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Abstract

In this paper, we give the existence results of nontrivial positive solution to the integral-infinite point Hilfer-fractional
boundary-value problem involving a generalized (p1(x), p2(x), ..., pn(x))-Laplacian operator.
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1 Introduction

In this article, we give the existence results of a nontrivial positive solution to the following integral and infinite point
Hilfer fractional boundary-value problem involving a weighted and generalized (p1 (x) , p2 (x) , ..., pn (x))-Laplacian
operator 

HDα,ω,σ
0+ ϕ(x, p(x)Dβ

0+u(x)) + q(x)f(x, u(x)) = 0, x ∈ (0, 1) ,

u(0) = 0,

u(1) =
∫ 1

0
g(t)u(t)dt+

∑n=+∞
n=1 αnu(ηn),

(1.1)

where Dα,ω,σ
0+ is the σ−Hilfer fractional derivative of order α and type 0 ≤ ω ≤ 1, Dβ

0+ is the Riemann-Liouville
derivative of order β, σ is a function, 0 < α < 1 < β ≤ 2 and αn, ηn ∈ (0, 1) for n ≥ 1 such that

n=+∞∑
n=1

αn <∞.

Throughout this paper, we assume that the following conditions are satisfied;

(A1) η0 = 0 < ηn < ηn+1 for n ∈ N with
lim

n→+∞
ηn = η <∞.
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(A2) The functions f : [0, 1]×R+ → R+ and p, σ : [0, 1] → R+ are continuous such that σ ∈ C1 ([0, 1]) is increasing
and for all x ∈ [0, 1]

p(x) ̸= 0 and σ′(x) ̸= 0

and q, g : [0, 1] → R+ are measurable functions such that g is integrable and

0 < sup
t∈[0,1]

∫ t

0

σ′(s)(σ(t)− σ(s))α−1q(s)ds <∞.

(A3)
∫ 1

0
tβ−1g(t)dt+

∑n=+∞
n=1 αnη

β−1
n < 1.

(A4) ϕ : [0, 1] × R → R is continuous and for t ∈ [0, 1], the function ϕ(t, .) is odd and increasing , ϕ−1(t, .) is the
inverse function of ϕ(t, .) denoted by ψ(t, .) where ψ : [0, 1]×R→ R is continuous.

(A5) There exist p+, p− ∈ R with p+ ≥ p− > 1 such that

ϕ−(x) ≤ ϕ(., x) ≤ ϕ+(x) for (t, x) ∈ [0, 1]× R, (1.2)

with

ϕ−(x) =

{
ϕp+(x) if x ∈ [0, 1] ∪ (−∞,−1]

ϕp−(x) if x ∈ [−1, 0] ∪ [1,+∞)
(1.3)

and

ϕ+(x) =

{
ϕp−(x) if x ∈ [0, 1] ∪ (−∞,−1]

ϕp+(x) if x ∈ [−1, 0] ∪ [1,+∞)
(1.4)

Boundary value problems involving a p(t)-Laplacian operator have attracted a great deal of attention in the last
ten years (see [3, 4, 6, 19] ). At the same time, boundary value problems with fractional order and Hilfer fractional
order differential equations involving p(t)- Laplacian are of great importance and are an interesting class of problems.
Such kind of BVPs in Banach space has been studied by many authors, see, [1, 8, 10, 11, 12, 13, 15, 16, 17] and
the references therein. Noting that the generalized ϕ-Laplacian operator can turn into the well known p(t)-Laplacian
operator when we replace ϕ by ϕp(t)(x) = |x|p(t)−2x, so our results extend and enrich some existing papers.

The paper is organized as follows. In the first section, we recall some lemmas giving fxed point index calculations.
In second section, we present a lemma making use of homotopical arguments of fixed point index in the first existence
result ( superlinear case). In third section, we give the related lemmas and a fixed point formulation for bvp (1.1).
After that, we give our main results and their proofs. An example is given at the end of the paper to illustrate the
main results.

2 Preliminaries

For sake of completeness let us recall some basic facts needed in this paper. Let E be a real Banach spce
equipped with its norme noted ∥.∥, L(E) is the set of all linear continuous mapping from E into E. For L ∈ L(E),

r(L) = limn→∞ ∥Ln∥ 1
n denotes the spectral radius of L. A nonempty closed convex subset K of E is said to be a cone

if K ∩ (−K) = 0 and (tK) ⊂ K for all t ≥ 0.

