Sv ⩽
b2
µ2
, Sh ⩾ 0, , Eh ⩾ 0, Ih ⩾ 0, Sv ⩾ 0, Iv ⩾ 0

}
.

(5.2)

It is easy to see that the region (5.2) is a positive invariant set of system (5.1).

5.2 Disease free equilibrium and reproduction number

The disease free equilibrium can be obtained by setting Ih = Iv = 0. The Disease free equilibrium of the system

(5.1) in the region (5.2), is given by E0 =
(
S0
h, E

0
h, I

0
h, S

0
v , I

0
v

)
=

(
b1
µ1
, 0, 0, b2µ2

, 0
)
.

Define

R0 =
µ2
2b1kλ+ βkγb1b2

µ1µ2
2 (µ1 + ψ) (k + µ1) (d+ δ + µ1)

.
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The linearization of the system (5.1) at the equilibrium E0 gives the following characteristic equation:

(−η − µ1) (−η − µ2)
(
η3 + c2η

2 + c1η + c0
)
= 0.

From the characteristic equation, we obtain two eigen values as −µ1, −µ2 and the remaining eigenvalues can be
obtained from the following cubic equation

η3 + c2η
2 + c1η + c0 = 0,

where

c2 = [µ2 + (k + µ1) + (d+ δ + µ1)] ,

c1 = [µ2 (k + µ1) + (d+ δ + µ1) + βkγD + (k + µ1) (d+ δ + µ1) (1−R0)] ,

c0 =µ2(k + µ1) (d+ δ + µ1) (1−R0) .

Here D = b1b2
µ1µ2

2
. Since, c2 > 0, and c0 > 0, c2c1 > c0 if R0 < 1.

Hence, by using Hurwitz’s criteria, we can state the following theorem.

Theorem 5.1. The Disease free equilibrium ( without vaccination ) is linearly asymptotically stable if R0 < 1 and
unstable if R0 > 1.

5.3 Existence of endemic equilibrium without vaccination

The endemic equilibrium of the system (5.1) without vaccination is given by E1 =
(
S̄h, Ēh, Īh, S̄v, Īv

)
where

S̄h = b2
(γĪh+µ2)

,Ēh = d+δ+µ1

k Īh,S̄v =
b2

(γĪh+µ2)
,Īv =

γb2
µ2(γĪh+µ2)

Īh and Īh is given by the quadratic equation

a0Ī2h + a1Īh + a2 = 0, (5.3)

where

a0 =(k + µ1) (d+ δ + µ1)µ
2
2λγ,

a1 =(k + µ1) (d+ δ + µ1)
[(
µ2
2λ+ βγb2

)
µ2 + (1−R0)

]
+ b1b2βγ

2,

a2 =(k + µ1) (d+ δ + µ1)µ1µ
3
2 (1−R0) .

We state the following theorem to determine the existence of the endemic equilibrium:

Theorem 5.2. Every equation of an even degree, whose last term is negative, has at least two real roots, one positive
and the other negative.

Since, a0 > 0. Now two cases arise:

Case 1. when R0 > 1, then a2 < 0, therefore, by Theorem 5.2 the Equation (5.3) has a unique positive real root.

Case 2. when R0 ≤ 1, then a1 > 0 and a2 > 0, therefore, by Descartes’ rule of sign Equation (5.3) has no positive real
root.