Let K be a cone in E. A cone K induces a partial ordering ” ≤” , defined so that x ≤ y if and only if y − x ∈ K.
K is said to be normal if there exists a positive constant N such that for all u, v ∈ K,

u ≤ v implies ∥u∥ ≤ N∥v∥.

L ∈ L(E) is said to be positive in K if L(K) ⊂ K, it is said to be strongly positive in K if int(K) ̸= ∅ and
L(K \ {0}) ⊂ int(K), and it is said to be K - normal if for all u, v ∈ K,

u ≤ v implies ∥Lu∥ ≤ ∥Lv∥.

Let E be a real Banach space and let K be a cone. Let R > 0, B(0, R) be the ball of radius R in E and A : KR → K
a completely continuous mapping, whereKR = B(0, R)∩K. We will use the following lemmas concerning computations
of the fixed point index, i, for a compact map A ( See [7]).
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Lemma 2.1. If ∥Ax∥ < ∥x∥ for all x ∈ ∂B(0, R) ∩K, then i(A,KR,K) = 1 .

Lemma 2.2. If ∥Ax∥ > ∥x∥ for all x ∈ ∂B(0, R) ∩K, then i(A,KR,K) = 0 .

Lemma 2.3. If Ax ̸≥ x for all x ∈ ∂B(0, R) ∩K, then i(A,KR,K) = 1.

Lemma 2.4. If Ax ̸≤ x for all x ∈ ∂B(0, R) ∩K, then i(A,KR,K) = 0 .

Lemma 2.5. If Ax ̸= λx for all x ∈ ∂B(0, R) ∩K and λ > 1, then i(A,KR,K) = 1.

3 Fixed point index Lemma

Let N : E → E be an operator and K be a cone of a real Banach space E, and consider the partial ordering ” ≤”
in E, defined so that x ≤ y if and only if y − x ∈ K. Let ρ ∈ K∗, and consider the following cone P = K(ρ) = {u ∈
K : u ≥ ||u||ρ} and the positive value

λ0(K) = inf Λ−(K)

where
Λ−(K) = {λ ≥ 0 : there exists u ∈ K ∩ ∂B(0, 1) such that Nu ≤ λu}.

Remark 3.1. If N is completely continuous, then by Lemmas 2.4 2.5, there exists λ ≥ 1 such that λ ∈ Λ−(K).

Lemma 3.2. Assume that N : E → E is increasing, positively 1-homogeneous and completely continuous, such that
N(K \ {0}) ⊂ K \ {0}.
If there exist ρ ∈ K∗ such that NK ⊂ P = K(ρ), then λ0(K) = λ0(P ) > 0.

Remark 3.3. Assume that N : E → Eis increasing, positively 1-homogeneous and completely continuous, such that
N(K\ {0}) ⊂ K\ {0}. If there exist ρ ∈ K such that NK ⊂ P = K(ρ) , then

λ0(K) = λ0(K) > 0,

Because, for λ ≥ 0, u ∈ K ∩ ∂B(0, 1) such that Nu ≤ λu. Since NK ⊂ P , N is strictly increasing and positively
1-homogeneous, we have

N
( Nu

||Nu||
)
≤ λ

Nu

||Nu||

then Λ−(K) ⊂ Λ−(P ) with P ⊂ K we deduce Λ−(P ) = Λ−(K) and so λ0(K) = λ0(P ). Moreover, we have that
λ0(P ) > 0. As, in the contrary, if we assume that there exist (λn) ∈ R+ and un ∈ P ∩ ∂B(0, 1)n with limn→∞ λn = 0
such that Nun ≤ λnun. For n ∈ N , λnun ≥ Nun ≥ N(||un||ρ) = N(ρ) and so λnun−N(ρ) ∈ K. Then limn→∞ λnun−
N(ρ) = −N(ρ) ∈ K, and we obtain N(ρ) = 0, which is a contradiction.

Remark 3.4. If K is a normal cone in a Banach space E, with the constant of normality n = 1 (i.e ||u|| ≥ ||v|| if
u ≥ v ≥ 0), then λ0(K) ≥ ||N(ρ)||. Since for λ ∈ Λ(P ), u ∈ P ∩B(0, 1),

λu ≥ Nu ≥ N(||u||ρ) = N(ρ).

In the following lemma, we assume that N, N0 : E → E are positively 1- homogeneous and completely continuous
operators, with N is increasing such that N(K \ {0}) ⊂ P \ {0}, where P = K(ρ), ρ ∈ K∗ and K is a normal cone in
a Banach space E, (for simplicity, we can assume that the constant of normality n = 1).

Lemma 3.5. Let Q,Q0, G2 : K → K be continuous mappings with

lim
||u||→+∞

||Qu||
||u||

< +∞ and lim
||u||→+∞

||G2u||
||u||

= 0 ≤ lim
||u||→+∞

||Q0u||
||u||

< +∞, (3.1)

such that
NQu−G2u ≤ N0Q0u, for u ∈ K (3.2)
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Suppose that there exist λ1 ∈ R+ and G1 : K → K with

lim
||u||→+∞

G1u

||u||
= 0, (3.3)

such that
Qu ≥ λ1u−G1(u), for u ∈ K. (3.4)

If
λ1 > λ−1

0 (K), (3.5)

then there exist R1 > 0 such that for all R ≥ R1, i(N0Q0,KR,K) = i(NQ,PR, P ). Moreover, if

λ1 > ||N(ρ)||−1, (3.6)

then there exist R2 > 0 such that for all R ≥ R2, i(N0Q0,KR,K) = 0.

Proof . First, we show that there exists R1 > 0 such that for all R ≥ R1, i(NQ,KR,K) = i(N0Q0,KR,K). We
consider the homotopy H(t, u) = tN0Q0u+ (1− t)NQu. We show that there exists R1 > 0 such that for all R ≥ R1

the equation H(t, u) = u has not solutions in [0, 1]× (K ∩ ∂B(0, R)). In the contrary, we assume that for all n ∈ N ,
there exist Rn ≥ n and (tn, un) ∈ [0, 1]× (K ∩ ∂B(0, Rn)) such that

un = H(tn, un) = tnN0Q0un + (1− tn)NQun. (3.7)

By dividing the above equation by ||un|| we obtain

vn =
un

||un||
= tnN0

(Q0un
||un||

)
+ (1− tn)N

( Qun
||un||

)
. (3.8)

From 3.1,

lim
n→∞

||Q0un||
||un||

<∞ and lim
n→∞

||Qun||
||un||

<∞,

then the sequences
(

Q0un

||un||

)
n
,
(

Qun

||un||

)
n
are bounded, and we deduce from the compactness of N and N0, that (vn)n

admits a convergent sub-sequence also denoted by (vn)n. Let v = limn→∞ vn ∈ K ∩ ∂B(0, 1) and t = limn→∞ tn. By
using the conditions 3.2 and 3.4, it follows from 3.8 that for all n ∈ N

vn ≥ N

(
Qun
∥un∥

)
− tn

G2un
∥un∥

≥ N

(
λ1vn − G1un

∥un∥

)
− tn

G2un
∥un∥

.

With the fact that

lim
n→+∞

G1un
||un||

= lim
n→+∞

G2un
||un||

= 0

we have v ≥ λ1Nv, and so λ−1
1 ∈ Λ−(K) where

Λ−(K) = {λ ≥ 0; there exists u ∈ K ∩ ∂B(0, 1) such that Nu ≤ λu}.

Then λ−1
1 ≥ λ0(K), which contradicts 3.5. Then there exist R1 > 0 such that for all R ≥ R1 the equation

H(t, u) = u has not the solutions in [0, 1]× (K ∩ ∂B(0, R)), and by invariance property of fixed point index we deduce
that for all R ≥ R1 i(NQ,KR,K) = i(N0Q0,KR,K). By the fact that NQ(K) ⊂ P , we have from the excision
property of the fixed point index that i(NQ,KR,K) = i(NQ,PR, P ). Then i(N0Q0,KR,K) = i(NQ,PR, P ). Now,
we assume that the condition 3.6 holds. By using Lemma 2.4, we prove that there exists R0 > 0 such that, for all
R ≥ R0, i(NQ,PR, P ) = 0. In the contrary, we assume that for all n ∈ N, there exist Rn ≥ nand un ∈ P ∩ ∂B(0, Rn)
such that un ≥ NQun. By the condition 3.4 we have

vn =
un

∥un∥
≥ N

(
λ1vn − G1un

∥un∥

)
− tn

G2un
∥un∥

, (3.9)

with un ≥ ρ||un||. Then

vn ≥ N
(
λ1ρ−

G1(un)

||un||
)
− tn

G2un
||un||

.
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Set An = N
(
λ1ρ− G1(un)

||un||

)
−tn G2un

||un|| −N(λ1ρ). As limn→∞
G1(un)
||un|| = limn→∞

G2(un)
||un|| = 0, we have limn→∞An = 0

and vn −An ≥ N(λ1ρ) ≥ 0. Since K is normal with the constant of normality N = 1, for n ∈ N,

||vn −An|| ≥ ||N
(
λ1ρ)