Thus, we can conclude that Equation (5.3) has unique positive real root. Hence system (5.1) a unique endemic
equilibrium point whenever R0 > 1 and no positive endemic equilibrium R0 ≤ 1

5.4 Stability of endemic equilibrium without Vaccination

The endemic equilibrium E1 =
(
S̄h, Ēh, Īh, S̄v, Īv

)
is non-linearly asymptotically stable in the region Ω0 provided

the following conditions are satisfied:[
c1

(
µ1 + (λ+ β) Īh −

λb1
2µ1

)
− c2

(
βb2
2µ1

)][(
(k + µ1)−

λb1
2µ1

− βb2
2µ2

)]
>

3

4
c2

(
λĪh

)2
c2

(
(k + µ1)−

λb1
2µ1

− βb2
2µ2

)[
c3 (d+ δ + µ1)− (c1 + c2)

λb1
2µ1

− (c4 + c5)
γb2
2µ1

]
>

3

4
(c3k)

2

(
(k + µ1)−

λb1
2µ1

− βb2
2µ2

)[
c5

(
µ2 −

λb2
2µ2

)
− c1

βb1
2µ1

]
>

3

2
c2

(
βS̄h

)2
c4

(
µ2 + γĪh −

1

2
γy24

b2
µ2

)[
c5

(
µ2 −

λb2
2µ2

)
− c1

βb1
2µ1

]
>

1

2

(
c5γĪh

)2
(5.4)
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(For proof see Appendix-B)

5.5 Dependence on vaccination rate

We will view ψ as a variable and consider all other parameters fixed. Practically, ψ is the easiest variable to control.
Later, we will articulate our results in terms of an uncontrolled system with parameters b1, b2, µ1, µ2, λ, β, δ, γ and d
fixed and analyze the impact of varying ψ. Keeping this in view, we will refer to the basic reproductive number Rv(ψ)
of the model (2.2). The derivative of Rv(ψ) is given as:

R′
v(ψ) = −

[
µ2
2b1kλσµ1 + βkγb1b2µ1

µ1µ2
2 (k + µ1) (d+ δ + µ1) (µ1 + ψ)

2

]
(5.5)

From equation (5.5) of R′
v(ψ), it is clear that R′

v(ψ) ⩽ 0, therefore, Rv(ψ) is decreasing function in ψ ⩾ 0. This shows
the effect of vaccination in reducing the vaccine reproduction number. Further, if there is no vaccination,i.e,

ψ = V = 0, Rv(ψ) =
µ2
2b1kλ+ βkγb1b2

µ1µ2
2 (k + µ1) (d+ δ + µ1)

= R0.

It is worth to mention here that the introduction of vaccination results Rv(ψ) ⩽ R0, therefore, if R0 < 1 then
Rv(ψ) < 1 when σ > 0. Hence, E0 is locally asymptotically stable provided that Rv(ψ) < 1.

From the expression of R0, we have

(1− σ)R0 =
(1− σ)(µ2

2b1kλ+ βkγb1b2)

µ1µ2
2 (k + µ1) (d+ δ + µ1)

⩽ Rv(ψ) ⩽ R0.

In order to find the critical value for vaccine-related reduction rate of infection. let us assume that
(1−σ)(µ2

2b1kλ+βkγb1b2)

µ1µ2
2(k+µ1)(d+δ+µ1)

⩾

1 then we have σ > σ∗ and

σ∗ = 1− µ1µ
2
2 (k + µ1) (d+ δ + µ1)

(µ2
2b1kλ+ βkγb1b2)

.

This implies that Rv(ψ) > 1 and consequently, signifies that no amount of vaccine can now bring Rv(ψ) < 1.
Thus σ∗ defines the critical value for vaccine-related reduction rate of infection. Suppose that limψ→∞ Rv(ψ) =

(1−σ)(µ2
2b1kλ)

µ1µ2
2(k+µ1)(d+δ+µ1)

= R∗. Since 0 ⩽ σ < 1, therefore, R∗ ⩽ R0. This implies that R∗ < 1 iff ψ → ∞ and σ → 1

i.e., in order to bring R∗ is less than one, we have to significantly increase the vaccination rate provided the vaccine
efficacy is high (almost 100% protective). Using R∗ and R0, we can write Rv(ψ) =µ1R0+ψR∗

µ1+ψ
. Let us suppose that

Rv(ψ) = 1 and solving for ψ, we can obtain a threshold vaccination rate, ψ∗ = µ1(R0−1)
1−R∗ .