)
||,

and so
1 = lim

n→∞
||vn|| = lim

n→∞
||vn −An|| ≥ λ1||N

(
ρ)
)
||,

then
1 ≥ λ1||N(ρ)||,

which contradicts 3.6. Consequently, for R ≥ R2 = max{R1, R0}, i(N0Q0,KR,K) = i(NQ,PR, P ) = 0. Thus, the
proof is completed. □

4 Related lemmas

Definition 4.1. [11, 12] The Riemann-Liouville fractional integral of order p > 0 of f ∈ L1([a, b],R+), is defined by

Ipa+f(x) =
1

Γ(p)

∫ x

a

(x− t)p−1f(t)dt, (4.1)

where Γ is the gamma function.

Definition 4.2. [11, 12] The Riemann-Liouville fractional derivative of order p ≥ 0 of a function f is defined by

Dp
a+f(x) =

dn

dxn
In−p
a+ f(x), n = [α] + 1 (4.2)

where [n] is the integer part of α.

Remark 4.3. If p ∈ N, then Dp
a+f = δp

δxp f, and for p = 1, I1a+f(x) =
∫ x

a
f(t)dt.

Lemma 4.4. [9] Let p > 0, and let u(t) be an integrable function in [a, b].

Ipa+D
p
a+u(x) = u(x) + c1(x− a)p−1 + c2(x− a)p−2...+ cn(x− a)p−n, (4.3)

where ck ∈ R, k ∈ {1, 2, ..., n}, n = [α] + 1 and [α] is the integer part of α.

Definition 4.5. [16] Let −∞ < a < b < +∞ and α > 0. Also, let σ (x) be an increasing and positive function on
(a,b], having a continuous derivative σ′ (x) on (a, b) . Then the left-sided fractional integral of a function u with respect
to another function σ on [a, b] is defined by

Iα,σa+ u(x) =
1

Γ (α)

∫ x

a

σ′ (t) (σ (x)− σ (t))
α−1

u(t)dt.

Definition 4.6. [16] Let α ∈ (n− 1, n) with n ∈ N, I = [a, b] is the interval such that (−∞ < a < b < +∞) and u,
σ ∈ Cn (I,R) two functions such that σ is increasing and σ′ (t) ̸= 0, for all t ∈ I. The σ-Hilfer fractional derivative
HDα,ω,σ

a+ of u of order n− 1 < α < n and type 0 ≤ ω ≤ 1 is defined by

HDα,ω,σ
a+ u (x) = I

ω(n−α),σ
a+

(
1

σ′(x)

∂

∂x

)n

I
(1−ω)(n−α),σ
a+ u (x) .

Let’s also recall the following important result [16]:

Theorem 4.7. If u ∈ Cn (I) , n− 1 < α < n, 0 ≤ ω ≤ 1, and ξ = α+ ω(n− α) then

Iα,σa+ .HDα,ω,σ
a+ u (x) = u(x)−

n∑
k=1

(σ(x)− σ(a))
ξ−k

Γ (ξ − k + 1)

(
1

σ′(x)

∂

∂x

)n−k

I
(1−ω)(n−α),σ
a+ u (a) .

Moreover, HDα,ω,σ
a+ Iα,σa+ u = u.
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Remark 4.8. In this paper, we assume that σ (x) is increasing and positive on (0, 1] with σ (0) = 0, having a
continuous derivative σ′ (x) on (0, 1) and σ′ (x) ̸= 0 for all x ∈ [0, 1] . If α ∈ (0, 1) , then n = 1 and

Iα,σ0+ .HDα,ω,σ
0+ u (x) = u(x)− (σ(x))

ξ−1

Γ (ξ)
(I

(1−ω)(1−α),σ
0+ u) (0) .

Lemma 4.9. Let h ∈ L(0, 1). The unique continuous solution of{
HDα,ω,σ

0+ ϕ(x, p(x)Dβ
0+u(x)) + h(x) = 0, x ∈ (0, 1),

u(0) = 0, u(1) =
∫ 1

0
g(t)u(t)dt+

∑n=+∞
n=1 αnu(ηn),

(4.4)

is given by u = N0H, where

N0u(x) =

∫ 1

0

G(x, t)u(t)dt,

H(t) =
1

p(t)
ψ
(
t,

1

Γ(α)