Further, consider R∗ < 1 < R0, then we can get ψ∗ positive. As Rv(ψ) is decreasing function for ψ > 0, in case
ψ > ψ∗, then, Rv(ψ) < 1. This shows that, if the rate of vaccination ψ is greater than the threshold ψ∗, the disease
eradication is possible provided σ → 1 (high vaccine efficacy).

From equation (2.2) we have
dVh
dt

= ψSh − (1− σ)λVhIh − µ1Vh.

When the population is at equilibrium we have ψ∗∗ =
µ1V

∗
h

S∗
h

.

ψ∗∗ is the critical rate of vaccination required for disease eradication, when the population is at equilibrium state.
Thus, disease eradication is possible, if we choose ψ such that ψ > max {ψ∗, ψ∗∗}.

Remark 5.3. The model (2.2) has a stable disease-free equilibrium point for Rv < 1, and it follows that the vac-
cination free model (5.1) also has a disease-free equilibrium point for R0 < 1. At the disease-free equilibrium the
critical fraction that must be vaccinated can be determined. It is useful and informative to determine the elimination
condition of the population that are vaccinated at equilibrium, given by f = Vh(0)

N1(0)
= ψ
ψ+µ1

.

6 Optimal Control Problem

In this section, we formulate and analyse an optimal control problem applied to vector-host dynamics described
by the system (2.2). We aim to find the optimal control v∗ (t) = (ψ (t) , β (t) , µv (t))

T ∈ R3, which are represented as:
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ψ (t) for rate of vaccination, β (t) is the control strategy that aims to limit the transmission of pathogen by reducing
human contact with vector and µv (t) the control strategy for the elimination of vector population. The broad range
of vector control tools that can be generally adopted are given in [29]. The control strategies are used to minimise
the infected human population size, vector population size and the cost of this controlling efforts. We use Pontryagins
Minimum Principle to investigate the optimal level of effort required to control the vector transmitted disease [5]. The
ultimate preselected objective is to minimise the infected human population, reduce the human contact with vector
and minimise the vector population at minimal cost over a finite time interval [0, tf ]. Thus, the objective function to
be minimised is defined as:

J [(ψ (t) , β (t) , µv (t)] =
1

2

∫ tf

0

[
A1I

2
h +A2I

2
v +A3ψ

2 (t) +A4β
2 (t) +A5µ

2
v (t)

]
dt. (6.1)

The parameters Ai > 0 for (i = 1, 2, 3, 4, 5) denote the dimensionless weight functions of the relative cost of the interven-
tions over [0, tf ]. The aim of the optimal control problem is to search for optimum control functions (ψ∗ (t) , β∗ (t) , µ∗

v (t))
such that

J (ψ∗, β∗, µ∗
v) = min {J (ψ, β, µv) | ψ, β, µv ∈ U} , (6.2)

where U = {(ψ, β, µv) | ψ, β, µv : [0, tf ] → [0, 1] ,∀ψ, β, µv} subject to system (2.6). Pontryagin’s Minimum Principle
is used to derive the necessary conditions that an optimal control must satisfy. This principle transforms system (2.2)
and (6.1) into a minimisation problem. We determine the Hamiltonian function by introducing the costate vector also
known as Lagrange multiplier λ (t) ∈ R6 as:

H =A1I
2
h (t) +A2I

2
v (t) +A3ψ

2 (t) +A4β
2 (t) +A5µ

2
v (t)

+ λ1 [bh − λShIh − βShIv − (µh + ψ)] + λ2 [ψSh − (1− σ)λVhIh − µhVh]

+ λ3 [λShIh + (1− σ)λVhIh + βShIv − (k + µh)Eh] + λ4 [kEh − (d+ δ + µh) Ih]

+ λ5 [bv − γSvIh − µvSv] + λ6 [γSvIh − µvIv] .