∫ t

0

σ′(t)(σ(t)− σ(s))α−1h(s)ds
)
,

and

G(x, t) =
1

Γ(β)


xβ−1Gm(t)− (x− t)β−1 if 0 ≤ t < min{x, η},
xβ−1Gη(t)− (x− t)β−1 if η ≤ t ≤ x,

xβ−1Gm(t) if x ≤ t < η,

xβ−1Gη(t) if t ≥ max{x, η}

(4.5)

with η = limn→∞ ηn, and m ∈ N∗ such that ηm−1 ≤ t ≤ ηm, where

Gm(t) =
µ(t)−

∑
n≥m αn(ηn − t)β−1

1− L
, Gη(t) =

µ(t)

1− L

and

µ(t) = (1− t)β−1 −
∫ 1

t

(s− t)β−1g(s)ds

with

L =
∑
n≥1

αnη
β−1
n +

∫ 1

0

sβ−1g(s)ds < 1.

Proof . Let u ∈ C ([0, 1]) . By Theorem 4.7, equation HDα,ω,σ
0+ ϕ(x, p(x)Dβ

0+u(x)) + h(x) = 0 gives

ϕ(x, p(x)Dβ
0+u(x)) = −Iα,σ0+ h(x) + lim

x→0

(σ(x)− σ(0))
ξ−1

Γ (ξ − k + 1)
I
(1−ω)(1−α),σ
0+ ϕ(x, p(x)Dβ

0+u(x))

and from limx→0 I
(1−ω)(1−α),σ
0+ ϕ(x, p(x)Dβ

0+u(x)) = 0, we have that Dβ
0+u(t) = −H(t) with

H(t) =
1

p(t)
ψ
(
t,

1

Γ(α)

∫ t

0

σ′ (s) (σ(t)− σ(s))α−1h(s)ds
)
.

And also from Lemma 4.4, we have

u(x) =

{
−Iβ0+H(x) + d1x

β−1 + d2x
β−2 if 1 < β < 2

−Iβ0+H(x) + d1x+ d′2 + d3x
−1 if β = 2.

As u is continuous at 0 and u(0) = 0, then d2 = d′2 = d3 = 0, then

u(x) = −Iβ0+H(x) + d1x
β−1, for β ∈ (1, 2].

In addition, from equation

u(1) =
∑
n≥1

αnu(ηn) +

∫ 1

0

g(s)u(s)ds
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we deduce that

Γ(β)(1− L)d1 = −
∑
n≥1

αn

∫ ηn

0

(ηn − t)β−1H(t)dt−
∫ 1

0

g(t)

∫ t

0

(t− s)β−1H(s)dsdt+

∫ 1

0

(1− t)β−1H(t)dt

with L =
∑

n≥1 αnη
β−1
n +

∫ 1

0
sβ−1g(s)ds. Then

u(x) =
1

Γ(β)

[C.xβ−1

1− L
−

∫ x

0

(x− t)β−1H(t)dt
]

where

C =

∫ 1

0

(1− t)β−1H(t)dt−
∫ 1

0

H(t)

∫ 1

t

(t− s)β−1g(s)dsdt−
∑
n≥1

αn

∫ ηn

0

(ηn − t)β−1H(t)dt.

Consequently, the solution of 4.4 is

u(x) =

∫ 1

0

G(x, t)H(t)dt

with

G(x, t) =
1

Γ(β)


xβ−1Gm(t)− (x− t)β−1 if 0 ≤ t < min{x, η}
xβ−1Gη(t)− (x− t)β−1 if η ≤ t ≤ x

xβ−1Gm(t) if x ≤ t < η

xβ−1Gη(t) if t ≥ max{x, η}

(4.6)

with η = limn→∞ ηn, and m ∈ N∗ such that ηm−1 ≤ t ≤ ηm, where

Gm(t) =
µ(t)−

∑
n≥m αn(ηn − t)β−1

1− L

Gη(t) =
µ(t)

1− L

and

µ(t) = (1− t)β−1 −
∫ 1

t

(s− t)β−1g(s)ds.

This finishes the proof. □

Lemma 4.10. G is continuous in [0, 1]2, and for x, t ∈ [0, 1], we have h1(t)x
β ≤ G(x, t) ≤ h2(t)x

β−1, where

h1(t) =
(1− t)β−1

∫ t

0
sβ−1g(s)ds

Γ(β)(1− L)
and h2(t) =

µ(t)

Γ(β)(1− L)

with

L =

∫ 1

0

sβ−1g(s)ds+
∑
n≥1

αnη
β−1
n .