(6.3)

We prove the existence of an optimal control for system (2.2) by the following theorem using the Pontragin’s Minimum
principle.

Theorem 6.1. Let ψ∗, β∗ and µ∗
v be the optimal controls for the model system (2.2), χ∗ the state space at equilibrium,

and λi be positive semi-definite piecewise differentiable functions for all t and i = 1, 2, ...6. Supposes that, for all
t ∈ [0, tf ],

0 =Hψ (t, χ∗, ψ∗, β∗, µ∗
v, λ (t)) ,

Hβ (t, χ
∗, ψ∗, β∗, µ∗

v, λ (t)) ,

Hµv
(t, χ∗, ψ∗, β∗, µ∗

v, λ (t)) ,

(6.4)

then
H (t, χ∗, ψ∗, β∗, µ∗

v, λ (t)) ≤ H (t, χ, ψ, β, µv, λ (t)) (6.5)

holds for optimal control ψ∗, β∗ and µ∗
v.

Proof . We differentiate the Hamiltonian with respect to each of the state variables; to find the differential equations
with respect to the associated adjoint functions as:

dλ1
dt

=λ1µh + λ1ψ − λ2ψ + λ1βIv − λ3βIv + λ1λIh − λ3λIh,

dλ2
dt

=λµh + λ2 (1− σ)λIh − λ3 (1− σ)λIh,

dλ3
dt

=λ3µh + λ3k − λ4k,

dλ4
dt

=λ4 (d+ δ + µh)− C1Ih + λ1λSh − λ3λSh + λ2λ (1− σ)Vh − λ3λ (1− σ)Vh

+ λ5γSv − λ6γSv,

dλ5
dt

=λ5µv + λ5γIh − λ6γIh,

dλ6
dt

=λ6µv + λ1βSh − C2Iv − λ3βSh,

(6.6)
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Figure 1: Variation of infective human(host) population for (σ = 0) and σ = 1) with respect to time t

with transversality condition

λ1 (tf ) = λ2 (tf ) = λ3 (tf ) = λ4 (tf ) = λ5 (tf ) = λ6 (tf ) = 0. (6.7)

To determine the adjoint equations for given transversality condition (6.7), the following hold

dλ1
dt

=− ∂H

∂Sh
,

dλ2
dt

=− ∂H

∂Vh

dλ3
dt

=− ∂H

∂Eh
,

dλ4
dt

=− ∂H

∂Ih
, (6.8)

dλ5
dt

=− ∂H

∂Sv
,

dλ6
dt

=− ∂H

∂Iv
. (6.9)

The following expressions describe the optimal control

ψ∗ (t) =max
{
0,min

(
ψ̄ (t) , 1

)}
,

β∗ (t) =max
{
0,min

(
β̄ (t) , 1

)}
,

µ∗
v (t) =max {0,min (µ̄v (t) , 1)} .

(6.10)

By standard control arguments involving the bounds on the controls, we conclude

ψ∗ =


0, if ψ̄ ≤ 0.

ψ̄, if 0 < ψ̄ < 0.

1, if ψ̄ ≥ 1.

, β∗ =


0, if β̄ ≤ 0.

β̄, if 0 < β̄ < 0.

1, if β̄ ≥ 1.

, µ∗
v =


0, if µ̄v ≤ 0.

µ̄, if 0 < µ̄v < 0.

1, if µ̄v ≥ 1.