Proof . It’s clear that G is continuous in [0, 1]
2
, and the right hand inequality G(x, t) ≤ h2(t)x

β−1 is obvious. Now,
we show that G(x, t) ≥ h1(t)x

β , where

h1(t) =
(1− t)β−1

∫ t

0
sβ−1g(s)ds

Γ(β)(1− L)

with

L =

∫ 1

0

sβ−1g(s)ds+
∑
n≥1

αnη
β−1
n .
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Let x, t ∈ [0, 1]. For n ∈ N∗, as t ≥ tηn and t ≥ tx, we have

(ηn − t)β−1 ≤ ηβ−1
n (1− t)β−1, (x− t)β−1 ≤ xβ−1(1− t)β−1,

and t ≥ ts gives ∫ 1

t

(s− t)β−1g(s)ds ≤ (1− t)β−1

∫ 1

t

sβ−1g(s)ds.

For t, x ∈ [0, 1], we have

G(x, t) ≥ xβ−1(1− t)β−1

Γ(β)

[1− ∫ 1

t
sβ−1g(s)ds−

∑
n≥1 αnη

β−1
n

1− L
− 1

]
and with xβ−1 ≥ xβ leads

G(x, t) ≥ xβ(1− t)β−1

Γ(β)

[∫ 1

0
sβ−1g(s)ds−

∫ 1

t
sβ−1g(s)ds

1− L

]
then G(x, t) ≥ xβh1(t). □

Remark 4.11. According to Lemma 4.9, u is solution of 1.1 if and only if u = Tu, where T = N0Q0 with

N0u(x) =

∫ 1

0

G(x, t)u(t)dt and Q0u(t) =
1

p(t)
ψ
(
t,

1

Γ(α)

∫ t

0

(t− s)α−1q(s)f(s, u(s))ds
)
.

Let E = C([0, 1]) be the Banach space equipped with the sup-norm ||u|| = supx∈[0,1]|u(x)|, and the cone

K = E+ = {u ∈ E; u ≥ 0}.

Lemma 4.12. T : E → E is completely continuous and TK ⊂ K.

Proof . T = N0Q0 is the composition of the compact operator N0 and the continuous operator Q0, so, the Theorem
of Ascoli-Arzela garantees that T is completely continuous. Moreover, since f, p and q are positive, then TK ⊂ K. □

Remark 4.13. We have from 1.2 of the condition (A5) that

ψ+(x) ≤ ψ(., x) ≤ ψ−(x) for t ∈ [0, 1], (4.7)

where ψ−, ψ+ are the inverse functions of ϕ−, ϕ+ respectively , defined by

ψ−(x) =

{
ψp+(x) if x ∈ [0, 1] ∪ (−∞,−1]

ψp−(x) if x ∈ [−1, 0] ∪ [1,+∞)
(4.8)

and

ψ+(x) =

{
ψp−(x) if x ∈ [0, 1] ∪ (−∞,−1]

ψp+(x) if x ∈ [−1, 0] ∪ [1,+∞)
(4.9)

Then there exist c, e > 0 such that for all (t, x) ∈ [0, 1]× R+

ψp−(x) + e ≥ ψ(t, x) ≥ ψp+(x)− c. (4.10)

5 Main results

Let N : K → P = K (ρ) be an operator defined by

Nu (x) = xβ
∫ 1

0

h1(t)

p(t)
ψp+

(
t,

1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)ϕp+(u(s))ds
)
dt

where ρ (x) = xβ , q0(s) = σ′ (s) .q(s) and set Qu(t) = ψp+(f(t, u(t))), and

λ = ϕp+

[ ∫ 1

0

h2(t)

p(t)
ψp+

( 1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)ds
)
dt
]−1

.
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Theorem 5.1. Assume that there exist r0 > 0, r1 > 0 and γ > ϕp+(||N(ρ)||−1), such that

f(t, x) < λϕp+(x), for (t, x) ∈ [0, 1]× [0, r0]. (5.1)

and
f(t, x) ≥ γϕp+(x), for (t, x) ∈ [0, 1]× [r1,+∞) (5.2)

with

lim
x→+∞

supt∈[0,1]{f(t, x)}
ϕp−(x)

<∞, (5.3)

then problem 1.1 has at least one nontrivial positive solution.

Proof . In first, we show that i(T,Kr,K) = 1 for some

r ≤ min

{
r0, 1, ψp+

Γ(α+ 1)

λq∞

}
.

We have

lim
r→0+

1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)λϕp+(r)ds = 0

uniformly in the compact [0, 1] , and so, there exists r ≤ min{r0, 1} such that for all t ∈ [0, 1]

1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)λϕp+(r)ds ≤ 1.

From 5.1, we have f(t, x) < λϕp+(x), (t, x) ∈ [0, 1]× [0, r]. For u ∈ ∂B(0, r) ∩K,

Tu(x) =

∫ 1

0

G(t, x)

p(t)
ψ
(
t,

1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)f(s, u(s))ds
)
dt

≤
∫ 1

0

xβ−1h2(t)

p(t)
ψ
(
t,

1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)f(s, u(s))ds
)
dt

≤
∫ 1

0

h2(t)

p(t)
ψ−

( 1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)f(s, u(s))ds
)
dt

<

∫ 1

0

h2(t)

p(t)
ψ−

( 1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)λϕp+(u(s))ds
)
dt

<

∫ 1

0

h2(t)

p(t)
ψ−

( 1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)λϕp+(r)ds
)
dt

<

∫ 1

0

h2(t)

p(t)
ψp+

( 1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)λϕp+(r)ds
)
dt

= r

∫ 1

0

h2(t)

p(t)
ψp+

( λ

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)ds
)
dt.

Then ||Tu|| < ||u||. By Lemma 2.1, i(T,Kr,K) = 1 . Now,by using Lemma 3.5, we show that there exists R > 0
such that i(T,KR,K) = 0 . In first, we have T = N0Q0 ≥ NQ−G2 and

lim
||u||→+∞

G2(u)

||u||
= 0

where

G2u = c.xβ
∫ 1

0

h1 (t)

p(t)
dt.

Then the condition 3.2 of Lemma 3.5 is satisfied. Now, we have from 5.2, for x ≥ r1, ψp+(f(t, x)) ≥ λ1x, with
λ1 = ψp+(γ) > ||N(ρ)||−1. Then there exists d ∈ R such that ψp+(f(t, x)) ≥ λ1x − d, for x ≥ 0. and set G1(u) = d.
We have for u ∈ K

Q(u)(t) ≥ λ1u(t)−G1(u)(t),
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with

lim
||u||→∞

G1(u)

||u||
= 0.

Moreover, from Remark 4.13, for u ∈ K,

Qu(t) = ψp+(f(t, u(t))) ≤ ψp−(f(t, u(t))) + e+ c, for t ∈ [0, 1],

and

Q0u(t) = ψ
(
t,

1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)f(s, u(s))ds
)

≤ ψp−

(
t,

1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)f(s, u(s))ds
)
+ e.

then from 5.3 we have

lim
||u||→+∞

||Q(u)||
||u||

<∞ and lim
||u||→+∞

||Q0(u)||
||u||

<∞.

By Lemma 3.5, there exist R > r0 such that i(N0Q0,KR,K) = 0 . Hence, T = N0Q0 has at least one fixed point
u in K ∩ (B(0, R) \B(0, r)), which is a nontrivial positive solution for problem 1.1. □

Set

λ2 = ϕp−

[ ∫ 1

0

h2(t)

p(t)
ψp−

( 1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)ds
)
dt
]−1

and

N2(u)(x) = xβ
∫ 1

0

h1(t)

p(t)
ψp−

( 1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)ϕp−(u(s))ds
)
dt.

Theorem 5.2. Assume that there exist r2 > 0, r3 > 0 and γ > ϕp−(||N2(ρ)||−1), such that

f(t, x) < λ2ϕp−(x), for (t, x) ∈ [0, 1]× [r2,+∞), (5.4)

and
f(t, x) ≥ γϕp−(x), for (t, x) ∈ [0, 1]× [0, r3], (5.5)

then problem 1.1 has at least one nontrivial positive solution.

Proof . In first, by using Lemma 2.3, we show that ther exists R ≥ r2 such that i(T, PR, P ) = 1 . In the contrary, we
assume that there exits a sequence (un)n in P with limn→∞ ||un|| = ∞, such that Tun ≥ un. From 5.4, there exist
ϵ > 0 and b ∈ R such that

f(t, x) ≤ (λ2 − ϵ)ϕp−(x) + b, for (t, x) ∈ [0, 1]× [0,+∞).