(6.11)

□

7 Numerical simulation

In this section our aim is to explore, through a non-linear model, the role of control strategies and impact of
vaccination on the spread of vector borne diseases. To show the existence of equilibrium values of variables of the
system (2.2) as well as the feasibility of stability conditions numerically, we integrate the systems by fourth order
Runge-Kutta method using MATLAB. To study the dynamical behaviour of the system (2.2), numerical simulation
of the system is done by using the following parameters.
b1 = 1, λ = 0.0004, β = 0.0586, µ1 = 0.006, γ = 0.000000256, µ2 = 0.006, d = 0.0023, δ = 0.0553, k = 0.050, σ =
0.2, b2 = 0.0023, ψ = 0.0003 The equilibrium values are computed as follows:
E∗ = (105.35118, 4.19185, 6.12039, 4.81163, 0.36170, 0.02163).
The eigenvalues corresponding to variational matrix of endemic equilibrium E∗ are:
−0.0058 + 0.0042i,−0.0058 − 0.0042i,−0.0060,−0.0077,−0.0168,−0.1064. It is noted here that all the eigenvalues
corresponding to endemic equilibrium E∗ are found to be negative or having negative real parts, therefore, endemic
equilibrium E∗ is locally asymptotically stable for the above set of parameter values. The results of numerical
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Figure 2: Variation of infective human(host) population for (λ = 0.0004) and λ = 0.4) with respect to time t

Figure 3: Variation of infective and exposed human(host) population for ψ with respect to time t

simulation are shown graphically in Figure. 1. In Figure. 1, the variation of infective human (host) population is
shown for different values of vaccination efficacy σ. It is found that as vaccination efficacy (σ) increases, the infective
human (host) population decreases. The graphic result displayed in Figure. 1 signifies that only by increasing the
vaccination efficacy, spread of vector-borne disease cannot be significantly controlled. The effect of λ (rate of direct
transmission) on the infective human (host) population is displayed in Figure. 2. It is seen that as the rate of direct
transmission increases, the infective human population increases. This increase in infective human population is due
to the increase in direct transmission (possibly through blood transfer or through sexual contact) of disease.

The primary aim of the present study is to investigate the impact of vaccination and control measures on the
spread of vector borne disease. Therefore, we perform a comprehensive numerical study to analyse the impact of
control related parameters on the disease dynamics. As explained earlier (in ”Optimal Control 6” section), the optimal
strategy is obtained by solving the state and adjoint systems and the transversality conditions. Three different control
strategies are suggested analytically. Figure 3 show the variation of infective and exposed population with time for
control parameter ψ∗ , the vaccination rate of susceptible population. It is seen that without control, the infective
and exposed population significantly increases as compared to when there is control. This is due to the reason that in
presence of control the susceptible population will get vaccinated, so infected and exposed population will be reduced
significantly. Figure 4 displays the impact of control variable β∗ on infective and exposed human population. It is seen
that infective and exposed population is decreased significantly with control variable. β. This decline in infective as
well as exposed population is due to crubs on the spread of disease by pathogen carrier vectors using control measures.
The impact of control strategy is displayed in Figure 5. It is found that with control parameter µ∗

2, the infective
population as well as exposed population is sharply declined. This decrease in infective and exposed population is due
to the decrease in vector population by using the vector control tools.



3010 Hamid, Sinha

Figure 4: Variation of infective and exposed human(host) population for control parameter β with respect to time t

Figure 5: Variation of infective human (host) population for control parameter µ∗
2 with respect to time t

8 Conclusion

In this paper, we developed and analyzed a mathematical model for vector borne diseases with vaccination and
control measures. We assume that only a susceptible individual can be vaccinated and that the vaccine is imperfect
i.e, not 100% protective. We analyzed the model with and without vaccination, formulated the vaccine reproduction
number and discussed the stability of disease-free and endemic equilibrium. The analytical results suggests that,
in order to eradicate the vector borne disease, the vaccination reproduction number Rv should be less than one.
The increase in vaccination rate will be helpful to obtain the vaccination reproduction number Rv less than one. The
study for vaccine reproduction number suggests that higher values of vaccination rate ψ reduce the infected population
significantly.

We also considered the problem of optimal control of the transmission dynamics of a vector borne disease. The
optimal control strategy presented involve three control parameters associated with rate of vaccination, human host
protection and the vector reduction strategies are considered. The control graphs which we have plotted show that
the infected and exposed population of infective and exposed human decreased. It also showed that in the optimality
system, total number of vector population diminishes. For the existence of an optimal control, the control system is
analyzed by using Pontryagin’s Maximum Principle. Furthermore, to illustrate the effectiveness and efficiency of the
proposed control problem, numerical simulations have been displayed. The results indicates that vector reduction is
very effective in reducing the incidence of infectious hosts.
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Appendix-A

We transform the system (2.2) by applying the transformation Sh = S∗
h + x1, Vh = V ∗

h + x2, Eh = E∗
h + x3, Ih =

I∗h + x4, Sv = S∗
v + x5, Iv = I∗v + x5 , we have

dx1
dt

=− λS∗
hx4 − λI∗hx1 − λx1x4 − βS∗

hx6 − βI∗vx1 − βx1x6 − (µ1 + ψ)x1

dx2
dt

=ψx1 − (1− σ)λI∗hx2 − (1− σ)λx2x4 − (1− σ)λx4V
∗
h − µ1x2

dx3
dt

=λS∗
hx4 + λx1x4 + (1− σ)V ∗

h x4 + (1− σ)λx2x4 + βS∗
hx6 + βx1x6 + λI∗hx1

+ βI∗vx1 + (1− σ)λIhx2 − (k + µ1)x3

dx4
dt

=kx3 − (d+ δ + µ1)x4

dx5
dt

=− γS∗
vx4 − γI∗hx5 − γx4x5 − µ2x5

dx6
dt

=γS∗
vx4 + γI∗hx5 − γx4x5 − µ2x6

Now, consider the Lyapunov function as

V1 =
1

2

[
a1x

2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 + a5x

2
5 + a6x

2
6

]
we have

dV1
dt

=a1
[
−λx1x4 (S∗

h + x1)− (λI∗h + βIv)x
2
1 − βx1x6 (S

∗
h + x1)− (µ1 + ψ)x21

]
+a2

[
ψx1x2 − (1− σ)λ (V ∗

h + x2)x2x4 − (1− σ)λI∗hx
2
2 − µ1x

2
2

]
+a3 [λ (I

∗
h + x4)x1x3 + (1− σ)λ (I∗h + x4)x2x3 + β (S∗

h + x1)x3x6 + λS∗
hx3x4 + (1− σ)λV ∗

h x3x4

+βx1x3I
∗
v − (k + µ1)x

2
3

]
+ a4

[
kx4x3 − (d+ δ + µ1)x

2
4

]
+ a5

[
−γ (I∗h + x4)x

2
5 − γSvx4x5 − µ2x

2
5

]
+ a6

[
γS∗

vx4x6 + γ (I∗h + x4)x5x6 − µ2x
2
6

]
Now using the inequality ±2ab ⩽

(
a2 + b2

)
and also using region Ω on the right hand side of the above equation, we get

dV1
dt

=a1

[
−λx1x4

(
b1
µ1

)
− (λI∗h + βIv)x

2
1 − βx1x6

(
b1
µ1

)
− (µ1 + ψ)x21

]
+a2

[
ψx1x2 − (1− σ)λ

(
b1
µ1

)
x2x4 − (1− σ)λI∗hx

2
2 − µ1x

2
2

]
+a3

[
λ

(
b1
µ1

)
x3x4 + (λI∗h + βI∗v )x1x3 + β

(
b1
µ1

)
x3x6 + (1− σ)λ

(
b1
µ1

)
x22 + (1− σ)λV ∗

h x4x3

− (k + µ1)x
2
3

]
+ a4

[
kx4x3 − (d+ δ + µ1)x

2
4

]
+ a5

[
−γ

(
b2
µ2

)
x25 − γSvx4x5 − µ2x

2
5

]
+

[
γS∗

vx4x5 + γ

(
b2
µ2

)
x5x6 − µ2x

2
6

]
=a1

[
λ
b1
2µ1

x21 +
λb1
2µ1

x24 − x21 (λIh + βIv) +
βb1
2µ1

x21 +
βb1
2µ1

x26 − (µ1 + ψ)x21

]
+ a2

[
ψx1x2 + (1− σ)