Then for n ∈ N

un ≤ Tun(x) =

∫ 1

0

G(t, x)

p(t)
ψ
(
t,

1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)f(s, un(s))ds
)
dt

≤
∫ 1

0

xβ−1h2(t)

p(t)
ψ
(
t,

1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)f(s, un(s))ds
)
dt

≤
∫ 1

0

h2(t)

p(t)
ψp−

( 1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)f(s, un(s))ds
)
dt+ e

∫ 1

0

h2(t)

p(t)
dt

≤
∫ 1

0

h2(t)

p(t)
ψp−

( 1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)[(λ2 − ϵ)ϕp−(un(s)) + b]ds
)
dt+ e

∫ 1

0

h2(t)

p(t)
dt

≤ ||un||ψp−(λ2 − ϵ)

∫ 1

0

h2(t)

p(t)
ψp−

( 1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)(1 + rn)ds
)
dt+ e

∫ 1

0

h2(t)

p(t)
dt
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where rn = b
ϕp− (||un||)(λ2−ϵ) . Then

1 ≤ ψp−(λ2 − ϵ)

∫ 1

0

h2(t)

p(t)
ψp−

( 1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)(1 + rn)ds
)
dt+

e
∫ 1

0
h2(t)
p(t) dt

||un||

and with limn→∞ rn = 0 = limn→∞
e
∫ 1
0

h2(t)

p(t)
dt

||un|| , it follows the following contradiction 1 ≤ ψp−(λ2 − ϵ)ψp−(λ−1
2 ) < 1.

Then there exists R ≥ r2 such that i(T, PR, P ) = 1 . Now, we prove that i(T, Pr3 , P ) = 0 . Let u ∈ P ∩ ∂B(0, r0), with

r0 = min{1, r3, ψp−(
Γ(α+ 1)

γ
)}.

We have u ≥ ρ||u||, and from 5.5

Tu(1) ≥
∫ 1

0

h1(t)

p(t)
ψ
(
t,

1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)(γϕp−(u(s)))ds
)
dt

≥
∫ 1

0

h1(t)

p(t)
ψp−

( 1

Γ(α)

∫ t

0

(σ(t)− σ(s))α−1q0(s)(γϕp−(ρ(s)||u||)ds
)
dt.

Then ||Tu| ≥ ψp−(γ)||N2(ρ)||||u|| > ||u||. From Lemma 2.1, we have i(T, Pr0 , P ) = 0 . Consequently, T = N0Q0

has at least one fixed point u in K ∩ (B(0, R) \B(0, r0)), which is a nontrivial positive solution for problem 1.1. □

Example 5.3. We consider the following (p1(x), p2(x), ..., pN (x))-Laplacian boundary value problem
∑k=N

k=1 HDα,ω,σ
0+ ϕpk(x)(x, (x+ 1)Dβ

0+u(x)) +
sin x
x .h(x, u(x)) = 0, x ∈ (0, 1),

limx→0 I
(1−ω)(1−α),σ
0+ ϕpk(x)(x, (x+ 1)Dβ

0+u(x)) = u(0) = 0,

u(1) =
∫ 1

0
g(t)u(t)dt+

∑n=+∞
n=1 αnu(ηn),

(5.6)

where ϕpk(t) is the pk(t)-Laplacian operator defined in [0, 1]×R as

ϕpk(t)(t, x) = |x|pk(t)−2.x, for k ∈ {1, 2, ..., N}, N ∈ N∗

with pk(t) ∈ C1([0, 1], (1,+∞)). We consider the problem 1.1 with f(t, x) = h(t,x)
N and ϕ(t, x) = 1

N

∑k=N
k=1 ϕpk(t)(t, x),

p(x) = (x+ 1) and q(x) = sin x
x . We assume that the conditions (A1), (A2) and (A3) are satisfied, and ϕ verifies (A4)

and (A5) with
p+ = max{pk(t), t ∈ [0, 1], k ∈ 1, 2, .., N},

and
p− = min{pk(t), t ∈ [0, 1], k ∈ 1, 2, .., N}.

We deduce from theorems 5.1 and 5.2 that, if there exist R0 > 0, R1 > 0 and γ > γ0 such that h verifies one of the
following conditions;
(H1)

h(t, x) < Nλϕp+(x), for (t, x) ∈ [0, 1]× [0, R0]. (5.7)

h(t, x) ≥ Nγϕp+(x), for (t, x) ∈ [0, 1]× [R1,+∞) (5.8)

and

lim
x→+∞

supt∈[0,1]{h(t, x)}
ϕp−(x)

<∞, (5.9)

or
(H2)

h(t, x) < Nλ2ϕp−(x), for (t, x) ∈ [0, 1]× [R1,+∞), (5.10)

and
h(t, x) ≥ Nγϕp−(x), for (t, x) ∈ [0, 1]× [0, R0], (5.11)

then problem 5.6 has at least one nontrivial positive solution.
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