λb1
2µ1

x22 + (1− σ)
λb1
2µ1

x24 − (1− σ)λIhx
2
2 − µ2

2

]
+ a3

[
λb1
2µ1

x21 +
λb1
2µ1

x23 + (1− σ)λ
b1
2µ1

x22 + (1− σ)λ
b1
2µ1

x23 + β
b1
2µ1

x23 + β
b1
2µ1

x26 + (1− σ)λV ∗
h x3x4

+βx1x3I
∗
v − (k + µ1)x

2
3

]
+ a4

[
kx3x4 − (d+ δ + µ1)x

2
4

]
+

[
−γS∗

vx4x5 − γ
b1
µ1
x25 − µ2x

2
5

]
+a6

[
γSvx4x6 + γ

b1
2µ1

x25 + γ
b1
2µ1

x6 − µ2x
2
6

]
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=−
[(

1

2
a11x

2
1 − a12x1x2 + a22x

2
2

)
+

(
1

2
a11x

2
1 − a13x1x3 +

1

2
a33x

2
3

)
+

(
1

2
a33x

2
3 − a34x3x4 +

1

3
a44x

2
4

)
+

(
1

3
a44x

2
4 − a45x4x5 + a55x

2
5

)
+

(
1

3
a44x

2
4 − a46x4x6 + a66x

2
6

)]
where

a11 =a1

(
(λI∗h + βI∗v ) + (µ1 + ψ)− λb1

2µ1
− βb1

2µ1

)
− a3

(
λb1
2µ1

)
a22 =a2

(
(1− σ)λI∗h + µ1 − (1− σ)

λb1
2µ1

)
− a3

(
(1− σ)

λb1
2µ1

)
a33 =a3

(
(k + µ1)−

λb1
2µ1

− (1− σ)
λb1
2µ1

− βb1
2µ1

)
a44 =a4 (d+ δ + µ1)− a1

λb1
2µ1

− a2 (1− σ)
λb1
2µ1

a55 =a5

(
γb1
µ1

+ µ2

)
− a6

γb1
2µ1

a66 =a6

(
µ2 −

γb1
2µ1

)
− a3

βb1
2µ1

− a1
βb1
2µ1

a12 =a2ψ a13 =a3 (βI
∗
v )

a34 =a3 (1− σ)λV ∗
h + a4k, a45 =− γSva5, a46 = γSva6

Using Sylvester’s criteria, it can be observed that dV1

dt is negative definite under the conditions (4.2).

Appendix-B

Applying the transformation Sh = S̄h + y1,Eh = Ēh + y2,Ih = Īh + y3,Sv = S̄v + y4,Iv = Īv + y5 we have

dy1
dt

= −λy3S̄h − λy1Īh − λy1y3 − βy5S̄h − βy1Īv − βy1y5 − µ1y1

dy2
dt

= λy3S̄h + λy1Īh + λy1y3 + βy5S̄h + βy1Īv + βy1y5 − (k + µ1) y2

dy3
dt

= ky2 − dy3 − δy3 − µ1y3

dy4
dt

= −γy3S̄v − γy4Īh − γy3y4 − µ2y4

dy5
dt

= γy3S̄v + γy4Īh − γy3y4 − µ2y5

Now, consider the Lyapunov function as:

V2 =
1

2

(
c1y

2
1 + c2y

2
2 + c3y

2
3 + c4y

2
4 + c5y

2
5

)
we have

dV2
dt

=c1
[
−λy1y3

(
S̄v + y1

)
− λy21 Īh − βy1y5

(
S̄v + y1

)
− βy21 Īh − µ1y

2
1

]
+ c2

[
λy2y3

(
S̄h + y1

)
+βy1y2

(
Īv + y5

)
+ λy1y2Īh + βy2y5S̄h − (k + µ1) y

2
2

]
+ c3

[
ky2y3 − (d+ δ + µ1) y

2
3

]
+ c4

[
−γy3y4

(
S̄v + y4

)
− γy24 Īh − µ2y

2
4

]
+ c5

[
γy3y5

(
S̄v + y4

)
+ γy4y5Īh − µ2y

2
5

]
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Now using the inequality,±2ab ⩽
(
a2 + b2

)
on the right hand side of dV2

dt , we find that

dV2
dt

=c1

[
1

2
λy21

(
S̄v + y1

)
+

1

2
λy23

(
S̄v + y1

)
− λy21 Īh +

1

2
βy21

(
S̄v + y1

)
+

1

2
βy25

(
S̄v + y1

)
− βy21 Īh − µ1y

2
1

]
+ c2

[
1

2
λy22

(
S̄h + y1

)
+

1

2
λy23

(
S̄h + y1

)
+

1

2
βy21

(
Īv + y5

)
+

1

2
βy22

(
Īv + y5

)
+ λy1y2Īh + βy2y5S̄h

− (k + µ1) y
2
2

]
+ c3

[
ky2y3 − (d+ δ + µ1) y

2
3

]
+ c4

[
1

2
γy23

(
S̄v + y4

)
+

1

2
γy24

(
S̄v + y4

)
− γy24 Īh − µ2y

2
4

]
+ c5

[
1

2
γy23

(
S̄v + y4

)
+

1

2
γy25

(
S̄v + y4

)
+ γy4y5Īh − µ2y

2
5

]
Again using the region Ω0 on the right hand side of the above inequality, we get

dV2
dt

=c1

[
1

2
λy21

b1
µ1

+
1

2
λy23

b1
µ1

− λy21 Īh +
1

2
βy21

b1
µ1

+
1

2
βy25

b1
µ1

− βy21 Īh − µ1y
2
1

]
+ c2

[
1

2
λy22

b1
µ1

+
1

2
λy23

b1
µ1

+
1

2
βy21

b2
µ2

+
1

2
βy22

b2
µ2

+ λy1y2Īh + βy2y5S̄h − (k + µ1) y
2
2

]
+ c3

[
ky2y3 − (d+ δ + µ1) y

2
3

]
+ c4

[
1

2
γy23

b2
µ2

+
1

2
γy24

b2
µ2

− γy24 Īh − µ2y
2
4

]
+ c5

[
1

2
γy23

b2
µ2

+
1

2
γy25

b2
µ2

+ γy4y5Īh − µ2y
2
5

]

=−
[(
c11y

2
1 − c12y1y2 +

1

3
c22y

2
2

)
+

(
1

3
c22y

2
2 − c23y2y3 + c33y

2
3

)
+

(
1

3
c22y

2
2 − c25y2y5 +

1

2
c55y

2
5

)
+

(
c44y

2
4 − c45y4y5 +

1

2
c55y

2
5

)]
where

c11 =c1

(
µ1 + (λ+ β) Īh −

λb1
2µ1

)
− c2

(
βb2
2µ1

)
c22 =c2

(
(k + µ1)−

λb1
2µ1

− βb2
2µ2

)
c33 =c3 (d+ δ + µ1)− (c1 + c2)

λb1
2µ1

− (c4 + c5)
γb2
2µ1

c44 =c4

(
µ2 + γĪh −

1

2
γy24

b2
µ2

)
c55 =c5

(
µ2 −

λb2
2µ2

)
− c1

βb1
2µ1

c12 =c2λĪh

c23 =c3k, c25 =c2βS̄h

c45 =c5γĪh.

Now, using Sylvester’s criteria, it can be observed that dV2

dt is negative definite under the conditions (5.4).
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